Search results for: immobilized bacteria
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1651

Search results for: immobilized bacteria

1501 Optimization of Fermentation Parameters for Bioethanol Production from Waste Glycerol by Microwave Induced Mutant Escherichia coli EC-MW (ATCC 11105)

Authors: Refal Hussain, Saifuddin M. Nomanbhay

Abstract:

Glycerol is a valuable raw material for the production of industrially useful metabolites. Among many promising applications for the use of glycerol is its bioconversion to high value-added compounds, such as bioethanol through microbial fermentation. Bioethanol is an important industrial chemical with emerging potential as a biofuel to replace vanishing fossil fuels. The yield of liquid fuel in this process was greatly influenced by various parameters viz, temperature, pH, glycerol concentration, organic concentration, and agitation speed were considered. The present study was undertaken to investigate optimum parameters for bioethanol production from raw glycerol by immobilized mutant Escherichia coli (E.coli) (ATCC11505) strain on chitosan cross linked glutaraldehyde optimized by Taguchi statistical method in shake flasks. The initial parameters were set each at four levels and the orthogonal array layout of L16 (45) conducted. The important controlling parameters for optimized the operational fermentation was temperature 38 °C, medium pH 6.5, initial glycerol concentration (250 g/l), and organic source concentration (5 g/l). Fermentation with optimized parameters was carried out in a custom fabricated shake flask. The predicted value of bioethanol production under optimized conditions was (118.13 g/l). Immobilized cells are mainly used for economic benefits of continuous production or repeated use in continuous as well as in batch mode.

Keywords: bioethanol, Escherichia coli, immobilization, optimization

Procedia PDF Downloads 619
1500 Effective Removal of Tetrodotoxin with Fiber Mat Containing Activated Charcoal

Authors: Min Sik Kim, Hwa Sung Shin

Abstract:

From 2013, small eel farms, which are located in Han River Estuary, South Korea suffer damage because of unknown massive perish. In the middle of discussion that the cause of perish could be environmental changes or waste water, a large amount of unknown nemertean was discovered during that time. Some nemerteans are known releasing neurotoxin substance. In this study, we isolated intestinal bacteria using selective media and conducted 16s rDNA microbial identification by gene alignment. As a result, there was a type of bacteria producing TTX, blocks sodium-channel inducing organism’s death. TTX production from the bacteria was confirmed by ELISA and liquid chromatography coupled with mass spectrometer. Additionally, the activated-charcoal which has an ability to absorb small molecules like toxin was applied to fibrous mesh to prevent ingestion of aquatic organisms and increase applicable area. The viability of zebrafish in the water with TTX and charcoal fiber mat were not decreased meaning it could be used for solving the perishing problem in fish farm.

Keywords: nemertean, TTX, fiber mat, activated charcoal, zebrafish

Procedia PDF Downloads 179
1499 Heavy Metals and Antibiotic Resistant Bacteria as Indicators of Effluent Environmental Pollution in the Green Turtles, Chelonia Mydas

Authors: S. K. Al-Musharafi, I. Y. Mahmoud, S. N. Al-Bahry

Abstract:

At Ras Al-Hadd Reserve, Eggs from green turtles and Chelonia mydas were randomly collected immediately after Oviposition. Eggshells taken from fresh eggs and sand collected from the body chamber were analyzed for eight heavy metals (Al, Br, Cd, Co, Cu, Fe, S, and Zn) using inductively coupled plasma mass spectrometry (ICP). Heavy metal concentrations varied significantly (P<0.05) between nest sand and eggshells. Zn values were significantly higher than the other heavy metals. A total of 60 heterotrophic bacteria belong to eight genera were isolated from fresh egg contents (albumen and yolk). Resistance of the isolates to Amikacin, ampicillin, chloramphenicol, gentamycine, minocylin, nalidixicacid, neomycin, streptomycin, tetracycline, tobramycin, and Trimethoprim was tested. More than 40 % of the isolates were multiple resistant to 2-7 antibiotics. Most of the resistant strains were also resistant to Zn. The value of these findings may indicate that the origin of pollution is of human contaminated effluents.

Keywords: antibiotic resistance, bacteria, environment, heavy metals, sea turtles

Procedia PDF Downloads 331
1498 Isolation, Identification and Characterization of 1,2-Dichlorobenzene Degrading Bacteria from Consortium

Authors: Ge Cui, Mei Fang Chien, Chihiro Inoue

Abstract:

In this research, enrichment culture using an inorganic liquid medium collected soil contaminated with 1,2-dichlorobenzene (1,2-DCB) in Sendai, Japan, was added 1,2-DCB as the sole carbon source to create a stable consortium. The purpose of this research is to analysis dominant microorganisms in the stable consortium and enzyme system which play a role in the degradation of DCBs. The consortium is now at 30 generation and is still being cultured. By the result of PCR-DGGE and clone library, two bacteria are dominant. The bacteria named sk1 was isolated. 40mg/l of 1,2-DCB and 40mg/l of 1,4-DCB were completely degraded after 32 hours and 50 hours, respectively, but no degradation occurred in the case of 1,3-DCB. By PCR, tecA1 (α-subunit of DCB dioxygenase) gene which plays a role degrading DCB to DCB dihydrodiol, and tecB (dehydrogenase) gene which plays a role degrading DCB dihydrodiol to dichlorocatechol were amplified from strain sk1. Bacteria named sk100 was also isolated. 40mg/l of 1,2-DCB was completely degraded after 32 hours, but no degradation occurred in case of 1,3-DCB and 1,4-DCB. By the result of the catalytic core region of dioxygenase amplified by PCR, gene played a role degrading DCB was analyzed. The results of this study concluded that the isolated strains which have not been reported are able to degrade 1,2-DCB stably, and the characterization of degradation and the genomic analysis which is now in progress is helpful to have an overall view of this microbial degradation.

Keywords: DCB, 1, 2-DCB degrading strains, DCB dioxygenase, enrichment culture

Procedia PDF Downloads 180
1497 Six Years Antimicrobial Resistance Trends among Bacterial Isolates in Amhara National Regional State, Ethiopia

Authors: Asrat Agalu Abejew

Abstract:

