Search results for: intravaginal drug delivery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3407

Search results for: intravaginal drug delivery

3377 Development of Mucoadhesive Multiparticulate System for Nasal Drug Delivery

Authors: K. S. Hemant Yadav, H. G. Shivakumar

Abstract:

The present study investigation was to prepare and evaluate the mucoadhesive multi-particulate system for nasal drug delivery of anti-histaminic drug. Ebastine was chosen as the model drug. Drug loaded nanoparticles of Ebastine were prepared by ionic gelation method using chitosan as polymer using the drug-polymer weight ratios 1:1, 1:2, 1:3. Sodium tripolyphosphate (STPP) was used as the cross-linking agent in the range of 0.5 and 0.7% w/v. FTIR and DSC studies indicated that no chemical interaction occurred between the drug and polymers. Particle size ranged from 169 to 500 nm. The drug loading and entrapment efficiency was found to increase with increase in chitosan concentration and decreased with increase in poloxamer 407 concentration. The results of in vitro mucoadhesion carried out showed that all the prepared formulation had good mucoadhesive property and mucoadhesion increases with increase in the concentration of chitosan. The in vitro release pattern of all the formulations was observed to be in a biphasic manner characterized by slight burst effect followed by a slow release. By the end of 8 hrs, formulation F6 showed a release of only 86.9% which explains its sustained behaviour. The ex-vivo permeation of the pure drug ebastine was rapid than the optimized formulation(F6) indicating the capability of the chitosan polymer to control drug permeation rate through the sheep nasal mucosa. The results indicated that the mucoadhesive nanoparticulate system can be used for the nasal delivery of antihistaminic drugs in an effective manner.

Keywords: nasal, nanoparticles, ebastine, anti-histaminic drug, mucoadhesive multi-particulate system

Procedia PDF Downloads 398
3376 Mesoporous Tussah Silk Fibroin Microspheres for Drug Delivery

Authors: Weitao Zhou, Qing Wang, Jianxin He, Shizhong Cui

Abstract:

Mesoporous Tussah silk fibroin (TSF) spheres were fabricated via the self-assembly of TSF molecules in aqueous solutions. The results showed that TSF particles were approximately three-dimensional spheres with the diameter ranging from 500nm to 6μm without adherence. More importantly, the surface morphology is mesoporous structure with nano-pores of 20nm - 200nm in size. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) studies demonstrated that mesoporous TSF spheres mainly contained beta-sheet conformation (44.1 %) as well as slight amounts of random coil (13.2 %). Drug release test was performed with 5-fluorouracil (5-Fu) as a model drug and the result indicated the mesoporous TSF microspheres had a good capacity of sustained drug release. It is expected that these stable and high-crystallinity mesoporous TSF sphere produced without organic solvents, which have significantly improved drug release properties, is a very promising material for controlled gene medicines delivery.

Keywords: Tussah silk fibroin, porous materials, microsphere, drug release

Procedia PDF Downloads 430
3375 Pulsatile Drug Delivery System for Chronopharmacological Disorders

Authors: S. S. Patil, B. U. Janugade, S. V. Patil

Abstract:

Pulsatile systems are gaining a lot of interest as they deliver the drug at the right site of action at the right time and in the right amount, thus providing spatial and temporal delivery thus increasing patient compliance. These systems are designed according to the circadian rhythm of the body. Chronotherapeutics is the discipline concerned with the delivery of drugs according to inherent activities of a disease over a certain period of time. It is becoming increasingly more evident that the specific time that patients take their medication may be even more significant than was recognized in the past. The tradition of prescribing medication at evenly spaced time intervals throughout the day, in an attempt to maintain constant drug levels throughout a 24-hour period, may be changing as researcher’s report that some medications may work better if their administration is coordinated with day-night patterns and biological rhythms. The potential benefits of chronotherapeutics have been demonstrated in the management of a number of diseases. In particular, there is a great deal of interest in how chronotherapy can particularly benefit patients suffering from allergic rhinitis, rheumatoid arthritis and related disorders, asthma, cancer, cardiovascular diseases, and peptic ulcer disease.

Keywords: pulsatile drug delivery, chronotherapeutics, circadian rhythm, asthma, chronobiology

Procedia PDF Downloads 328
3374 Development and in vitro Characterization of Loteprednol Etabonate-Loaded Polymeric Nanoparticles for Ocular Delivery

Authors: Abhishek Kumar Sah, Preeti K. Suresh

Abstract:

Effective drug delivery to the eye is a massive challenge, due to complicated physiological ocular barriers, rapid washout by tear and nasolachrymal drainage. Thus, most of the conventional ophthalmic formulations face the problem of low ocular bioavailability. Ophthalmic drug therapy can be improved by enhancing the precorneal drug retention along with improved drug penetration. The aim of the present investigation was to develop and evaluate a biodegradable polymer poly (D, L-lactide-co-glycolide) (PLGA) coated nanoparticulate carrier of loteprednol etabonate. PLGA nanoparticles were prepared by modified emulsification/solvent diffusion method using high-speed homogenizer followed by sonication. The nanoparticles were characterized for various parameters such as particle size, zeta potential, polydispersity index, X-ray powder diffraction (XRD), Transmission electron microscopy (TEM), in vitro drug release profile and stability. The prepared nanocarriers displayed mean particle size in the range of 271.7 to 424.4 nm, with zeta potential less than –10 mV. In vitro release in simulated tear fluid (STF) nanocarrier showed an extended release profile of loteprednol etabonate. TEM confirmed the spherical morphology and smooth surface of the particles. All the prepared formulations were found to be stable at varying temperatures.

