Search results for: hydrogenation of carbon dioxide
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3206

Search results for: hydrogenation of carbon dioxide

2936 Urban Sustainability and Move to Low Carbon Development

Authors: I. P. Singh, Ajesh Kumar Kapoor

Abstract:

Rapid globalization have led to a change towards massive uncontrolled urbanization. Whereas during initial years negligence was there in the name of development, growth and vision toward healthier and better tomorrow. Considering the scenario of developing nations (India) where 70% of their population is living on 30% (urban areas) of their total land available. The need of an hour is to consider the ethical values of each and every person living in urban fringes, whereby the sustainable urban development is promoted which encompasses the move toward low carbon developments. It would help reviving a city lung space and reducing carbon credits as per Kyoto Protocol 1991. This paper would provide an overview about Indian scenario of current urban areas, ongoing developments, series of regulatory policy measures, materials innovative use and policies framed and opted for low carbon development.

Keywords: urban sustainability, indicators for sustainable development, low carbon development, Indian Policies toward low carbon development

Procedia PDF Downloads 381
2935 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP for Israel: Time Series Analysis, 1980-2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of CO2 emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), carbon dioxide (CO2) emissions and gross domestic product (GDP) for Israel using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Phillips–Perron (PP) test for stationarity, Johansen maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests significant positive impacts of coal and natural gas consumptions on GDP in Israel. In the short run, GDP positively affects coal consumption. While there exists a positive unidirectional causality running from coal consumption to consumption of petroleum products and the direct combustion of crude oil, there exists a negative unidirectional causality running from natural gas consumption to consumption of petroleum products and the direct combustion of crude oil in the short run. Overall, the results support arguments that there are relationships among environmental quality, energy use and economic output but the associations can to be differed by the sources of energy in the case of Israel over of period 1980-2010.

Keywords: CO2 emissions, energy consumption, GDP, Israel, time series analysis

Procedia PDF Downloads 622
2934 Electroactivity of Clostridium saccharoperbutylacetonicum 1-4N during Carbon Dioxide Reduction in a Bioelectrosynthesis System

Authors: Carlos A. Garcia-Mogollon, Juan C. Quintero-Diaz, Claudio Avignone-Rossa

Abstract:

Clostridium saccharoperbutylacetonicum 1-4N (Csb 1-4N) is an industrial reference strain for Acetone-Butanol-Ethanol (ABE) fermentation. Csb 1-4N is a solventogenic clostridium and H₂ producer with a metabolic profile that makes it a good candidate for Bioelectrosynthesis System (BES). The aim of this study was to evaluate the electroactivity of Csb 1-4N by cyclic voltammetry technique (CV). The Bioelectrosynthesis fermentation (BES) started in a Triptone-Yeast extract (TY) medium with trace elements and vitamins, Complex Nitrogen Source (CNS), and bicarbonate (NaHCO₃, 4g/L) as a carbon source, run at -600mVAg/AgCl and adding 200uM NADH. The six BES batches were performed with different media composition with and without NADH, CNS, HCO₃⁻ , and applied potential. The CV was performed as three-electrode system: platinum slice working electrode (WE), nickel contra electrode (CE) and reference electrode Ag/AgCl (ER). CVs were run in a potential range of -0.7V to 0.7V vs. VAg/AgCl at a scan rate 10mV/s. A CV recorded using different NaHCO₃ concentrations (0.25; 0.5; 1.0; 4g/L) were obtained. BES fermentation samples were centrifuged (3000 rpm, 5min, 4C), and supernatant (7mL) was used. CVs were obtained for Csb1-4N BES culture cell-free supernatant at 0h, 24h, and 48h. The electrochemical analysis was carried out with a PalmSens 4.0 potentiostat/galvanostat controlled with the PStrace 5.7 software, and CVs curves were characterized by reduction and oxidation currents and reduction and oxidation peaks. The CVs obtained for NaHCO₃ solutions showed that the reduction current and oxidation current decreased as the NaHCO₃ concentration was decreased. All reduction and oxidation currents decreased until exponential growth stop (24h), independence of initial cathodic current, except in medium with trace elements, vitamins, and NaHCO3, in which reduction current was around half at 24h and followed decreasing at 48. In this medium, Csb1-4N did not grow, but pH was increased, indicating that NaHCO₃ was reduced as the reduction current decreased. In general, at 48h reduction currents did not present important changes between different mediums in BES cultures. In terms of intensities in the peaks (Ip) did not present important variations; except with Ipa and Ipc in BES culture with NaHCO₃ and NADH added are higher than peaks in other cultures. Based on results, cathodic and anodic currents changes were induced by NaHCO₃ reduction reactions during Csb1-4N metabolic activity in different BES experiments.