Background: Antimicrobial resistance (AMR) is a silent tsunami and one of the top global threats to health care and public health. It is one of the common agendas globally and in Ethiopia. Emerging AMR will be a double burden to Ethiopia, which is facing a series of problems from infectious disease morbidity and mortality. In Ethiopia, although there are attempts to document AMR in healthcare institutions, comprehensive and all-inclusive analysis is still lacking. Thus, this study is aimed to determine trends in AMR from 2016-2021. Methods: A retrospective analysis of secondary data recorded in the Amhara Public Health Institute (APHI) from 2016 to 2021 G.C was conducted. Blood, Urine, Stool, Swabs, Discharge, body effusions, and other Microbiological specimens were collected from each study participants, and Bacteria identification and Resistance tests were done using the standard microbiologic procedure. Data was extracted from excel in August 2022, Trends in AMR were analyzed, and the results were described. In addition, the chi-square (X2) test and binary logistic regression were used, and a P. value < 0.05 was used to determine a significant association. Results: During 6 years period, there were 25143 culture and susceptibility tests. Overall, 265 (46.2%) bacteria were resistant to 2-4 antibiotics, 253 (44.2%) to 5-7 antibiotics, and 56 (9.7%) to >=8 antibiotics. The gram-negative bacteria were 166 (43.9%), 155 (41.5%), and 55 (14.6%) resistant to 2-4, 5-7, and ≥8 antibiotics, respectively, whereas 99(50.8%), 96(49.2% and 1 (0.5%) of gram-positive bacteria were resistant to 2-4, 5-7 and ≥8 antibiotics respectively. K. pneumonia 3783 (15.67%) and E. coli 3199 (13.25%) were the most commonly isolated bacteria, and the overall prevalence of AMR was 2605 (59.9%), where K. pneumonia 743 (80.24%), E. cloacae 196 (74.81%), A. baumannii 213 (66.56%) being the most common resistant bacteria for antibiotics tested. Except for a slight decline during 2020 (6469 (25.4%)), the overall trend of AMR is rising from year to year, with a peak in 2019 (8480 (33.7%)) and in 2021 (7508 (29.9%). If left un-intervened, the trend in AMR will increase by 78% of variation from the study period, as explained by the differences in years (R2=0.7799). Ampicillin, Augmentin, ciprofloxacin, cotrimoxazole, tetracycline, and Tobramycin were almost resistant to common bacteria they were tested. Conclusion: AMR is linearly increasing during the last 6 years. If left as it is without appropriate intervention after 15 years (2030 E.C), AMR will increase by 338.7%. A growing number of multi-drug resistant bacteria is an alarm to awake policymakers and those who do have the concern to intervene before it is too late. This calls for a periodic, integrated, and continuous system to determine the prevalence of AMR in commonly used antibiotics.

Keywords: AMR, trend, pattern, MDR

Procedia PDF Downloads 51
1496 Comparative Study of Antimicrobial Activity of Bacteriocin Producing Lactic Acid Bacteria from Fermented Batter of Green Gram And Bengal Gram Against Food-Borne Pathogens

Authors: Bandi Aruna

Abstract:

The increase of multidrug-resistant pathogens and the restriction on the use of antibiotics due to its side effects have drawn attention to the search for possible alternatives. Bacteriocins are ribosomally synthesized antimicrobial peptides that are active against Gram-positive and Gram-negative bacteria. The bacteriocins from lactic acid bacteria represent an important application of these peptides as clinical drugs or as food biopreservatives. The present study describes the isolation of bacteriocin producing lactic acid bacteria (LAB) from fermented batter of green gram and bengal gram using Man, Rogosa and Sharpe (MRS) media. The bacteriocin produced by these organisms inhibited the growth of Staphylococcus aureus, Escherichia coli, Klebsiella species, Pseudomonas aeruginosa, The isolates G1, G2 were isolated from green gram; B1 and B2 were isolated from fermented bengal gram batter. G1 and G2 were identified as Lactobacillus casie and B1 and B2 were identified as Streptococcus species. Antimicrobial activity of the bacteriocin produced by these strains was studied by agar well diffusion method. Bacteriocins produced by the Lactobacillus casie and Streptococcus secies retained their antagonistic property at pH of 5 and pH of 7. Exposure of bacteriocin to UV light for 4 min showed antibacterial activity. The antagonistic property was observed even at 100°C demonstrating stability at higher temperatures of the bacteriocin. The bacteriocins were stable for a period of 15 days at 27°C. The bacteriocins of G1, G2, and B2 exhibited highest antagonistic activity at pH of 5 and B1 at pH of 7. Therefore, the bacteriocins of the isolates may find important application in controlling the food-borne pathogens.

Keywords: Keywords: Antibacterial activity, Lactic acid bacteria, Bacteriocin

Procedia PDF Downloads 373
1495 Potential of Lactic Acid Bacteria for Cadmium Removal from Aqueous Solution

Authors: Ana M. Guzman, Claudia M. Rodriguez, Pedro F. B. Brandao, Elianna Castillo

Abstract:

Cadmium (Cd) is a carcinogenic metal to which humans are exposed mainly due to its presence in the food chain. Lactic acid bacteria have the capability to bind cadmium and thus the potential to be used as probiotics to treat this metal toxicity in the human body. The main objective of this study is to evaluate the potential of native lactic acid bacteria, isolated from Colombian fermented cocoa, to remove cadmium from aqueous solutions. An initial screening was made with the Lactobacillus plantarum JCM 1055 type strain, and Cd was quantified by atomic absorption spectroscopy (AAS). Lb. plantarum JCM 1055 was grown in ½ MRS medium to follow growth kinetics during 32 h at 37 °C, by measuring optical density at 600 nm. Washed cells, grown for 18 h, were adjusted to obtain dry biomass concentrations of 1.5 g/L and 0.5 g/L for removal assays in 10 mL of Cd(NO₃)₂ solution with final concentrations of 10 mg/Kg or 1.0 mg/Kg. The assays were performed at two different pH values (2.0 and 5.0), and results showed better adsorption abilities at higher pH. After incubation for 1 h at 37 °C and 150 rpm, the removal percentages for 10 mg/Kg Cd with 1.5 g/L and 0.5 g/L biomass concentration at pH 5.0 were, respectively, 71% and 50%, while the efficiency was 9.15 and 4.52 mg Cd/g dry biomass, respectively. For the assay with 1.0 mg/Kg Cd at pH 5.0, the removal was 100% and 98%, respectively for the same biomass concentrations, and the efficiency was 1.63 and 0.56 mg Cd/g dry biomass, respectively. These results suggest the efficiency of Lactobacillus strains to remove cadmium and their potential to be used as probiotics to treat cadmium toxicity and reduce its accumulation in the human body.

Keywords: cadmium removal, fermented cocoa, lactic acid bacteria, probiotics

Procedia PDF Downloads 144
1494 Identification of the Antimicrobial Effect of Liquorice Extracts on Gram-Positive Bacteria: Determination of Minimum Inhibitory Concentration and Mechanism of Action Using a luxABCDE Reporter Strain

Authors: Madiha El Awamie, Catherine Rees

Abstract:

Natural preservatives have been used as alternatives to traditional chemical preservatives; however, a limited number have been commercially developed and many remain to be investigated as sources of safer and effective antimicrobials. In this study, we have been investigating the antimicrobial activity of an extract of Glycyrrhiza glabra (liquorice) that was provided as a waste material from the production of liquorice flavourings for the food industry, and to investigate if this retained the expected antimicrobial activity so it could be used as a natural preservative. Antibacterial activity of liquorice extract was screened for evidence of growth inhibition against eight species of Gram-negative and Gram-positive bacteria, including Listeria monocytogenes, Listeria innocua, Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis. The Gram-negative bacteria tested include Pseudomonas aeruginosa, Escherichia coli and Salmonella typhimurium but none of these were affected by the extract. In contrast, for all of the Gram-positive bacteria tested, growth was inhibited as monitored using optical density. However parallel studies using viable count indicated that the cells were not killed meaning that the extract was bacteriostatic rather than bacteriocidal. The Minimum Inhibitory Concentration [MIC] and Minimum Bactericidal Concentration [MBC] of the extract was also determined and a concentration of 50 µg ml-1 was found to have a strong bacteriostatic effect on Gram-positive bacteria. Microscopic analysis indicated that there were changes in cell shape suggesting the cell wall was affected. In addition, the use of a reporter strain of Listeria transformed with the bioluminescence genes luxABCDE indicated that cell energy levels were reduced when treated with either 12.5 or 50 µg ml-1 of the extract, with the reduction in light output being proportional to the concentration of the extract used. Together these results suggest that the extract is inhibiting the growth of Gram-positive bacteria only by damaging the cell wall and/or membrane.