Keywords: drug delivery, ocular delivery, polymeric nanoparticles, loteprednol etabonate

Procedia PDF Downloads 513
3373 Assessment of Drug Delivery Systems from Molecular Dynamic Perspective

Authors: M. Rahimnejad, B. Vahidi, B. Ebrahimi Hoseinzadeh, F. Yazdian, P. Motamed Fath, R. Jamjah

Abstract:

In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane.

Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier

Procedia PDF Downloads 305
3372 Development of pH Responsive Nanoparticles for Colon Targeted Drug Delivery System

Authors: V. Balamuralidhara

Abstract:

The aim of the present work was to develop Paclitaxel loaded polyacrylamide grafted guar gum nanoparticles as pH responsive nanoparticle systems for targeting colon. The pH sensitive nanoparticles were prepared by modified ionotropic gelation technique. The prepared nanoparticles showed mean diameters in the range of 264±0.676 nm to 726±0.671nm, and a negative net charge 10.8 mV to 35.4mV. Fourier Transformed Infrared Spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC) studies suggested that there was no chemical interaction between drug and polymers. The encapsulation efficiency of the drug was found to be 40.92% to 48.14%. The suitability of the polyacrylamide grafted guar gum ERN’s for the release of Paclitaxel was studied by in vitro release at pH 1.2 and 7.4. It was observed that, there was no significant amount of drug release at gastric pH and 97.63% of drug release at pH 7.4 was obtained for optimized formulation F3 at the end of 12 hrs. In vivo drug targeting performance for the prepared optimized formulation (F3) and pure drug Paclitaxel was evaluated by HPLC. It was observed that the polyacrylamide grafted guar gum can be used to prepare nanoparticles for targeting the drug to the colon. The release performance was greatly affected by the materials used in ERN’s preparation, which allows maximum release at colon’s pH. It may be concluded that polyacrylamide grafted guar gum nanoparticles loaded with paclitaxel have desirable release responsive to specific pH. Hence it is a unique approach for colonic delivery of drug having appropriate site specificity and feasibility and controlled release of drug.

Keywords: colon targeting, polyacrylamide grafted guar gum nanoparticles, paclitaxel, nanoparticles

Procedia PDF Downloads 316
3371 Pharmaceutical Science and Development in Drug Research

Authors: Adegoke Yinka Adebayo

Abstract:

An understanding of the critical product attributes that impact on in vivo performance is key to the production of safe and effective medicines. Thus, a key driver for our research is the development of new basic science and technology underpinning the development of new pharmaceutical products. Research includes the structure and properties of drugs and excipients, biopharmaceutical characterisation, pharmaceutical processing and technology and formulation and analysis.

Keywords: drug discovery, drug development, drug delivery

Procedia PDF Downloads 460
3370 The Potential of Hydrophobically Modified Chitosan Cryogels to Be Used as Drug Delivery Systems

Authors: Courtney Evans, Yuto Morimitsu, Tsubasa Hisadome, Futo Inomoto, Masahiro Yoshida, Takayuki Takei

Abstract:

Hydrogels are useful biomaterials due to their highly biocompatible nature and their ability to absorb large quantities of liquid and mimic soft tissue. They are often used as therapeutic drug delivery systems. However, it is sometimes difficult to sustain controlled release when using hydrophobic medicines, as hydrogels are frequently hydrophilic. As such, this research shows the success of chitosan hydrogels modified through hydrophobic interaction. This was done through the imide bonding of the alkyl groups in fatty aldehydes and the amino groups in chitosan, followed by reductive animation. The resulting cryogels could be optimized for strength as well as sorption and desorption (of a hydrophobic dye used to mimic hydrophobic medicine) by varying the alkyl chain length and the substitution degree of the fatty aldehyde. Optimized cryogels showed potential as biomedical materials, particularly as drug delivery systems.

Keywords: biomedical materials, chitosan, drug carriers, hydrophobic modification

Procedia PDF Downloads 203
3369 Preparation and Physicochemical Characterization of Non-ionic Surfactant Vesicles Containing Itraconazole

Authors: S. Ataei, F. Sarrafzadeh Javadi, K. Gilani, E. Moazeni

Abstract:

Drug delivery systems using colloidal particulate carriers such as niosomes or liposomes have distinct advantages over conventional dosage forms because the particles can act as drug-containing reservoirs. These carriers play an increasingly important role in drug delivery. Niosomes are vesicular delivery systems which result from the self-assembly of hydrated surfactant. Niosomes are now widely studied as an attractive to liposomes because they alleviate the disadvantages associated with liposomes, such as chemical instability, variable purity of phospholipids and high cost. The encapsulation of drugs in niosomes can decrease drug toxicity, increase the stability of drug and increase the penetrability of drug in the location of application, and may reduce the dose and systemic side effect. Nowadays, Niosomes are used by the pharmaceutical industry in manufacturing skin medications, eye medication, in cosmetic formulas and these vesicular systems can be used to deliver aspiratory drugs. One way of improving dispersion in the water phase and solubility of the hydrophobic drug is to formulate in into niosomes. Itraconazole (ITZ) was chosen as a model hydrophobic drug. This drug is water insoluble (solubility ~ 1 ng/ml at neutral pH), is a broad-spectrum triazole antifungal agent and is used to treat various fungal disease. This study aims to investigate the capability of forming itraconazole niosomes with Spans, Tweens, Brijs as non-ionic surfactants. To this end, various formulations of niosomes have been studied with regard to parameters such as the degree of containment and particle size.

