Search results for: local thresholding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5476

Search results for: local thresholding

5476 Binarization and Recognition of Characters from Historical Degraded Documents

Authors: Bency Jacob, S.B. Waykar

Abstract:

Degradations in historical document images appear due to aging of the documents. It is very difficult to understand and retrieve text from badly degraded documents as there is variation between the document foreground and background. Thresholding of such document images either result in broken characters or detection of false texts. Numerous algorithms exist that can separate text and background efficiently in the textual regions of the document; but portions of background are mistaken as text in areas that hardly contain any text. This paper presents a way to overcome these problems by a robust binarization technique that recovers the text from a severely degraded document images and thereby increases the accuracy of optical character recognition systems. The proposed document recovery algorithm efficiently removes degradations from document images. Here we are using the ostus method ,local thresholding and global thresholding and after the binarization training and recognizing the characters in the degraded documents.

Keywords: binarization, denoising, global thresholding, local thresholding, thresholding

Procedia PDF Downloads 342
5475 Empirical Mode Decomposition Based Denoising by Customized Thresholding

Authors: Wahiba Mohguen, Raïs El’hadi Bekka

Abstract:

This paper presents a denoising method called EMD-Custom that was based on Empirical Mode Decomposition (EMD) and the modified Customized Thresholding Function (Custom) algorithms. EMD was applied to decompose adaptively a noisy signal into intrinsic mode functions (IMFs). Then, all the noisy IMFs got threshold by applying the presented thresholding function to suppress noise and to improve the signal to noise ratio (SNR). The method was tested on simulated data and real ECG signal, and the results were compared to the EMD-Based signal denoising methods using the soft and hard thresholding. The results showed the superior performance of the proposed EMD-Custom denoising over the traditional approach. The performances were evaluated in terms of SNR in dB, and Mean Square Error (MSE).

Keywords: customized thresholding, ECG signal, EMD, hard thresholding, soft-thresholding

Procedia PDF Downloads 301
5474 Hybrid Robust Estimation via Median Filter and Wavelet Thresholding with Automatic Boundary Correction

Authors: Alsaidi M. Altaher, Mohd Tahir Ismail

Abstract:

Wavelet thresholding has been a power tool in curve estimation and data analysis. In the presence of outliers this non parametric estimator can not suppress the outliers involved. This study proposes a new two-stage combined method based on the use of the median filter as primary step before applying wavelet thresholding. After suppressing the outliers in a signal through the median filter, the classical wavelet thresholding is then applied for removing the remaining noise. We use automatic boundary corrections; using a low order polynomial model or local polynomial model as a more realistic rule to correct the bias at the boundary region; instead of using the classical assumptions such periodic or symmetric. A simulation experiment has been conducted to evaluate the numerical performance of the proposed method. Results show strong evidences that the proposed method is extremely effective in terms of correcting the boundary bias and eliminating outlier’s sensitivity.

Keywords: boundary correction, median filter, simulation, wavelet thresholding

Procedia PDF Downloads 428
5473 Scintigraphic Image Coding of Region of Interest Based on SPIHT Algorithm Using Global Thresholding and Huffman Coding

Authors: A. Seddiki, M. Djebbouri, D. Guerchi

Abstract:

Medical imaging produces human body pictures in digital form. Since these imaging techniques produce prohibitive amounts of data, compression is necessary for storage and communication purposes. Many current compression schemes provide a very high compression rate but with considerable loss of quality. On the other hand, in some areas in medicine, it may be sufficient to maintain high image quality only in region of interest (ROI). This paper discusses a contribution to the lossless compression in the region of interest of Scintigraphic images based on SPIHT algorithm and global transform thresholding using Huffman coding.