Keywords: antibacterial activity, bioluminescence, Glycyrrhiza glabra, natural preservative

Procedia PDF Downloads 313
1493 Analysis of Sulphur-Oxidizing Bacteria Attack on Concrete Based on Waste Materials

Authors: A. Eštoková, M. Kovalčíková, A. Luptáková, A. Sičáková, M. Ondová

Abstract:

Concrete durability as an important engineering property of concrete, determining the service life of concrete structures very significantly, can be threatened and even lost due to the interactions of concrete with external environment. Bio-corrosion process caused by presence and activities of microorganisms producing sulphuric acid is a special type of sulphate deterioration of concrete materials. The effects of sulphur-oxidizing bacteria Acidithiobacillus thiooxidans on various concrete samples, based on silica fume and zeolite, were investigated in laboratory during 180 days. A laboratory study was conducted to compare the performance of concrete samples in terms of the concrete deterioration influenced by the leaching of calcium and silicon compounds from the cement matrix. The changes in the elemental concentrations of calcium and silicon in both solid samples and liquid leachates were measured by using X – ray fluorescence method. Experimental studies confirmed the silica fume based concrete samples were found out to have the best performance in terms of both silicon and calcium ions leaching.

Keywords: biocorrosion, concrete, leaching, bacteria

Procedia PDF Downloads 422
1492 In vitro Antimicrobial Resistance Pattern of Bovine Mastitis Bacteria in Ethiopia

Authors: Befekadu Urga Wakayo

Abstract:

Introduction: Bacterial infections represent major human and animal health problems in Ethiopia. In the face of poor antibiotic regulatory mechanisms, development of antimicrobial resistance (AMR) to commonly used drugs has become a growing health and livelihood threat in the country. Monitoring and control of AMR demand close coloration between human and veterinary services as well as other relevant stakeholders. However, risk of AMR transfer from animal to human population’s remains poorly explored in Ethiopia. This systematic research literature review attempted to give an overview on AMR challenges of bovine mastitis bacteria in Ethiopia. Methodology: A web based research literature search and analysis strategy was used. Databases are considered including; PubMed, Google Scholar, Ethiopian Veterinary Association (EVA) and Ethiopian Society of Animal Production (ESAP). The key search terms and phrases were; Ethiopia, dairy, cattle, mastitis, bacteria isolation, antibiotic sensitivity and antimicrobial resistance. Ultimately, 15 research reports were used for the current analysis. Data extraction was performed using a structured Microsoft Excel format. Frequency AMR prevalence (%) was registered directly or calculated from reported values. Statistical analysis was performed on SPSS – 16. Variables were summarized by giving frequencies (n or %), Mean ± SE and demonstrative box plots. One way ANOVA and independent t test were used to evaluate variations in AMR prevalence estimates (Ln transformed). Statistical significance was determined at p < 0.050). Results: AMR in bovine mastitis bacteria was investigated in a total of 592 in vitro antibiotic sensitivity trials involving 12 different mastitis bacteria (including 1126 Gram positive and 77 Gram negative isolates) and 14 antibiotics. Bovine mastitis bacteria exhibited AMR to most of the antibiotics tested. Gentamycin had the lowest average AMR in both Gram positive (2%) and negative (1.8%) bacteria. Gram negative mastitis bacteria showed higher mean in vitro resistance levels to; Erythromycin (72.6%), Tetracycline (56.65%), Amoxicillin (49.6%), Ampicillin (47.6%), Clindamycin (47.2%) and Penicillin (40.6%). Among Gram positive mastitis bacteria higher mean in vitro resistance was observed in; Ampicillin (32.8%), Amoxicillin (32.6%), Penicillin (24.9%), Streptomycin (20.2%), Penicillinase Resistant Penicillin’s (15.4%) and Tetracycline (14.9%). More specifically, S. aurues exhibited high mean AMR against Penicillin (76.3%) and Ampicillin (70.3%) followed by Amoxicillin (45%), Streptomycin (40.6%), Tetracycline (24.5%) and Clindamycin (23.5%). E. coli showed high mean AMR to Erythromycin (78.7%), Tetracycline (51.5%), Ampicillin (49.25%), Amoxicillin (43.3%), Clindamycin (38.4%) and Penicillin (33.8%). Streptococcus spp. demonstrated higher (p =0.005) mean AMR against Kanamycin (> 20%) and full sensitivity (100%) to Clindamycin. Overall, mean Tetracycline (p = 0.013), Gentamycin (p = 0.001), Polymixin (p = 0.034), Erythromycin (p = 0.011) and Ampicillin (p = 0.009) resistance increased from the 2010’s than the 2000’s. Conclusion; the review indicated a rising AMR challenge among bovine mastitis bacteria in Ethiopia. Corresponding, public health implications demand a deeper, integrated investigation.

Keywords: antimicrobial resistance, dairy cattle, Ethiopia, Mastitis bacteria

Procedia PDF Downloads 212
1491 Bacteriological Characterization of Drinking Water Distribution Network Biofilms by Gene Sequencing Using Different Pipe Materials

Authors: M. Zafar, S. Rasheed, Imran Hashmi

Abstract:

Very little is concerned about the bacterial contamination in drinking water biofilm which provide a potential source for bacteria to grow and increase rapidly. So as to understand the microbial density in DWDs, a three-month study was carried out. The aim of this study was to examine biofilm in three different pipe materials including PVC, PPR and GI. A set of all these pipe materials was installed in DWDs at nine different locations and assessed on monthly basis. Drinking water quality was evaluated by different parameters and characterization of biofilm. Among various parameters are Temperature, pH, turbidity, TDS, electrical conductivity, BOD, COD, total phosphates, total nitrates, total organic carbon (TOC) free chlorine and total chlorine, coliforms and spread plate counts (SPC) according to standard methods. Predominant species were Bacillus thuringiensis, Pseudomonas fluorescens , Staphylococcus haemolyticus, Bacillus safensis and significant increase in bacterial population was observed in PVC pipes while least in cement pipes. The quantity of DWDs bacteria was directly depended on biofilm bacteria and its increase was correlated with growth and detachment of bacteria from biofilms. Pipe material also affected the microbial community in drinking water distribution network biofilm while Similarity in bacterial species was observed between systems due to same disinfectant dose, time period and plumbing pipes.