Keywords: physicochemical, non-ionic surfactant vesicles, itraconazole

Procedia PDF Downloads 433
3368 Formulation and Evaluation of Lisinopril Microspheres for Nasal Delivery

Authors: S. S. Patil, R. M. Mhetre, S. V. Patil

Abstract:

Lisinopril is an angiotensin converting enzyme inhibitor used in the treatment of hypertension and heart failure in prophylactic treatment after myocardial infarction and in diabetic nephropathy. However, it is very poorly absorbed from gastro-intestinal tract. Intranasal administration is an ideal alternative to the parenteral route for systemic drug delivery. Formulating multiparticulate system with mucoadhesive polymers provide a significant increase in the nasal residence time. The aim of the present approach was to overcome the drawbacks of the conventional dosage forms of lisinopril by formulating intranasal microspheres with Carbopol 974P NF and HPMC K4 M along with film forming polymer ethyl cellulose.The microspheres were prepared by emulsion solvent evaporation method. The prepared microspheres were characterized for encapsulation efficiency, drug loading, particle size, and surface morphology, degree of swelling, ex vivo mucoadhesion, drug release, ex vivo diffusion studies. All formulations has shown entrapment efficiency between 80 to more than 95%, mucoadhesion was more than 80 % and drug release up to 90 %. Ex vivo studies revealed tht the improved bioavailability of drug compared to oral drug administration. Both in vitro and in vivo studies conclude that combination of Carbopol and HPMC based microspheres shown better results than single carbopol based microspheres for the delivery of lisinopril.

Keywords: microspheres, lisinopril, nasal delivery, solvent evaporation method

Procedia PDF Downloads 501
3367 Formulation and Evaluation of Colon-Specific Drug Delivery System of Zaltoprofen

Authors: Surajj Sarode, G. P. Vadnere, G. Vidya Sagar

Abstract:

Compression coating is one of the strategies for delivering drug to the colon based on Gastrointestinal PH and transit time concept. The main aim of these formulations to develop rapidly disintegrating Zaltoprofen core tablets compression-coated with a mixture of time-dependent hydrophilic swellable polymer HPMC K 15 and PH responsive soluble polymer Chitosan and Guar gum in different ratios. The effect of the proportion of HPMC, Chitosan and Guar gum in the coat on premature drug release in upper part (Stomach and small intestine) of GIT and the amount of drug release in colon target area was studied. The formulations are carried out by using Direct Compression method. Sodium starch Glycolate used for rapid disintegration. FTIR used for Drug-Polymer Interaction studies. The prepared tablets were evaluated for hardness, thickness, friability, in-vitro disintegration, in-Vitro dissolution and in-vitro kinetic study.

Keywords: zaltoprofen, chitosan, formulation, drug delivery

Procedia PDF Downloads 422
3366 Nanoparticles in Drug Delivery and Therapy of Alzeheimer's Disease

Authors: Nirupama Dixit, Anyaa Mittal, Neeru Sood

Abstract:

Alzheimer’s disease (AD) is a progressive form of dementia, contributing to up to 70% of cases, mostly observed in elderly but is not restricted to old age. The pathophysiology of the disease is characterized by specific pathological changes in brain. The changes (i.e. accumulation of metal ions in brain, formation of extracellular β-amyloid (Aβ) peptide aggregates and tangle of hyper phosphorylated Tau protein inside neurons) damage the neuronal connections irreversibly. The current issues in improvement of life quality of Alzheimer's patient lies in the fact that the diagnosis is made at a late stage of the disease and the medications do not treat the basic causes of Alzheimer's. The targeted delivery of drug through the blood brain barrier (BBB) poses several limitations via traditional approaches for treatment. To overcome these drug delivery limitation, nanoparticles provide a promising solution. This review focuses on current strategies for efficient targeted drug delivery using nanoparticles and improving the quality of therapy provided to the patient. Nanoparticles can be used to encapsulate drug (which is generally hydrophobic) to ensure its passage to brain; they can be conjugated to metal ion chelators to reduce the metal load in neural tissue thus lowering the harmful effects of oxidative damage; can be conjugated with drug and monoclonal antibodies against BBB endogenous receptors. Finally this review covers how the nanoparticles can play a role in diagnosing the disease.

Keywords: Alzheimer's disease, β-amyloid plaques, blood brain barrier, metal chelators, nanoparticles

Procedia PDF Downloads 463
3365 Development of Drug Delivery Systems for Endoplasmic Reticulum Amino Peptidases Modulators Using Electrospinning

Authors: Filipa Vasconcelos

Abstract:

The administration of endoplasmic reticulum amino peptidases (ERAP1 or ERAP2) inhibitors can be used for therapeutic approaches against cancer and auto-immune diseases. However, one of the main shortcomings of drug delivery systems (DDS) is associated with the drug off-target distribution, which can lead to an increase in its side effects on the patient’s body. To overcome such limitations, the encapsulation of four representative compounds of ERAP inhibitors into Polycaprolactone (PCL), Polyvinyl-alcohol (PVA), crosslinked PVA, and PVA with nanoparticles (liposomes) electrospun fibrous meshes is proposed as a safe and controlled drug release system. The use of electrospun fibrous meshes as a DDS allows efficient solvent evaporation giving limited time to the encapsulated drug to recrystallize, continuous delivery of the drug while the fibers degrade, prevention of initial burst release (sustained release), tunable dosages, and the encapsulation of other agents. This is possible due to the fibers' small diameters and resemblance to the extracellular matrix (confirmed by scanning electron microscopy results), high specific surface area, and good mechanical strength/stability. Furthermore, release studies conducted on PCL, PVA, crosslinked PVA, and PVA with nanoparticles (liposomes) electrospun fibrous meshes with each of the ERAP compounds encapsulated demonstrated that they were capable of releasing >60%, 50%, 40%, and 45% of the total ERAP concentration, respectively. Fibrous meshes with ERAP_E compound encapsulated achieved higher released concentrations (75.65%, 62.41%, 56.05%, and 65.39%, respectively). Toxicity studies of fibrous meshes with encapsulated compounds are currently being accessed in vitro, as well as pharmacokinetics and dynamics studies. The last step includes the implantation of the drug-loaded fibrous meshes in vivo.