Keywords: global thresholding transform, huffman coding, region of interest, SPIHT coding, scintigraphic images

Procedia PDF Downloads 367
5472 A Passive Digital Video Authentication Technique Using Wavelet Based Optical Flow Variation Thresholding

Authors: R. S. Remya, U. S. Sethulekshmi

Abstract:

Detecting the authenticity of a video is an important issue in digital forensics as Video is used as a silent evidence in court such as in child pornography, movie piracy cases, insurance claims, cases involving scientific fraud, traffic monitoring etc. The biggest threat to video data is the availability of modern open video editing tools which enable easy editing of videos without leaving any trace of tampering. In this paper, we propose an efficient passive method for inter-frame video tampering detection, its type and location by estimating the optical flow of wavelet features of adjacent frames and thresholding the variation in the estimated feature. The performance of the algorithm is compared with the z-score thresholding and achieved an efficiency above 95% on all the tested databases. The proposed method works well for videos with dynamic (forensics) as well as static (surveillance) background.

Keywords: discrete wavelet transform, optical flow, optical flow variation, video tampering

Procedia PDF Downloads 358
5471 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image

Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche

Abstract:

The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.

Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter

Procedia PDF Downloads 163
5470 An Online Adaptive Thresholding Method to Classify Google Trends Data Anomalies for Investor Sentiment Analysis

Authors: Duygu Dere, Mert Ergeneci, Kaan Gokcesu

Abstract:

Google Trends data has gained increasing popularity in the applications of behavioral finance, decision science and risk management. Because of Google’s wide range of use, the Trends statistics provide significant information about the investor sentiment and intention, which can be used as decisive factors for corporate and risk management fields. However, an anomaly, a significant increase or decrease, in a certain query cannot be detected by the state of the art applications of computation due to the random baseline noise of the Trends data, which is modelled as an Additive white Gaussian noise (AWGN). Since through time, the baseline noise power shows a gradual change an adaptive thresholding method is required to track and learn the baseline noise for a correct classification. To this end, we introduce an online method to classify meaningful deviations in Google Trends data. Through extensive experiments, we demonstrate that our method can successfully classify various anomalies for plenty of different data.

Keywords: adaptive data processing, behavioral finance , convex optimization, online learning, soft minimum thresholding

Procedia PDF Downloads 166
5469 Segmentation Using Multi-Thresholded Sobel Images: Application to the Separation of Stuck Pollen Grains

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie

Abstract:

Being able to identify biological particles such as spores, viruses, or pollens is important for health care professionals, as it allows for appropriate therapeutic management of patients. Optical microscopy is a technology widely used for the analysis of these types of microorganisms, because, compared to other types of microscopy, it is not expensive. The analysis of an optical microscope slide is a tedious and time-consuming task when done manually. However, using machine learning and computer vision, this process can be automated. The first step of an automated microscope slide image analysis process is segmentation. During this step, the biological particles are localized and extracted. Very often, the use of an automatic thresholding method is sufficient to locate and extract the particles. However, in some cases, the particles are not extracted individually because they are stuck to other biological elements. In this paper, we propose a stuck particles separation method based on the use of the Sobel operator and thresholding. We illustrate it by applying it to the separation of 813 images of adjacent pollen grains. The method correctly separated 95.4% of these images.

Keywords: image segmentation, stuck particles separation, Sobel operator, thresholding

Procedia PDF Downloads 129
5468 RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System

Authors: Kay Thinzar Phu, Lwin Lwin Oo

Abstract:

In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset.

Keywords: adaptive thresholding based on RGB color, blue color detection, feature extraction, yellow color detection

Procedia PDF Downloads 312
5467 Speckle Noise Reduction Using Anisotropic Filter Based on Wavelets

Authors: Kritika Bansal, Akwinder Kaur, Shruti Gujral

Abstract:

In this paper, the approach of denoising is solved by using a new hybrid technique which associates the different denoising methods. Wavelet thresholding and anisotropic diffusion filter are the two different filters in our hybrid techniques. The Wavelet thresholding removes the noise by removing the high frequency components with lesser edge preservation, whereas an anisotropic diffusion filters is based on partial differential equation, (PDE) to remove the speckle noise. This PDE approach is used to preserve the edges and provides better smoothing. So our new method proposes a combination of these two filtering methods which performs better results in terms of peak signal to noise ratio (PSNR), coefficient of correlation (COC) and equivalent no of looks (ENL).