Keywords: biofilm, DWDs, pipe material, bacterial population

Procedia PDF Downloads 322
1490 Characterization and Pcr Detection of Selected Strains of Psychrotrophic Bacteria Isolated From Raw Milk

Authors: Kidane workelul, Li xu, Xiaoyang Pang, Jiaping Lv

Abstract:

Dairy products are exceptionally ideal media for the growth of microorganisms because of their high nutritional content. There are several ways that milk might get contaminated throughout the milking process, including how the raw milk is transported and stored, as well as how long it is kept before being processed. Psychrotrophic bacteria are among the one which can deteriorate the quality of milk mainly their heat resistance proteas and lipase enzyme. For this research purpose 8 selected strains of Psychrotrophic bacteria (Entrococcus hirae, Pseudomonas fluorescens, Pseudomonas azotoformans, Pseudomonas putida, Exiguobacterium indicum, Pseudomonas paralactice, Acinetobacter indicum, Serratia liquefacients)are chosen and try to determine their characteristics based on the research methodology protocol. Thus, the 8 selected strains are cultured, plated incubate, extracted their genomic DNA and genome DNA was amplified, the purpose of the study was to identify their Psychrotrophic properties, lipase hydrolysis positive test, their optimal incubation temperature, designed primer using the noble strain P,flourescens conserved region area in target with lipA gene, optimized primer specificity as well as sensitivity and PCR detection for lipase positive strains using the design primers. Based on the findings both the selected 8 strains isolated from stored raw milk are Psychrotrophic bacteria, 6 of the selected strains except the 2 strains are positive for lipase hydrolysis, their optimal temperature is 20 to 30 OC, the designed primer specificity is very accurate and amplifies for those strains only with lipase positive but could not amplify for the others. Thus, the result is promising and could help in detecting the Psychrotrophic bacteria producing heat resistance enzymes (lipase) at early stage before the milk is processed and this will safe production loss for the dairy industry.

Keywords: dairy industry, heat-resistant, lipA, milk, primer and psychrotrophic

Procedia PDF Downloads 25
1489 The Production of B-Group Vitamin by Lactic Acid Bacteria and Its Importance in Food Industry

Authors: Goksen Arik, Mihriban Korukluoglu

Abstract:

Lactic acid bacteria (LAB) has been used commonly in the food industry. They can be used as natural preservatives because acidifying carried out in the medium can protect the last product against microbial spoilage. Besides, other metabolites produced by LAB during fermentation period have also an antimicrobial effect on pathogen and spoilage microorganisms in the food industry. LAB are responsible for the desirable and distinctive aroma and flavour which are observed in fermented food products such as pickle, kefir, yogurt, and cheese. Various LAB strains are able to produce B-group vitamins such as folate (B11), riboflavin (B2) and cobalamin (B12). Especially wild-type strains of LAB can produce B-group vitamins in high concentrations. These cultures may be used in food industry as a starter culture and also the microbial strains can be used in encapsulation technology for new and functional food product development. This review is based on the current applications of B-group vitamin producing LAB. Furthermore, the new technologies and innovative researches about B vitamin production in LAB have been demonstrated and discussed for determining their usage availability in various area in the food industry.

Keywords: B vitamin, food industry, lactic acid bacteria, starter culture, technology

Procedia PDF Downloads 347
1488 Plant Growth and Yield Enhancement of Soybean by Inoculation with Symbiotic and Nonsymbiotic Bacteria

Authors: Timea I. Hajnal-Jafari, Simonida S. Đurić, Dragana R. Stamenov

Abstract:

Microbial inoculants from the group of symbiotic-nitrogen-fixing rhizobia are well known and widely used in production of legumes. On the other hand, nonsymbiotic plant growth promoting rhizobacteria (PGPR) are not commonly used in practice. The objective of this study was to examine the effects of soybean inoculation with symbiotic and nonsymbiotic bacteria on plant growth and seed yield of soybean. Microbiological activity in rhizospheric soil was also determined. The experiment was set up using a randomized block system in filed conditions with the following treatments: control-no inoculation; treatment 1-Bradyrhizobium japonicum; treatment 2-Azotobacter sp.; treatment 3-Bacillus sp..In the flowering stage of growth (FS) the number of nodules per plant (NPP), root length (RL), plant height (PH) and weight (PW) were measured. The number of pod per plant (PPP), number of seeds per pod (SPP) and seed weight per plant (SWP) were recorded at the end of vegetation period (EV). Microbiological analyses of soil included the determination of total number of bacteria (TNB), number of fungi (FNG), actinomycetes (ACT) and azotobacters (AZB) as well as the activity of the dehydrogenase enzyme (DHA). The results showed that bacterial inoculation led to the formation of root nodules regardless of the treatments with statistically no significant difference. Strong nodulation was also present in control treatment. RL and PH were positively influenced by inoculation with Azotobacter sp. and Bacillus sp., respectively. Statistical analyses of the number of PPP, SPP, and SWP showed no significant differences among investigated treatments. High average number of microorganisms were determined in all treatments. Most abundant were TNB (log No 8,010) and ACT (log No 6,055) than FNG and AZB with log No 4,867 and log No 4,025, respectively. The highest DHA activity was measured in the FS of soybean in treatment 3. The application of nonsymbiotic bacteria in soybean production can alleviate initial plant growth and help the plant to better overcome different stress conditions caused by abiotic and biotic factors.

Keywords: bacteria, inoculation, soybean, microbial activity

Procedia PDF Downloads 120
1487 Metagenomics Analysis of Bacteria in Sorghum Using next Generation Sequencing

Authors: Kedibone Masenya, Memory Tekere, Jasper Rees

Abstract:

Sorghum is an important cereal crop in the world. In particular, it has attracted breeders due to capacity to serve as food, feed, fiber and bioenergy crop. Like any other plant, sorghum hosts a variety of microbes, which can either, have a neutral, negative and positive influence on the plant. In the current study, regions (V3/V4) of 16 S rRNA were targeted to extensively assess bacterial multitrophic interactions in the phyllosphere of sorghum. The results demonstrated that the presence of a pathogen has a significant effect on the endophytic bacterial community. Understanding these interactions is key to develop new strategies for plant protection.

Keywords: bacteria, multitrophic, sorghum, target sequencing

Procedia PDF Downloads 255
1486 Effect of Biopesticide to Control Infestation of Whitefly Bemisia tabaci (Gennadius) on the Culantro Eryngium foetidum L.

Authors: Udomporn Pangnakorn, Sombat Chuenchooklin

Abstract:

Effect of the biopesticide from entomopathogenic nematode (Steinernema thailandensis n. sp.), bacteria ISR (Pseudomonas fluorescens), wood vinegar and fermented organic substances from plants: (neem Azadirachta indica + citronella grass Cymbopogon nardus Rendle + bitter bush Chromolaena odorata L.) were tested on culantro (Eryngium foetidum L.). The biopesticide was carried out for reduction infestation of the major insects pest (whitefly Bemisia tabaci (Gennadius)). The experimental plots were located at farmers’ farm in Tumbol Takhian Luean, Nakhon Sawan Province, Thailand. This study was undertaken during the drought season (lately November to May). The populations of whitefly were observed and recorded every hour up to 3 hours with insect net and yellow sticky traps after the treatments were applied. The results showed that bacteria ISR was the highest effectiveness for control whitefly infestation on culantro, the whitefly numbers on insect net were 12.5, 10.0, and 7.5 after spraying in 1hr, 2hr, and 3hr, respectively. While the whitefly on yellow sticky traps showed 15.0, 10.0, and 10.0 after spraying in 1hr, 2hr, and 3hr, respectively. Furthermore, overall the experiments showed that treatment of bacteria ISR found the average whitefly numbers only 8.06 and 11.0 on insect net and sticky tap respectively, followed by treatment of nematode found the average whitefly with 9.87 and 11.43 on the insect net and sticky tap, respectively. Therefore, the application of biopesticide from entomopathogenic nematodes, bacteria ISR, organic substances from plants and wood vinegar combined with natural enemies is the alternative method of Integrated Pest Management (IPM) for against infestation of whitefly.