Keywords: drug delivery, electrospinning, ERAP inhibitors, liposomes

Procedia PDF Downloads 78
3364 Preparation of Bead-On-String Alginate/Soy Protein Isolated Nanofibers via Water-Based Electrospinning and Its Application for Drug Loading

Authors: Patcharakamon Nooeaid, Piyachat Chuysrinuan

Abstract:

Electrospun natural polymers-based nanofibers are one of the most interesting materials used in tissue engineering and drug delivery applications. Bead-on-string nanofibers have gained considerable interest for sustained drug release. Vancomycin was used as the model drug and sodium alginate (SA)/soy protein isolated (SPI) as the polymer blend to fabricate the bead-on-string nanofibers by aqueous-based electrospinning. The bead-on-string SA/SPI nanofibers were successfully fabricated by the addition of poly(ethylene oxide) (PEO) as a co-blending polymer. SA-PEO with mass ratio of 70/30 showed the best spinnability with continuous nanofibers without the occurrence of beads. Bead structure formed with the addition of SPI and bead number increased with increasing SPI content. The electrospinning of 80/20 SA-PEO/SPI was obtained as a great promising bead-on-string nanofibers for drug loading, while the solution of 50/50 was not able to obtain continuous fibers. In vitro release tests showed that a more sustainable release profile up to 14 days with less initial burst release on day 1 could be obtained from the bead-on-string fibers than from smooth fibers with uniform diameter. In addition, vancomycin-loaded beaded fibers inhibited the growth of Staphylococcus aureus (S. aureus) bacteria. Therefore, the SA-PEO/SPI nanofibers showed the potential to be used as biomaterials for tissue engineering and drug delivery.

Keywords: bead-on-string fibers, electrospinning, drug delivery, tissue engineering

Procedia PDF Downloads 306
3363 Drug Delivery of Cyclophosphamide Functionalized Zigzag (8,0) CNT, Armchair (4,4) CNT, and Nanocone Complexes in Water

Authors: Morteza Keshavarz

Abstract:

In this work, using density functional theory (DFT) thermodynamic stability and quantum molecular descriptors of cyclophoshphamide (an anticancer drug)-functionalized zigzag (8,0) CNT, armchair (4,4) CNT and nanocone complexes in water, for two attachment namely the sidewall and tip, is considered. Calculation of the total electronic energy (Et) and binding energy (Eb) of all complexes indicates that the most thermodynamic stability belongs to the sidewall-attachment of cyclophosphamide into functional nanocone. On the other hand, results from chemical hardness show that drug-functionalized zigzag (8,0) and armchair (4,4) complexes in the tip-attachment configuration possess the smallest and greatest chemical hardness, respectively. By computing the solvation energy, it is found that the solution of the drug and all complexes are spontaneous in water. Furthermore, chirality, type of nanovector (nanotube or nanocone), or attachment configuration have no effects on solvation energy of complexes.

Keywords: carbon nanotube, drug delivery, cyclophosphamide drug, density functional theory (DFT)

Procedia PDF Downloads 330
3362 PEG-b-poly(4-vinylbenzyl phosphonate) Coated Magnetic Iron Oxide Nanoparticles as Drug Carrier System: Biological and Physicochemical Characterization

Authors: Magdalena Hałupka-Bryl, Magdalena Bednarowicz, Ryszard Krzyminiewski, Yukio Nagasaki

Abstract:

Due to their unique physical properties, superparamagnetic iron oxide nanoparticles are increasingly used in medical applications. They are very useful carriers for delivering antitumor drugs in targeted cancer treatment. Magnetic nanoparticles (PEG-PIONs/DOX) with chemotherapeutic were synthesized by coprecipitation method followed by coating with biocompatible polymer PEG-derivative (poly(ethylene glycol)-block-poly(4-vinylbenzylphosphonate). Complete physicochemical characterization was carried out (ESR, HRTEM, X-ray diffraction, SQUID analysis) to evaluate the magnetic properties of obtained PEG-PIONs/DOX. Nanoparticles were investigated also in terms of their stability, drug loading efficiency, drug release and antiproliferative effect on cancer cells. PEG-PIONs/DOX have been successfully used for the efficient delivery of an anticancer drug into the tumor region. Fluorescent imaging showed the internalization of PEG-PIONs/DOX in the cytoplasm. Biodistribution studies demonstrated that PEG-PIONs/DOX preferentially accumulate in tumor region via the enhanced permeability and retention effect. The present findings show that synthesized nanosystem is promising tool for potential magnetic drug delivery.

Keywords: targeted drug delivery, magnetic properties, iron oxide nanoparticles, biodistribution

Procedia PDF Downloads 435
3361 Sphingosomes: Potential Anti-Cancer Vectors for the Delivery of Doxorubicin

Authors: Brajesh Tiwari, Yuvraj Dangi, Abhishek Jain, Ashok Jain

Abstract:

The purpose of the investigation was to evaluate the potential of sphingosomes as nanoscale drug delivery units for site-specific delivery of anti-cancer agents. Doxorubicin Hydrochloride (DOX) was selected as a model anti-cancer agent. Sphingosomes were prepared and loaded with DOX and optimized for size and drug loading. The formulations were characterized by Malvern zeta-seizer and Transmission Electron Microscopy (TEM) studies. Sphingosomal formulations were further evaluated for in-vitro drug release study under various pH profiles. The in-vitro drug release study showed an initial rapid release of the drug followed by a slow controlled release. In vivo studies of optimized formulations and free drug were performed on albino rats for comparison of drug plasma concentration. The in- vivo study revealed that the prepared system enabled DOX to have had enhanced circulation time, longer half-life and lower elimination rate kinetics as compared to free drug. Further, it can be interpreted that the formulation would selectively enter highly porous mass of tumor cells and at the same time spare normal tissues. To summarize, the use of sphingosomes as carriers of anti-cancer drugs may prove to be a fascinating approach that would selectively localize in the tumor mass, increasing the therapeutic margin of safety while reducing the side effects associated with anti-cancer agents.