Keywords: denoising, anisotropic diffusion filter, multiplicative noise, speckle, wavelets

Procedia PDF Downloads 511
5466 Music Note Detection and Dictionary Generation from Music Sheet Using Image Processing Techniques

Authors: Muhammad Ammar, Talha Ali, Abdul Basit, Bakhtawar Rajput, Zobia Sohail

Abstract:

Music note detection is an area of study for the past few years and has its own influence in music file generation from sheet music. We proposed a method to detect music notes on sheet music using basic thresholding and blob detection. Subsequently, we created a notes dictionary using a semi-supervised learning approach. After notes detection, for each test image, the new symbols are added to the dictionary. This makes the notes detection semi-automatic. The experiments are done on images from a dataset and also on the captured images. The developed approach showed almost 100% accuracy on the dataset images, whereas varying results have been seen on captured images.

Keywords: music note, sheet music, optical music recognition, blob detection, thresholding, dictionary generation

Procedia PDF Downloads 180
5465 Reversible and Adaptive Watermarking for MRI Medical Images

Authors: Nisar Ahmed Memon

Abstract:

A new medical image watermarking scheme delivering high embedding capacity is presented in this paper. Integer Wavelet Transform (IWT), Companding technique and adaptive thresholding are used in this scheme. The proposed scheme implants, recovers the hidden information and restores the input image to its pristine state at the receiving end. Magnetic Resonance Imaging (MRI) images are used for experimental purposes. The scheme first segment the MRI medical image into non-overlapping blocks and then inserts watermark into wavelet coefficients having a high frequency of each block. The scheme uses block-based watermarking adopting iterative optimization of threshold for companding in order to avoid the histogram pre and post processing. Results show that proposed scheme performs better than other reversible medical image watermarking schemes available in literature for MRI medical images.

Keywords: adaptive thresholding, companding technique, data authentication, reversible watermarking

Procedia PDF Downloads 295
5464 Robust Image Design Based Steganographic System

Authors: Sadiq J. Abou-Loukh, Hanan M. Habbi

Abstract:

This paper presents a steganography to hide the transmitted information without excite suspicious and also illustrates the level of secrecy that can be increased by using cryptography techniques. The proposed system has been implemented firstly by encrypted image file one time pad key and secondly encrypted message that hidden to perform encryption followed by image embedding. Then the new image file will be created from the original image by using four triangles operation, the new image is processed by one of two image processing techniques. The proposed two processing techniques are thresholding and differential predictive coding (DPC). Afterwards, encryption or decryption keys are generated by functional key generator. The generator key is used one time only. Encrypted text will be hidden in the places that are not used for image processing and key generation system has high embedding rate (0.1875 character/pixel) for true color image (24 bit depth).

Keywords: encryption, thresholding, differential predictive coding, four triangles operation

Procedia PDF Downloads 492
5463 Intended and Unintended Outcomes of Partnerships at the Local Level in Slovakia

Authors: Daniel Klimovský

Abstract:

Slovakia belongs to the most fragmented countries if one looks at its local government structure. The Slovak central governments implemented both broad devolution and fiscal decentralization some decades ago. However, neither territorial consolidation nor size categorization of local competences and powers has been implemented yet. Taking this fact into account, it is clear that the local governments are challenged not only by their citizens as customers but also by effectiveness as well as efficiency of delivered services. The paper is focused on behavior of the local governments in Slovakia and their approaches towards other local partners, including other local governments. Analysis of set of interviews shows that inter-municipal cooperation is the most common local partnership in Slovakia, but due to diversity of the local governments, this kind of cooperation leads to both intended and unintended outcomes. While in many cases the local governments are more efficient as well as effective in delivery of local services thanks to inter-municipal cooperation, there are many cases where inter-municipal cooperation fails, and it brings rather questionable or even negative outcomes.