Keywords: whitefly (Bemisia tabaci Gennadius), culantro (Eryngium foetidum L.), entomopathogenic nematode (Steinernema thailandensis n. sp.), bacteria ISR (Pseudomonas fluorescens), wood vinegar, fermented organic substances

Procedia PDF Downloads 340
1485 An Aptasensor Based on Magnetic Relaxation Switch and Controlled Magnetic Separation for the Sensitive Detection of Pseudomonas aeruginosa

Authors: Fei Jia, Xingjian Bai, Xiaowei Zhang, Wenjie Yan, Ruitong Dai, Xingmin Li, Jozef Kokini

Abstract:

Pseudomonas aeruginosa is a Gram-negative, aerobic, opportunistic human pathogen that is present in the soil, water, and food. This microbe has been recognized as a representative food-borne spoilage bacterium that can lead to many types of infections. Considering the casualties and property loss caused by P. aeruginosa, the development of a rapid and reliable technique for the detection of P. aeruginosa is crucial. The whole-cell aptasensor, an emerging biosensor using aptamer as a capture probe to bind to the whole cell, for food-borne pathogens detection has attracted much attention due to its convenience and high sensitivity. Here, a low-field magnetic resonance imaging (LF-MRI) aptasensor for the rapid detection of P. aeruginosa was developed. The basic detection principle of the magnetic relaxation switch (MRSw) nanosensor lies on the ‘T₂-shortening’ effect of magnetic nanoparticles in NMR measurements. Briefly speaking, the transverse relaxation time (T₂) of neighboring water protons get shortened when magnetic nanoparticles are clustered due to the cross-linking upon the recognition and binding of biological targets, or simply when the concentration of the magnetic nanoparticles increased. Such shortening is related to both the state change (aggregation or dissociation) and the concentration change of magnetic nanoparticles and can be detected using NMR relaxometry or MRI scanners. In this work, two different sizes of magnetic nanoparticles, which are 10 nm (MN₁₀) and 400 nm (MN₄₀₀) in diameter, were first immobilized with anti- P. aeruginosa aptamer through 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) chemistry separately, to capture and enrich the P. aeruginosa cells. When incubating with the target, a ‘sandwich’ (MN₁₀-bacteria-MN₄₀₀) complex are formed driven by the bonding of MN400 with P. aeruginosa through aptamer recognition, as well as the conjugate aggregation of MN₁₀ on the surface of P. aeruginosa. Due to the different magnetic performance of the MN₁₀ and MN₄₀₀ in the magnetic field caused by their different saturation magnetization, the MN₁₀-bacteria-MN₄₀₀ complex, as well as the unreacted MN₄₀₀ in the solution, can be quickly removed by magnetic separation, and as a result, only unreacted MN₁₀ remain in the solution. The remaining MN₁₀, which are superparamagnetic and stable in low field magnetic field, work as a signal readout for T₂ measurement. Under the optimum condition, the LF-MRI platform provides both image analysis and quantitative detection of P. aeruginosa, with the detection limit as low as 100 cfu/mL. The feasibility and specificity of the aptasensor are demonstrated in detecting real food samples and validated by using plate counting methods. Only two steps and less than 2 hours needed for the detection procedure, this robust aptasensor can detect P. aeruginosa with a wide linear range from 3.1 ×10² cfu/mL to 3.1 ×10⁷ cfu/mL, which is superior to conventional plate counting method and other molecular biology testing assay. Moreover, the aptasensor has a potential to detect other bacteria or toxins by changing suitable aptamers. Considering the excellent accuracy, feasibility, and practicality, the whole-cell aptasensor provides a promising platform for a quick, direct and accurate determination of food-borne pathogens at cell-level.

Keywords: magnetic resonance imaging, meat spoilage, P. aeruginosa, transverse relaxation time

Procedia PDF Downloads 125
1484 Determination of the Effect of Kaolin on the Antimicrobial Activity of Metronidazole-Kaolin Interaction

Authors: Omaimah Algohary

Abstract:

Kaolin is one of the principle intestinal adsorbents, has traditionally been used internally in the treatment of various enteric disorders, colitis, enteritis, dysentery, and diarrhea associated with food and alkaloidal poisoning and in traveler’s diarrhea. It binds to and traps bacteria and its toxins and gases in the gut. It also binds to water in the gut, which helps to make the stools firmer, hence giving symptomatic relief. Metronidazole is a synthetic antibacterial agent that is used primarily in the treatment of various anaerobic infections such as intra-abdominal infections, antiprotozoal, and as amebicidal. The need for safe, therapeutically effective antidiarrheal combination continuously lead to effective treatment. Metronidazol used for treatment of anaerobic bacteria and kaolin , when administered simultaneously, Metronidazole–Kaolin interactions have been reported by FDA but not studied. This project is the first to study the effect of Metronidazole–Kaolin interactions on the antimicrobial activity of metronidazole. Agar diffusion method performed to test the antimicrobial activity of metronidazole–kaolin antidiarrheal combination from aqueous solutions at an in-vivo simulated pHs conditions that obtained at 37+0.5 °C on Helicobacter pylori as anaerobic bacteria and E.coli as aerobic bacteria and used as a control for the technique. The antimicrobial activity of metronidazole combination as 1:1 and 1:2 with kaolin was abolished in acidic media as no zones of inhibition shown compared to only metronidazole that used as a control. In alkaline media metronidazole combination as 1:1 and 1:2 with kaolin showed diminutive activity compared to the control. These results proved that the kaolin adsorb metronidazole and abolish its antimicrobial activity and such combination should be avoided.

Keywords: kaolin, metronidazole, interaction, Helicobacter pylori. E. coli, antimicrobial activity

Procedia PDF Downloads 361
1483 Antibacterial and Antifungal Activity of Essential Oil of Eucalyptus camendulensis on a Few Bacteria and Fungi

Authors: M. Mehani, N. Salhi, T. Valeria, S. Ladjel

Abstract:

Red River Gum (Eucalyptus camaldulensis) is a tree of the genus Eucalyptus widely distributed in Algeria and in the world. The value of its aromatic secondary metabolites offers new perspectives in the pharmaceutical industry. This strategy can contribute to the sustainable development of our country. Preliminary tests performed on the essential oil of Eucalyptus camendulensis showed that this oil has antibacterial activity vis-à-vis the bacterial strains (Enterococcus feacalis, Enterobacter cloaceai, Proteus microsilis, Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa) and antifungic (Fusarium sporotrichioide and Fusarium graminearum). The culture medium used was nutrient broth Muller Hinton. The interaction between the bacteria and the essential oil is expressed by a zone of inhibition with diameters of MIC indirectly expression of. And we used the PDA medium to determine the fungal activity. The extraction of the aromatic fraction (essentially oil- hydrolat) of the fresh aerian part of the Eucalyptus camendulensis was performed by hydrodistillation. The average essential oil yield is 0.99%. The antimicrobial and fungal study of the essential oil and hydrosol showed a high inhibitory effect on the growth of pathogens.