Keywords: sphingosomes, anti-cancer, doxorubicin, formulation

Procedia PDF Downloads 275
3360 Hyaluronic Acid as Potential Excipient for Buccal Delivery

Authors: Flavia Laffleur

Abstract:

Summary: Biomaterials have gained immense interest in the pharmaceutical research in the last decades. Hyaluronic acid a carbohydrate and mucopolysaccharide was chemically modified in order to achieve and establish a promising platform for buccal drug delivery. Aim: Novel biomaterial was tested for its potential for buccal drug delivery. Background: Polysaccharide hyaluronic acid (HA) was chemically modified with cysteine ethyl ether (CYS). By immobilization of the thiol-bearing ligand on the polymeric backbone the thiolated bioconjugate HA-CYS was obtained. Methodology: Mucoadhesive, permeation enhancing and stability potential as well as mechanical, physicochemical properties further mucoadhesive strength, swelling index and residence time were investigated. The developed thiolated bioconjugate displayed enhanced mucoadhesiveness on buccal mucosa as well as permeation behavior and polymer stability. The near neutral pH and negative cytotoxicity studies indicated their non-irritability and biocompatible nature with biological tissues. Further, the model drug sulforhodamine 101 was incorporated to determine its drug release profiles. Results: The synthesized thiomer showed no toxicity. The mucoadhesion of thiolated hyaluronic acid on buccal mucosa was significantly improved in comparison to unmodified one. The biomaterial showed 2.5-fold higher stability in polymer structure. The release of sulforhodamine in the presence of thiolated hyaluronic acid was 2.3-fold increased compared to hyaluronic acid. Conclusion: Thus, the promising results encourage further investigations and exploitation of this versatile polysaccharide. So far, hyaluronic acid was not evaluated for buccal drug delivery.

Keywords: buccal delivery, hyaluronic acid, mucoadhesion, thiomers

Procedia PDF Downloads 476
3359 A Comparison of Generation Dependent Brain Targeting Potential of(Poly Propylene Mine) Dendrimers

Authors: Nitin Dwivedi, Jigna Shah

Abstract:

Aim and objective of study: This article indicates a comparison among various generations of dendrimers, a dendrimer is a bioactive material has repetitively branched molecule and used for delivery of various therapeutic active agents. This debut report compares the effect various generations of PPI dendrimers for brain targeting and management of neurodegenerative disorders potential on single platform. This report involves the study of the various mechanism of synthesis ligand anchored various generations PPI dendrimers deliver the drug directly to the CNS, prove their effectiveness in the management of the various neurodegenerative disease. Material and Methods: The Memantine an anti-Alzheimer drug loaded in different generations (3.0G, 4.0G, and 5.0G) of PPI dendrimers which were synthesized were synthesized. The various studies investigate the effect of PPI dendrimers generation on different characteristic parameters i.e. synthesis procedure, drug loading, release behavior, hemolysis profile at different concentration, MRI study for determine the route drug from olfactory transfer, animal model study in vitro, as well as in vivo performance. The outcomes of the investigation indicate drug delivery benefit as well as superior biocompatibility of 4.0G PPI dendrimer over 3.0G and 5.0G dendrimer, respectively. Results and Conclusion: The above study indicate the superiority of in drug delivery system with maximum drug utilization and minimize the drug dose for neurodegenerative disorder over 5.0G PPI dendrimers. So, 4.0G PPI dendrimers are the safe formulations for the symptomatic treatment of the neurodegenerative disorder. The fifth-generation poly(propyleneimine) (PPI) dendrimers, inherent toxicity due to the presence of many peripheral cationic groups is the major issue that limits their applicability.

Keywords: Alzheimer disease, generation, memantine, PPI

Procedia PDF Downloads 642
3358 A Study on the Computation of Gourava Indices for Poly-L Lysine Dendrimer and Its Biomedical Applications

Authors: M. Helen

Abstract:

Chemical graph serves as a convenient model for any real or abstract chemical system. Dendrimers are novel three dimensional hyper branched globular nanopolymeric architectures. Drug delivery scientists are especially enthusiastic about possible utility of dendrimers as drug delivery tool. Dendrimers like poly L lysine (PLL), poly-propylene imine (PPI) and poly-amidoamine (PAMAM), etc., are used as gene carrier in drug delivery system because of their chemical characteristics. These characteristics of chemical compounds are analysed using topological indices (invariants under graph isomorphism) such as Wiener index, Zagreb index, etc., Prof. V. R. Kulli motivated by the application of Zagreb indices in finding the total π energy and derived Gourava indices which is an improved version over Zagreb indices. In this paper, we study the structure of PLL-Dendrimer that has the following applications: reduction in toxicity, colon delivery, and topical delivery. Also, we determine first and second Gourava indices, first and second hyper Gourava indices, product and sum connectivity Gourava indices for PLL-Dendrimer. Gourava Indices have found applications in Quantitative Structure-Property Relationship (QSPR)/ Quantitative Structure-Activity Relationship (QSAR) studies.