Keywords: local governments, local partnerships, inter-municipal cooperation, delivery of local services

Procedia PDF Downloads 260
5462 A Combined Feature Extraction and Thresholding Technique for Silence Removal in Percussive Sounds

Authors: B. Kishore Kumar, Pogula Rakesh, T. Kishore Kumar

Abstract:

The music analysis is a part of the audio content analysis used to analyze the music by using the different features of audio signal. In music analysis, the first step is to divide the music signal to different sections based on the feature profiles of the music signal. In this paper, we present a music segmentation technique that will effectively segmentize the signal and thresholding technique to remove silence from the percussive sounds produced by percussive instruments, which uses two features of music, namely signal energy and spectral centroid. The proposed method impose thresholds on both the features which will vary depends on the music signal. Depends on the threshold, silence part is removed and the segmentation is done. The effectiveness of the proposed method is analyzed using MATLAB.

Keywords: percussive sounds, spectral centroid, spectral energy, silence removal, feature extraction

Procedia PDF Downloads 591
5461 Building and Tree Detection Using Multiscale Matched Filtering

Authors: Abdullah H. Özcan, Dilara Hisar, Yetkin Sayar, Cem Ünsalan

Abstract:

In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results.

Keywords: building detection, local maximum filtering, matched filtering, multiscale

Procedia PDF Downloads 318
5460 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings

Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim

Abstract:

Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.

Keywords: building system, time series, diagnosis, outliers, delay, data gap

Procedia PDF Downloads 243
5459 Hyperspectral Image Classification Using Tree Search Algorithm

Authors: Shreya Pare, Parvin Akhter

Abstract:

Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures.

Keywords: classification, hyperspectral images, large distribution margin, modified fuzzy entropy function, multilevel thresholding, tree search algorithm, hyperspectral image classification using tree search algorithm

Procedia PDF Downloads 175
5458 Local Religion 'Parmalim': Between Civilization and Faith

Authors: Sabrina Yulianti

Abstract:

This study aims to explain the identity struggles of local religious communities in Indonesia. Local religion in Indonesia is not recognized by the government and is not incorporated into the official religion in Indonesia. This makes the local religions in Indonesia experienced the challenges and obstacles in fulfilling their rights as citizens of Indonesia. Challenges and barriers they experience such as: difficulty in making of the birth certificate and marriage. It is as experienced by one of the local religions namely Parmalim which located in North Sumatra. Not only difficulty in taking care of the bureaucracy as a citizen, but the local religion is seen as a minority and sometimes regarded as follower of deviate religion.

Keywords: local religion, faith, struggles, civilization, discrimination

Procedia PDF Downloads 398
5457 Density-based Denoising of Point Cloud

Authors: Faisal Zaman, Ya Ping Wong, Boon Yian Ng

Abstract:

Point cloud source data for surface reconstruction is usually contaminated with noise and outliers. To overcome this, we present a novel approach using modified kernel density estimation (KDE) technique with bilateral filtering to remove noisy points and outliers. First we present a method for estimating optimal bandwidth of multivariate KDE using particle swarm optimization technique which ensures the robust performance of density estimation. Then we use mean-shift algorithm to find the local maxima of the density estimation which gives the centroid of the clusters. Then we compute the distance of a certain point from the centroid. Points belong to outliers then removed by automatic thresholding scheme which yields an accurate and economical point surface. The experimental results show that our approach comparably robust and efficient.

Keywords: point preprocessing, outlier removal, surface reconstruction, kernel density estimation

Procedia PDF Downloads 344
5456 The Application of Pareto Local Search to the Single-Objective Quadratic Assignment Problem

Authors: Abdullah Alsheddy

Abstract:

This paper presents the employment of Pareto optimality as a strategy to help (single-objective) local search escaping local optima. Instead of local search, Pareto local search is applied to solve the quadratic assignment problem which is multi-objectivized by adding a helper objective. The additional objective is defined as a function of the primary one with augmented penalties that are dynamically updated.