Keywords: essential oil, Eucalyptus camendulensis, bacteria and fungi, red river gum

Procedia PDF Downloads 203
1482 Kinetic Study of C₃N₄/CuWO₄: Photocatalyst towards Solar Light Inactivation of Mixed Populated Bacteria

Authors: Rimzhim Gupta, Bhanupriya Boruah, Jayant M. Modak, Giridhar Madras

Abstract:

Microbial contamination is one of the major concerns in the field of water treatment. AOP (advanced oxidation processes) is well-established method to resolve the issue of removal of contaminants in water. A Z-scheme composite g-C₃N₄/CuWO₄ was synthesized by sol-gel method for the photocatalytic inactivation of a mixed population of Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli). The photoinactivation was observed for different types of bacteria in the same medium together and individually in the absence of the nutrients. The lattice structures and phase purities were determined by X-ray diffraction. For morphological and topographical features, scanning electron microscopy and transmission electron microscopy analyses were carried out. The band edges of the semiconductor (valence band and conduction band) were determined by ultraviolet photoelectron microscopy. The lifetime of the charge carriers and band gap of the semiconductors were determined by time resolved florescence spectroscopy and diffused reflectance spectroscopy, respectively. The effect of weight ratio of C₃N₄ and CuWO₄ was observed by performing photocatalytic experiments. To investigate the exact mechanism and major responsible radicals for photocatalysis, scavenger studies were performed. The rate constants and order of the inactivation reactions were obtained by power law kinetics. For E. coli and S. aureus, the order of reaction and rate constants are 1.15, 0.9 and 1.39 ± 0.03 (CFU/mL)⁻⁰.¹⁵ h⁻¹, 47.95 ± 1.2 (CFU/mL)⁰.¹ h⁻¹, respectively.

Keywords: z-scheme, E. coli, S. aureus, sol-gel

Procedia PDF Downloads 125
1481 Potential Probiotic Bacteria Isolated from Dairy Products of Saudi Arabia

Authors: Rashad Al-Hindi

Abstract:

The aims of the study were to isolate and identify potential probiotic lactic acid bacteria due to their therapeutic and food preservation importance. Sixty-three suspected lactic acid bacteria (LAB) strains were isolated from thirteen different raw milk and fermented milk product samples of various animal origins manufactured indigenously in the Kingdom of Saudi Arabia using de Man, Rogosa and Sharpe (MRS) agar medium and various incubation conditions. The identification of forty-six selected LAB strains was performed using molecular methods (16S rDNA gene sequencing). The LAB counts in certain samples were higher under microaerobic incubation conditions than under anaerobic conditions. The identified LAB belonged to the following genera: Enterococcus (16 strains), Lactobacillus (9 strains), Weissella (10 strains), Streptococcus (8 strains) and Lactococcus (3 strains), constituting 34.78%, 19.57%, 21.74%, 17.39% and 6.52% of the suspected isolates, respectively. This study noted that the raw milk and traditional fermented milk products of Saudi Arabia, especially stirred yogurt (Laban) made from camel milk, could be rich in LAB. The obtained LAB strains in this study will be tested for their probiotic potentials in another ongoing study.

Keywords: dairy, LAB, probiotic, Saudi Arabia

Procedia PDF Downloads 253
1480 Identification and Characterization of Oil-Degrading Bacteria from Crude Oil-Contaminated Desert Soil in Northeastern Jordan

Authors: Mohammad Aladwan, Adelia Skripova

Abstract:

Bioremediation aspects of crude oil-polluted fields can be achieved by isolation and identification of bacterial species from oil-contaminated soil in order to choose the most active isolates and increase the strength of others. In this study, oil-degrading bacteria were isolated and identified from oil-contaminated soil samples in northeastern Jordan. The bacterial growth count (CFU/g) was between 1.06×10⁵ and 0.75×10⁹. Eighty-two bacterial isolates were characterized by their morphology and biochemical tests. The identified bacterial genera included: Klebsiella, Staphylococcus, Citrobacter, Lactobacillus, Alcaligenes, Pseudomonas, Hafnia, Micrococcus, Rhodococcus, Serratia, Enterobacter, Bacillus, Salmonella, Mycobacterium, Corynebacterium, and Acetobacter. Molecular identification of a universal primer 16S rDNA gene was used to identify four bacterial isolates: Microbacterium esteraromaticum strain L20, Pseudomonas stutzeri strain 13636M, Klebsilla pneumoniae, and uncultured Klebsilla sp., known as new strains. Our results indicate that their specific oil-degrading bacteria isolates might have a high strength of oil degradation from oil-contaminated sites. Staphylococcus intermedius (75%), Corynebacterium xerosis (75%), and Pseudomonas fluorescens (50%) showed a high growth rate on different types of hydrocarbons, such as crude oil, toluene, naphthalene, and hexane. In addition, monooxygenase and catechol 2,3-dioxygenase were detected in 17 bacterial isolates, indicating their superior hydrocarbon degradation potential. Total petroleum hydrocarbons were analyzed using gas chromatography for soil samples. Soil samples M5, M7, and M8 showed the highest levels (43,645, 47,805, and 45,991 ppm, respectively), and M4 had the lowest level (7,514 ppm). All soil samples were analyzed for heavy metal contamination (Cu, Cd, Mn, Zn, and Pb). Site M7 contains the highest levels of Cu, Mn, and Pb, while Site M8 contains the highest levels of Mn and Zn. In the future, these isolates of bacteria can be used for the cleanup of oil-contaminated soil.

Keywords: bioremediation, 16S rDNA gene, oil-degrading bacteria, hydrocarbons

Procedia PDF Downloads 93
1479 Technology for Biogas Upgrading with Immobilized Algae Biomass

Authors: Marcin Debowski, Marcin Zielinski, Miroslaw Krzemieniewski, Agata Glowacka-Gil, Paulina Rusanowska, Magdalena Zielinska, Agnieszka Cydzik-Kwiatkowska

Abstract:

Technologies of biogas upgrading are now perceived as competitive solution combustion and production of electricity and heat. Biomethane production will ensure broader application as energy carrier than biogas. Biomethane can be used as fuel in internal combustion engines or introduced into the natural gas transmission network. Therefore, there is a need to search for innovative, economically and technically justified methods for biogas enrichment. The aim of this paper is to present a technology solution for biogas upgrading with immobilized algae biomass. Reactor for biogas upgrading with immobilized algae biomass can be used for removing CO₂ from the biogas, flue gases and the waste gases especially coming from different industry sectors, e.g. from the food industry from yeast production process, biogas production systems, liquid and gaseous fuels combustion systems, hydrocarbon processing technology. The basis for the technological assumptions of presented technology were laboratory works and analyses that tested technological variants of biogas upgrading. The enrichment of biogas with a methane content of 90-97% pointed to technological assumptions for installation on a technical scale. Reactor for biogas upgrading with algae biomass is characterized by a significantly lower cubature in relation to the currently used solutions which use CO₂ removal processes. The invention, by its structure, assumes achieving a very high concentration of biomass of algae through its immobilization in capsules. This eliminates the phenomenon of lowering the pH value, i.e. acidification of the environment in which algae grow, resulting from the introduction of waste gases at a high CO₂ concentration. The system for introducing light into algae capsules is characterized by a higher degree of its use, due to lower losses resulting from the phenomenon of absorption of light energy by water. The light from the light source is continuously supplied to the formed biomass of algae or cyanobacteria in capsules by the light tubes. The light source may be sunlight or a light generator of a different wavelength of light from 300 nm to 800 nm. A portion of gas containing CO₂, accumulated in the tank and conveyed by the pump is periodically introduced into the housing of the photobioreactor tank. When conveying the gas that contains CO₂, it penetrates the algal biomass in capsules through the outer envelope, displacing, from the algal biomass, gaseous metabolic products which are discharged by the outlet duct for gases. It contributes to eliminating the negative impact of this factor on CO₂ binding processes. As a result of the cyclic dosing of gases containing carbon dioxide, gaseous metabolic products of algae are displaced and removed outside the technological system. Technology for biogas upgrading with immobilized algae biomass is suitable for the small biogas plant. The advantages of this technology are high efficiency as well as useful algae biomass which can be used mainly as animal feed, fertilizers and in the power industry. The construction of the device allows effective removal of carbon dioxide from gases at a high CO₂ concentration.

Keywords: biogas, carbon dioxide, immobilised biomass, microalgae, upgrading

Procedia PDF Downloads 121
1478 Biodegradation of Endoxifen in Wastewater: Isolation and Identification of Bacteria Degraders, Kinetics, and By-Products

Authors: Marina Arino Martin, John McEvoy, Eakalak Khan

Abstract:

Endoxifen is an active metabolite responsible for the effectiveness of tamoxifen, a chemotherapeutic drug widely used for endocrine responsive breast cancer and chemo-preventive long-term treatment. Tamoxifen and endoxifen are not completely metabolized in human body and are actively excreted. As a result, they are released to the water environment via wastewater treatment plants (WWTPs). The presence of tamoxifen in the environment produces negative effects on aquatic lives due to its antiestrogenic activity. Because endoxifen is 30-100 times more potent than tamoxifen itself and also presents antiestrogenic activity, its presence in the water environment could result in even more toxic effects on aquatic lives compared to tamoxifen. Data on actual concentrations of endoxifen in the environment is limited due to recent discovery of endoxifen pharmaceutical activity. However, endoxifen has been detected in hospital and municipal wastewater effluents. The detection of endoxifen in wastewater effluents questions the treatment efficiency of WWTPs. Studies reporting information about endoxifen removal in WWTPs are also scarce. There was a study that used chlorination to eliminate endoxifen in wastewater. However, an inefficient degradation of endoxifen by chlorination and the production of hazardous disinfection by-products were observed. Therefore, there is a need to remove endoxifen from wastewater prior to chlorination in order to reduce the potential release of endoxifen into the environment and its possible effects. The aim of this research is to isolate and identify bacteria strain(s) capable of degrading endoxifen into less hazardous compound(s). For this purpose, bacteria strains from WWTPs were exposed to endoxifen as a sole carbon and nitrogen source for 40 days. Bacteria presenting positive growth were isolated and tested for endoxifen biodegradation. Endoxifen concentration and by-product formation were monitored. The Monod kinetic model was used to determine endoxifen biodegradation rate. Preliminary results of the study suggest that isolated bacteria from WWTPs are able to growth in presence of endoxifen as a sole carbon and nitrogen source. Ongoing work includes identification of these bacteria strains and by-product(s) of endoxifen biodegradation.

Keywords: biodegradation, bacterial degraders, endoxifen, wastewater

Procedia PDF Downloads 171
1477 Development of an Aptamer-Molecularly Imprinted Polymer Based Electrochemical Sensor to Detect Pathogenic Bacteria

Authors: Meltem Agar, Maisem Laabei, Hannah Leese, Pedro Estrela

Abstract:

Pathogenic bacteria and the diseases they cause have become a global problem. Their early detection is vital and can only be possible by detecting the bacteria causing the disease accurately and rapidly. Great progress has been made in this field with the use of biosensors. Molecularly imprinted polymers have gain broad interest because of their excellent properties over natural receptors, such as being stable in a variety of conditions, inexpensive, biocompatible and having long shelf life. These properties make molecularly imprinted polymers an attractive candidate to be used in biosensors. In this study it is aimed to produce an aptamer-molecularly imprinted polymer based electrochemical sensor by utilizing the properties of molecularly imprinted polymers coupled with the enhanced specificity offered by DNA aptamers. These ‘apta-MIP’ sensors were used for the detection of Staphylococcus aureus and Escherichia coli. The experimental parameters for the fabrication of sensor were optimized, and detection of the bacteria was evaluated via Electrochemical Impedance Spectroscopy. Sensitivity and selectivity experiments were conducted. Furthermore, molecularly imprinted polymer only and aptamer only electrochemical sensors were produced separately, and their performance were compared with the electrochemical sensor produced in this study. Aptamer-molecularly imprinted polymer based electrochemical sensor showed good sensitivity and selectivity in terms of detection of Staphylococcus aureus and Escherichia coli. The performance of the sensor was assessed in buffer solution and tap water.

Keywords: aptamer, electrochemical sensor, staphylococcus aureus, molecularly imprinted polymer

Procedia PDF Downloads 85
1476 Nanostructured Multi-Responsive Coatings for Tuning Surface Properties

Authors: Suzanne Giasson, Alberto Guerron

Abstract:

Stimuli-responsive polymer coatings can be used as functional elements in nanotechnologies, such as valves in microfluidic devices, as membranes in biomedical engineering, as substrates for the culture of biological tissues or in developing nanomaterials for targeted therapies in different diseases. However, such coatings usually suffer from major shortcomings, such as a lack of selectivity and poor environmental stability. The study will present multi-responsive hierarchical and hybrid polymer-based coatings aiming to overcome some of these limitations. Hierarchical polymer coatings, consisting of two-dimensional arrays of thermo-responsive cationic PNIPAM-based microgels and surface-functionalized with non-responsive or pH-responsive polymers, were covalently grafted to substrates to tune the surface chemistry and the elasticity of the surface independently using different stimuli. The characteristic dimensions (i.e., layer thickness) and surface properties (i.e., adhesion, friction) of the microgel coatings were assessed using the Surface Forces Apparatus. The ability to independently control the swelling and surface properties using temperature and pH as triggers were investigated for microgels in aqueous suspension and microgels immobilized on substrates. Polymer chain grafting did not impede the ability of cationic PNIPAM microgels to undergo a volume phase transition above the VPTT, either in suspension or immobilized on a substrate. Due to the presence of amino groups throughout the entirety of the microgel polymer network, the swelling behavior was also pH dependent. However, the thermo-responsive swelling was more significant than the pH-triggered one. The microgels functionalized with PEG exhibited the most promising behavior. Indeed, the thermo-triggered swelling of microgel-co-PEG did not give rise to changes in the microgel surface properties (i.e., surface potential and adhesion) within a wide range of pH values. It was possible for the immobilized microgel-co-PEG to undergo a volume transition (swelling/shrinking) with no change in adhesion, suggesting that the surface of the thermal-responsive microgels remains rather hydrophilic above the VPTT. This work confirms the possibility of tuning the swelling behavior of microgels without changing the adhesive properties. Responsive surfaces whose swelling properties can be reversibly and externally altered over space and time regardless of the surface chemistry are very innovative and will enable revolutionary advances in technologies, particularly in biomedical surface engineering and microfluidics, where advanced assembly of functional components is increasingly required.