Keywords: connectivity Gourava indices, dendrimer, Gourava indices, hyper GouravaG indices

Procedia PDF Downloads 100
3357 Tunable Control of Therapeutics Release from the Nanochannel Delivery System (nDS)

Authors: Thomas Geninatti, Bruno Giacomo, Alessandro Grattoni

Abstract:

Nanofluidic devices have been investigated for over a decade as promising platforms for the controlled release of therapeutics. The nanochannel drug delivery system (nDS), a membrane fabricated with high precision silicon techniques, capable of zero-order release of drugs by exploiting diffusion transport at the nanoscale originated from the interactions between molecules with nanochannel surfaces, showed the flexibility of the sustained release in vitro and in vivo, over periods of time ranging from weeks to months. To improve the implantable bio nanotechnology, in order to create a system that possesses the key features for achieve the suitable release of therapeutics, the next generation of nDS has been created. Platinum electrodes are integrated by e-beam deposition onto both surfaces of the membrane allowing low voltage (<2 V) and active temporal control of drug release through modulation of electrostatic potentials at the inlet and outlet of the membrane’s fluidic channels. Hence, a tunable administration of drugs is ensured from the nanochannel drug delivery system. The membrane will be incorporated into a peek implantable capsule, which will include drug reservoir, control hardware and RF system to allow suitable therapeutic regimens in real-time. Therefore, this new nanotechnology offers tremendous potential solutions to manage chronic disease such as cancer, heart disease, circadian dysfunction, pain and stress.

Keywords: nanochannel membrane, drug delivery, tunable release, personalized administration, nanoscale transport, biomems

Procedia PDF Downloads 283
3356 Green Approach towards Synthesis of Chitosan Nanoparticles for in vitro Release of Quercetin

Authors: Dipali Nagaonkar, Mahendra Rai

Abstract:

Chitosan, a carbohydrate polymer at nanoscale level has gained considerable momentum in drug delivery applications due to its inherent biocompatibility and non-toxicity. However, conventional synthetic strategies for chitosan nanoparticles mainly rely upon physicochemical techniques, which often yield chitosan microparticles. Hence, there is an emergent need for development of controlled synthetic protocols for chitosan nanoparticles within the nanometer range. In this context, we report the green synthesis of size controlled chitosan nanoparticles by using Pongamia pinnata (L.) leaf extract. Nanoparticle tracking analysis confirmed formation of nanoparticles with mean particle size of 85 nm. The stability of chitosan nanoparticles was investigated by zetasizer analysis, which revealed positive surface charged nanoparticles with zeta potential 20.1 mV. The green synthesized chitosan nanoparticles were further explored for encapsulation and controlled release of antioxidant biomolecule, quercetin. The resulting drug loaded chitosan nanoparticles showed drug entrapment efficiency of 93.50% with drug-loading capacity of 42.44%. The cumulative in vitro drug release up to 15 hrs was achieved suggesting towards efficacy of green synthesized chitosan nanoparticles for drug delivery applications.

Keywords: Chitosan nanoparticles, green synthesis, Pongamia pinnata, quercetin

Procedia PDF Downloads 550
3355 Development and Characterization Self-Nanoemulsifying Drug Delivery Systems of Poorly Soluble Drug Dutasteride

Authors: Rajinikanth Siddalingam, Poonguzhali Subramanian

Abstract:

The present study aims to prepare and evaluate the self-nano emulsifying drug delivery (SNEDDS) system to enhance the dissolution rate of a poorly soluble drug dutasteride. The formulation was prepared using capryol PGMC, Cremophor EL, and polyethylene glycol (PEG) 400 as oil, surfactant and co-surfactant, respectively. The pseudo-ternary phase diagrams with presence and absence of drug were plotted to find out the nano emulsification range and also to evaluate the effect of dutasteride on the emulsification behavior of the phases. Prepared SNEDDS formulations were evaluated for its particle size distribution, nano emulsifying properties, robustness to dilution, self-emulsification time, turbidity measurement, drug content and in-vitro dissolution. The optimized formulations are further evaluated for heating cooling cycle, centrifugation studies, freeze-thaw cycling, particle size distribution and zeta potential were carried out to confirm the stability of the formed SNEDDS formulations. The particle size, zeta potential and polydispersity index of the optimized formulation found to be 35.45 nm, -15.45 and 0.19, respectively. The in vitro results are revealed that the prepared formulation enhanced the dissolution rate of dutasteride significantly as compared with pure drug. The in vivo studies in was conducted using rats and the results are revealed that SNEDDS formulation has enhanced the bioavailability of dutasteride drug significantly as compared with raw drug. Based the results, it was concluded that the dutasteride-loaded SNEDDS shows potential to enhance the dissolution of dutasteride, thus improving the bioavailability and therapeutic effects.

Keywords: self-emulsifying drug delivery system, dutasteride, enhancement of bioavailability, dissolution enhancement

Procedia PDF Downloads 242
3354 Development of Oral Biphasic Drug Delivery System Using a Natural Resourced Polymer, Terminalia catappa

Authors: Venkata Srikanth Meka, Nur Arthirah Binti Ahmad Tarmizi Tan, Muhammad Syahmi Bin Md Nazir, Adinarayana Gorajana, Senthil Rajan Dharmalingam

Abstract:

Biphasic drug delivery systems are designed to release drug at two different rates, either fast/prolonged or prolonged/fast. A fast/prolonged release system provides a burst drug release at initial stage followed by a slow release over a prolonged period of time and in case of prolonged/fast release system, the release pattern is vice versa. Terminalia catappa gum (TCG) is a natural polymer and was successfully proven as a novel pharmaceutical excipient. The main objective of the present research is to investigate the applicability of natural polymer, Terminalia catappa gum in the design of oral biphasic drug delivery system in the form of mini tablets by using a model drug, buspirone HCl. This investigation aims to produce a biphasic release drug delivery system of buspirone by combining immediate release and prolonged release mini tablets into a capsule. For immediate release mini tablets, a dose of 4.5 mg buspirone was prepared by varying the concentration of superdisintegrant; crospovidone. On the other hand, prolonged release mini tablets were produced by using different concentrations of the natural polymer; TCG with a buspirone dose of 3mg. All mini tablets were characterized for weight variation, hardness, friability, disintegration, content uniformity and dissolution studies. The optimized formulations of immediate and prolonged release mini tablets were finally combined in a capsule and was evaluated for release studies. FTIR and DSC studies were conducted to study the drug-polymer interaction. All formulations of immediate release and prolonged release mini tablets were passed all the in-process quality control tests according to US Pharmacopoeia. The disintegration time of immediate release mini tablets of different formulations was varied from 2-6 min, and maximum drug release was achieved in lesser than 60 min. Whereas prolonged release mini tablets made with TCG have shown good drug retarding properties. Formulations were controlled for about 4-10 hrs with varying concentration of TCG. As the concentration of TCG increased, the drug release retarding property also increased. The optimised mini tablets were packed in capsules and were evaluated for the release mechanism. The capsule dosage form has clearly exhibited the biphasic release of buspirone, indicating that TCG is a suitable natural polymer for this study. FTIR and DSC studies proved that there was no interaction between the drug and polymer. Based on the above positive results, it can be concluded that TCG is a suitable polymer for the biphasic drug delivery systems.

Keywords: Terminalia catappa gum, biphasic release, mini tablets, tablet in capsule, natural polymers

Procedia PDF Downloads 358
3353 Understanding Nanocarrier Efficacy in Drug Delivery Systems Using Molecular Dynamics

Authors: Maedeh Rahimnejad, Bahman Vahidi, Bahman Ebrahimi Hoseinzadeh, Fatemeh Yazdian, Puria Motamed Fath, Roghieh Jamjah

Abstract:

Introduction: The intensive labor and high cost of developing new vehicles for controlled drug delivery highlights the need for a change in their discovery process. Computational models can be used to accelerate experimental steps and control the high cost of experiments. Methods: In this work, to better understand the interaction of anti-cancer drug and the nanocarrier with the cell membrane, we have done molecular dynamics simulation using NAMD. We have chosen paclitaxel for the drug molecule and dipalmitoylphosphatidylcholine (DPPC) as a natural phospholipid nanocarrier. Results: Next, center of mass (COM) between molecules and the van der Waals interaction energy close to the cell membrane has been analyzed. Furthermore, the simulation results of the paclitaxel interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane have been compared. Discussion: Analysis by molecular dynamics (MD) showed that not only the energy between the nanocarrier and the cell membrane is low, but also the center of mass amount decreases in the nanocarrier and the cell membrane system during the interaction; therefore they show significantly better interaction in comparison to the individual drug with the cell membrane.

Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier

Procedia PDF Downloads 263
3352 Design and Development of Buccal Delivery System for Atenolol Tablets by Using Different Bioadhesive Polymers

Authors: Venkatalakshmi Ranganathan, Ong Hsin Ju, Tan Yinn Ming, Lim Kien Sin, Wong Man Ting, Venkata Srikanth Meka

Abstract:

The mucoadhesive buccal tablet is an oral drug delivery system which attached to the buccal surface for direct drug absorption into the systemic circulation and the unidirectional drug release is ensured by formulating a hydrophobic backing layer. The objective of present study was to formulate mucoadhesive atenolol bilayer buccal tablets by using sodium alginate, hydroxyethyl cellulose, and xanthan gum as mucoadhesive polymer and the technique applied was direct compression method. Ethyl cellulose was used as backing layer of the tablet. FTIR and DSC analysis were carried out to identify the drug polymer interactions. The prepared tablets were evaluated for physicochemical parameters, ex vivo mucoadhesion time and in-vitro drug release. The formulated tablets showed the average surface pH 6-7 which is favourable for oral mucosa. The formulation containing sodium alginate showed more than 90 % of drug release at the end of the 7 hours in vitro dissolution studies. The formulation containing xanthan gum showed more than 8 hours of mucoadhesion time and all formulation exhibited non fickian release kinetics. The present study indicates enormous potential of erodible mucoadhesive buccal tablet containing atenolol for systemic delivery with an added advantage of circumventing the hepatic first pass metabolism.

Keywords: atenolol, mucoadhesion, in vitro drug release, direct compression, ethyl cellulose

Procedia PDF Downloads 595
3351 Surface Functionalized Biodegradable Polymersome for Targeted Drug Delivery

Authors: Susmita Roy, Madhavan Nallani

Abstract:

In recent years' polymersomes, self-assembled polymeric vesicles emerge from block copolymers, have been widely investigated due to their enhance stability and unique advantageous properties compared to their phospholipid counterpart, liposomes, dendrimers, and micelles. It provides a distinctive platform for advanced therapeutics and the creation of complex (bio) catalytically active systems for research in Nanomedicine and synthetic biology. Inspired by nature, where compartmentalization of biological components is all ubiquitous, we are interested in developing a platform technology of self-assembled multifunctional compartments with applications in areas from targeted drug/gene delivery, biosensing, pharmaceutical to cosmetics. Polymersome surfaces can be a proper choice of derivatization with a controlled amount of functional groups. To achieve site-specific targeting of polymersomes, biological recognition motives can be attached to the polymersomes surface by standard bioconjugation techniques, (like esterification, amidation, thiol-maleimide coupling, click-chemistry routes or other coupling methods). Herein, we are developing easy going, one-step bioconjugation strategies for site-specific surface functionalized biodegradable polymeric and/or polymer-lipid hybrid vesicles for targeted drug delivery. Biodegradable polymer, polycaprolactone-b-polyethylene glycol (PCL-PEG), polylactic acid-b-polyethylene glycol (PLA-PEG) and phospholipid, 1-palmitoyl-2- oleoyl-sn-glycero-3-phosphocholine (POPC) has been widely used for numerous vesicle formulations. Some of these drug-loaded formulations are being tested on mice for controlled release. These surface functionalized polymersomes are also appropriate for membrane protein reconstitution/insertion, antibodies conjugation and various bioconjugation with diverse targeted molecules for controlled drug delivery.