Keywords: Pareto optimization, multi-objectivization, quadratic assignment problem, local search

Procedia PDF Downloads 466
5455 Liver Lesion Extraction with Fuzzy Thresholding in Contrast Enhanced Ultrasound Images

Authors: Abder-Rahman Ali, Adélaïde Albouy-Kissi, Manuel Grand-Brochier, Viviane Ladan-Marcus, Christine Hoeffl, Claude Marcus, Antoine Vacavant, Jean-Yves Boire

Abstract:

In this paper, we present a new segmentation approach for focal liver lesions in contrast enhanced ultrasound imaging. This approach, based on a two-cluster Fuzzy C-Means methodology, considers type-II fuzzy sets to handle uncertainty due to the image modality (presence of speckle noise, low contrast, etc.), and to calculate the optimum inter-cluster threshold. Fine boundaries are detected by a local recursive merging of ambiguous pixels. The method has been tested on a representative database. Compared to both Otsu and type-I Fuzzy C-Means techniques, the proposed method significantly reduces the segmentation errors.

Keywords: defuzzification, fuzzy clustering, image segmentation, type-II fuzzy sets

Procedia PDF Downloads 485
5454 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles

Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang

Abstract:

With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.

Keywords: curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering

Procedia PDF Downloads 128
5453 Contestation of Local and Non-Local Knowledge in Developing Bali Cattle at Barru Regency, Province of South Sulawesi, Indonesia

Authors: A. Amidah Amrawaty, M. Saleh S. Ali, Darmawan Salman

Abstract:

The aim of this study was to identify local and non local knowledge in Bali cattle development, to analyze the contestation between local and non-local knowledge. The paradigm used was constructivism paradigm with a qualitative approach. descriptive type of research using case study method. The study was conducted in four villages subjected to Agropolitan Program, i.e. Palakka, Tompo, Galung and Anabanua in Barru District, province of South Sulawesi. The results indicated that the local knowledge of the farmers were: a) knowledge of animal housing, b) knowledge of the prevention and control disease, c) knowledge of the feed, d) knowledge of breed selection, e) knowledge of sharing arrangement, f) knowledge of marketing, Generally, there are three patterns of knowledge contestation namely coexistence, ‘zero sum game’ and hybridization but in this research only coexistence and zero sum game patterns took place, while the pattern of hybridization did not occur.

Keywords: contestation, local knowledge, non-local knowledge, developing of Bali cattle

Procedia PDF Downloads 402
5452 Local Homology Modules

Authors: Fatemeh Mohammadi Aghjeh Mashhad

Abstract:

In this paper, we give several ways for computing generalized local homology modules by using Gorenstein flat resolutions. Also, we find some bounds for vanishing of generalized local homology modules.

Keywords: a-adic completion functor, generalized local homology modules, Gorenstein flat modules

Procedia PDF Downloads 417
5451 A Literature Review on the Role of Local Potential for Creative Industries

Authors: Maya Irjayanti

Abstract:

Local creativity utilization has been a strategic investment to be expanded as a creative industry due to its significant contribution to the national gross domestic product. Many developed and developing countries look toward creative industries as an agenda for the economic growth. This study aims to identify the role of local potential for creative industries from various empirical studies. The method performed in this study will involve a peer-reviewed journal articles and conference papers review addressing local potential and creative industries. The literature review analysis will include several steps: material collection, descriptive analysis, category selection, and material evaluation. Finally, the outcome expected provides a creative industries clustering based on the local potential of various nations. In addition, the finding of this study will be used as future research reference to explore a particular area with well-known aspects of local potential for creative industry products.