Keywords: responsive materials, polymers, surfaces, cell culture

Procedia PDF Downloads 45
1475 The Effect of Inulin on Aflatoxin M1 Binding Ability of Probiotic Bacteria in Yoghurt

Authors: Sumeyra Sevim, Gulsum Gizem Topal, Mercan Merve Tengilimoglu-Metin, Banu Sancak, Mevlude Kizil

Abstract:

Aflatoxin M1 (AFM1) represents mutagenic, carcinogenic, hepatotoxic and immunosuppressive properties, and shows adverse effect on human health. Recently the use of probiotics are focused on AFM1 detoxification because of the fact that probiotic strains have a binding ability to AFM1. Moreover, inulin is a prebiotic to improve the ability of probiotic bacteria. Therefore, the aim of the study is to investigate the effect of inulin on AFM1 binding ability of some probiotic bacteria. Yoghurt samples were manufactured by using skim milk powder artificially contaminated with AFM1 at concentration 100 pg/ml. Different samples were prepared for the study as: first sample consists of yoghurt starter bacteria (L. bulgaricus and S. thermophilus), the second sample consists of starter and L. plantarum, starter and B. bifidum ATCC were added to the third sample, starter and B. animalis ATCC 27672 were added to the forth sample, and the fifth sample is a binary culture consisted of starter and B. bifidum and B. animalis. Moreover, the same work groups were prepared with inulin (4%). The samples were incubated at 42°C for 4 hours, then stored for three different time interval (1,5 and 10 days). The toxin was measured by the ELISA. When inulin was added to work groups, there was significant change on AFM1 binding ability at least one sample in all groups except the one with L. plantarum (p<0.05). The highest levels of AFM1 binding ability (68.7%) in samples with inulin were found in the group which B. bifidum was added, whereas the lowest levels of AFM1 binding ability (44.4%) in samples with inulin was found in the fifth sample. The most impressive effect of inulin was found on B.bifidum. In this study, it was obtained that there was a significant effect of storage on AFM1 binding ability in the all groups with inulin except the one with L. plantarum (p<0.05). Consequently, results show that AFM1 detoxification by probiotics have a potential application to reduce toxin concentrations in yoghurt. Besides, inulin has different effects on AFM1 binding ability of each probiotic bacteria strain.

Keywords: aflatoxin M1, inulin, probiotics, storage

Procedia PDF Downloads 285
1474 Potential Hydrocarbon Degraders Present in Oil from WWII Wrecks in the Pacific

Authors: Awei Bainivalu, Joachim Larsen, Logesh Panneerselvan, Toby Mills, Brett Neilan, Megharaj Mallavarapu

Abstract:

World War II (WWII) shipwrecks harbour up to 20 million tonnes of oil. More than 3000 wrecks are in the Pacific Ocean; 300 are oil tankers. Compared to other oil removal methods, bioremediation is environmentally friendly and cost-effective. Oil's microbial community and hydrocarbon properties from the Pacific WWII wrecks were identified. Dominant phyla are Proteobacteria, Actinobacteria, and Firmicutes. Native marine bacteria oil-degraders were isolated for bioremediation. Petroleum degradation data from the bacterial consortium will be analyzed over the next three months.

Keywords: oil bioremediation, marine bacteria, WWII shipwrecks, pacific

Procedia PDF Downloads 100
1473 Antibacterial Activity of Ethanolic and Aqueous Extracts of Punica Granatum L. Bark

Authors: H. Kadi, A. Moussaoui, A. Medah, N. Benayahia, Nahal Bouderba

Abstract:

For thousands of years, Punica granatum L. has been used in traditional medicine all over the world and predate the introduction of antibacterial drugs. The aim of the present study was to investigate the antibacterial activity of aqueous and ethanolic extracts of Punica granatum L. bark obtained by decoction and maceration. The different extracts of Punica granatum L. (Lythraceae) bark have been tested for antibacterial activity against Gram-positive bacteria (Staphylococcus aureus, Bacillus stearothermophilus) and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) by disc diffusion method. The ethanolic macerate extract showed the strong in vitro antibacterial activity against Pseudomonas aeruginosa with zone inhibition of 24.4 mm. However, the results tests by disc diffusion method revealed the effectiveness of ethanolic decoctate against Gram-positive bacteria (Staphylococcus aureus and Bacillus stearothermophilus) with diameter zone of inhibition varying with 21.1mm and 23.75 mm respectively.

Keywords: Punica granatum L. bark, antibacterial activity, maceration, decoction

Procedia PDF Downloads 423
1472 Identification and Characterization of Antimicrobial Peptides Isolated from Entophytic Bacteria and Their Activity against Multidrug-Resistance Gram-Negative Bacteria in South Korea

Authors: Maryam Beiranvand

Abstract:

Multi-drug resistance in various microorganisms has increased globally in many healthcare facilities. Less effective antimicrobial activity of drug therapies for infection control becomes trouble. Since 1980, no new type of antimicrobial drug has been identified, even though combinations of antibiotic drugs have been discovered almost every decade. Between 1981 and 2006, over 70% of novel pharmaceuticals and chemical agents came from natural sources. Microorganisms have yielded almost 22,000 natural compounds. The identification of antimicrobial components from endophytes bacteria could help overcome the threat posed by multi-drug resistant strains. The project aims to analyze and identify antimicrobial peptides isolated from entophytic bacteria and their activity against multidrug-resistant Gram-negative bacteria in South Korea. Endophytic Paenibacillus polymyxa. 4G3 isolated from the plant, Gynura procumbery exhibited considerable antimicrobial activity against Methicillin-resistant Staphylococcus aureus, and Escherichia coli. The Rapid Annotations using Subsystems Technology showed that the total size of the draft genome was 5,739,603bp, containing 5178 genes with 45.8% G+C content. Genome annotation using antiSMASH version 6.0.0 was performed, which predicted the most common types of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS). In this study, diethyl aminoethyl cellulose (DEAEC) resin was used as the first step in purifying for unknown peptides, and then the target protein was identified using hydrophilic and hydrophobic solutions, optimal pH, and step-by-step tests for antimicrobial activity. This crude was subjected to C18 chromatography and elution with 0, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% methanol, respectively. Only the fraction eluted with 20% -60% methanol demonstrated good antimicrobial activity against MDR E. coli. The concentration of the active fragment was measured by the Brad-ford test, and Protein A280 - Thermo Fisher Scientific at the end by examining the SDS PAGE Resolving Gel, 10% Acrylamide and purity were confirmed. Our study showed that, based on the combined results of the analysis and purification. P polymyxa. 4G3 has a high potential exists for producing novel functions of polymyxin E and bacitracin against bacterial pathogens.

Keywords: endophytic bacteria, antimicrobial activity, antimicrobial peptide, whole genome sequencing analysis, multi -drug resistance gram negative bacteria

Procedia PDF Downloads 46