Keywords: drug delivery, membrane protein, polymersome, surface modification

Procedia PDF Downloads 131
3350 Drug-Based Nanoparticles: Comparative Study of the Effect Drug Type on Release Kinetics and Cell Viability

Authors: Chukwudalu C. Nwazojie, Wole W. Soboyejo, John Obayemi, Ali Salifu Azeko, Sandra M. Jusu, Chinyerem M. Onyekanne

Abstract:

The conventional methods for the diagnosis and treatment of breast cancer include bulk systematic mammography, ultrasound, dynamic contrast-enhanced fast 3D gradient-echo (GRE) magnetic resonance imaging (MRI), surgery, chemotherapy, and radiotherapy. However, nanoparticles and drug-loaded polymer microspheres for disease (cancer) targeting and treatment have enormous potential to enhance the approaches that are used today. The goal is to produce an implantable biomedical device for localized breast cancer drug delivery within Africa and the world. The main advantage of localized delivery is that it reduces the amount of drug that is needed to have a therapeutic effect. Polymer blends of poly (D,L-lactide-co-glycolide) (PLGA) and polycaprolactone (PCL), which are biodegradable, is used as a drug excipient. This work focuses on the development of PLGA-PCL (poly (D,L-lactide-co-glycolide) (PLGA) blended with based injectable drug microspheres and are loaded with anticancer drugs (prodigiosin (PG), and paclitaxel (PTX) control) and also the conjugated forms of the drug functionalized with LHRH (luteinizing hormone-releasing hormone) (PG-LHRH, and PTX- LHRH control), using a single-emulsion solvent evaporation technique. The encapsulation was done in the presence of PLGA-PCL (as a polymer matrix) and poly-(vinyl alcohol) (PVA) (as an emulsifier). Comparative study of the various drugs release kinetics and degradation mechanisms of the PLGA-PCL with an encapsulated drug is achieved, and the implication of this study is for the potential application of prodigiosin PLGA-PCL loaded microparticles for controlled delivery of cancer drug and treatment to prevent the regrowth or locoregional recurrence, following surgical resection of triple-negative breast tumor.

Keywords: cancer, polymers, drug kinetics, nanoparticles

Procedia PDF Downloads 72
3349 Development and Characterization of Double Liposomes Based Dual Drug Delivery System for H. Pylori Targeting

Authors: Ashish Kumar Jain, Deepak Mishra

Abstract:

The objective of the present investigation was to prepare and evaluate a vesicular dual drug delivery system for effective management of mucosal ulcer. Inner encapsulating and Double liposomes were prepared by glass bead and reverse phase evaporation method respectively. The formulation consisted of inner liposomes bearing Ranitidine Bismuth Citrate (RBC) and outer liposomes encapsulating Amoxicillin trihydrate (AMOX). The optimized inner liposomes and double liposomes were extensively characterized for vesicle size, morphology, zeta potential, vesicles count, entrapment efficiency and in vitro drug release. In vitro, the double liposomes demonstrated a sustained release of AMOX and RBC viz 91.4±1.8% and 77.2±2.1% respectively at the end of 72 hr. Furthermore binding specificity and targeting propensity toward H. pylori (SKP-56) was confirmed by agglutination and in situ adherence assay. Reduction of the absolute alcohol induced ulcerogenic index from 3.01 ± 0.25 to 0.31 ± 0.09 and 100% H. pylori clearance rate was observed. These results suggested that double liposomes are potential vector for the development of dual drug delivery for effective treatment of H. pylori-associated peptic ulcer.

Keywords: double liposomes, H. pylori targeting, PE liposomes, glass-beads method, peptic ulcers

Procedia PDF Downloads 419
3348 Development of Hierarchically Structured Tablets with 3D Printed Inclusions for Controlled Drug Release

Authors: Veronika Lesáková, Silvia Slezáková, František Štěpánek

Abstract:

Drug dosage forms consisting of multi-unit particle systems (MUPS) for modified drug release provide a promising route for overcoming the limitation of conventional tablets. Despite the conventional use of pellets as units for MUP systems, 3D printed polymers loaded with a drug seem like an interesting candidate due to the control over dosing that 3D printing mechanisms offer. Further, 3D printing offers high flexibility and control over the spatial structuring of a printed object. The final MUPS tablets include PVP and HPC as granulate with other excipients, enabling the compaction process of this mixture with 3D printed inclusions, also termed minitablets. In this study, we have developed the multi-step production process for MUPS tablets, including the 3D printing technology. The MUPS tablets with incorporated 3D printed minitablets are a complex system for drug delivery, providing modified drug release. Such structured tablets promise to reduce drug fluctuations in blood, risk of local toxicity, and increase bioavailability, resulting in an improved therapeutic effect due to the fast transfer into the small intestine, where particles are evenly distributed. Drug loaded 3D printed minitablets were compacted into the excipient mixture, influencing drug release through varying parameters, such as minitablets size, matrix composition, and compaction parameters. Further, the mechanical properties and morphology of the final MUPS tablets were analyzed as many properties, such as plasticity and elasticity, can significantly influence the dissolution profile of the drug.

Keywords: 3D printing, dissolution kinetics, drug delivery, hot-melt extrusion

Procedia PDF Downloads 65