Keywords: business, creativity, local potential, local wisdom

Procedia PDF Downloads 384
5450 Present State of Local Public Transportation Service in Local Municipalities of Japan and Its Effects on Population

Authors: Akiko Kondo, Akio Kondo

Abstract:

We are facing regional problems to low birth rate and longevity in Japan. Under this situation, there are some local municipalities which lose their vitality. The aims of this study are to clarify the present state of local public transportation services in local municipalities and relation between local public transportation services and population quantitatively. We conducted a questionnaire survey concerning regional agenda in all local municipalities in Japan. We obtained responses concerning the present state of convenience in use of public transportation and local public transportation services. Based on the data gathered from the survey, it is apparent that we should some sort of measures concerning public transportation services. Convenience in use of public transportation becomes an object of public concern in many rural regions. It is also clarified that some local municipalities introduce a demand bus for the purpose of promotion of administrative and financial efficiency. They also introduce a demand taxi in order to secure transportation to weak people in transportation and eliminate of blank area related to public transportation services. In addition, we construct a population model which includes explanatory variables of present states of local public transportation services. From this result, we can clarify the relation between public transportation services and population quantitatively.

Keywords: public transportation, local municipality, regional analysis, regional issue

Procedia PDF Downloads 400
5449 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection

Authors: S. Shankar Bharathi

Abstract:

Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.

Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision

Procedia PDF Downloads 427
5448 CT Medical Images Denoising Based on New Wavelet Thresholding Compared with Curvelet and Contourlet

Authors: Amir Moslemi, Amir movafeghi, Shahab Moradi

Abstract:

One of the most important challenging factors in medical images is nominated as noise.Image denoising refers to the improvement of a digital medical image that has been infected by Additive White Gaussian Noise (AWGN). The digital medical image or video can be affected by different types of noises. They are impulse noise, Poisson noise and AWGN. Computed tomography (CT) images are subjected to low quality due to the noise. The quality of CT images is dependent on the absorbed dose to patients directly in such a way that increase in absorbed radiation, consequently absorbed dose to patients (ADP), enhances the CT images quality. In this manner, noise reduction techniques on the purpose of images quality enhancement exposing no excess radiation to patients is one the challenging problems for CT images processing. In this work, noise reduction in CT images was performed using two different directional 2 dimensional (2D) transformations; i.e., Curvelet and Contourlet and Discrete wavelet transform(DWT) thresholding methods of BayesShrink and AdaptShrink, compared to each other and we proposed a new threshold in wavelet domain for not only noise reduction but also edge retaining, consequently the proposed method retains the modified coefficients significantly that result in good visual quality. Data evaluations were accomplished by using two criterions; namely, peak signal to noise ratio (PSNR) and Structure similarity (Ssim).

Keywords: computed tomography (CT), noise reduction, curve-let, contour-let, signal to noise peak-peak ratio (PSNR), structure similarity (Ssim), absorbed dose to patient (ADP)

Procedia PDF Downloads 439
5447 An Appraisal of Revenue Collection in Local Government: A Case Study of Boripe Local Government Iragbiji Osun State

Authors: Olanike O. Akinwale, Isiaka S. Adedoyin

Abstract:

Revenue is a fund realized by the government to meet both current and capital expenditures. The study found out the various ways through which local governments in Nigeria generate revenue or obtain funds and determined whether the people of Boripe local government are paying tax as at when due and also evaluated how the revenue generated is being used by the local government. During the course of this study, research questionnaires were drafted and distributed to respondents in the local government secretariat who supplied the information needed to carry out the research work. Data were collected by using simple random sampling technique where members of the population have been given equal chance of being picked as a member of the sample. Data were analysed using chart table; the chart analyzed the figure of the past two years revenue and expenditure of the local government. It was deduced from the result that revenue generated but this was not up to what one expected for this local government to finance the projected expenditure when the size was considered, its location as well as its natural endowment of this local government. This was due to lack of cooperation of the people and staffs within the local government in the local government jurisdiction as well as fraudulent activities the revenue collectors engaged in. Revenue generation is a fuel for development in any organization whether public or private. The ability of revenue drive of Boripe was not strong enough since the targeted revenue from taxation was not enough to meet the projected expenditure for a particular year as in 2016, the difference was carried forward to the next year.

Keywords: appraisal, expenditure, local government, questionnaire, revenue

Procedia PDF Downloads 457