Keywords: clostridium saccharoperbutylacetonicum 1-4N, bioelectrosynthesis, carbon dioxide fixation, cyclic voltammetry

Procedia PDF Downloads 106
2933 Sustainable Approach to Fabricate Titanium Nitride Film on Steel Substrate by Using Automotive Plastics Waste

Authors: Songyan Yin, Ravindra Rajarao, Veena Sahajwalla

Abstract:

Automotive plastics waste (widely known as auto-fluff or ASR) is a complicated mixture of various plastics incorporated with a wide range of additives and fillers like titanium dioxide, magnesium oxide, and silicon dioxide. Automotive plastics waste is difficult to recycle and its landfilling poses the significant threat to the environment. In this study, a sustainable technology to fabricate protective nanoscale TiN thin film on a steel substrate surface by using automotive waste plastics as titanium and carbon resources is suggested. When heated automotive plastics waste with steel at elevated temperature in a nitrogen atmosphere, titanium dioxide contented in ASR undergo carbothermal reduction and nitridation reactions on the surface of the steel substrate forming a nanoscale thin film of titanium nitride on the steel surface. The synthesis of TiN film on steel substrate under this technology was confirmed by X-ray photoelectron spectrometer, high resolution X-ray diffraction, field emission scanning electron microscope, a high resolution transmission electron microscope fitted with energy dispersive X-ray spectroscopy, and inductively coupled plasma mass spectrometry techniques. This sustainably fabricated TiN film was verified of dense, well crystallized and could provide good oxidation resistance to the steel substrate. This sustainable fabrication technology is maneuverable, reproducible and of great economic and environmental benefit. It not only reduces the fabrication cost of TiN coating on steel surface, but also provides a sustainable environmental solution to recycling automotive plastics waste. Moreover, high value copper droplets and char residues were also extracted from this unique fabrication process.

Keywords: automotive plastics waste, carbonthermal reduction and nitirdation, sustainable, TiN film

Procedia PDF Downloads 364
2932 Mechanical Properties of Graphene Nano-Platelets Coated Carbon-Fiber Composites

Authors: Alok Srivastava, Vidit Gupta, Aparna Singh, Chandra Sekher Yerramalli

Abstract:

Carbon-fiber epoxy composites show extremely high modulus and strength in the uniaxial direction. However, they are prone to fail under low load in transverse direction due to the weak nature of the interface between the carbon-fiber and epoxy. In the current study, we have coated graphene nano-platelets (GNPs) on the carbon-fibers in an attempt to strengthen the interface/interphase between the fiber and the matrix. Vacuum Assisted Resin Transfer Moulding (VARTM) has been used to make the laminates of eight cross-woven fabrics. Tensile, flexural and fracture toughness tests have been performed on pristine carbon-fiber composite (P-CF), GNP coated carbon-fiber composite (GNP-CF) and functionalized-GNP coated carbon-fiber composite (F-GNP-CF). The tensile strength and flexural strength values are pretty similar for P-CF and GNP-CF. The micro-structural examination of the GNP coated carbon-fibers, as well as the fracture surfaces, have been carried out using scanning electron microscopy (SEM). The micrographs reveal the deposition of GNPs onto the carbon fibers in transverse and longitudinal direction. Fracture surfaces show the debonding and pull outs of the carbon fibers in P-CF and GNP-CF samples.

Keywords: carbon fiber, graphene nanoplatelets, strength, VARTM, Vacuum Assisted Resin Transfer Moulding

Procedia PDF Downloads 119
2931 Effect of Salinity on Carbon Isotope Discrimination in Chamomile

Authors: Mehdi Ghanavati

Abstract:

The Effects of salinity level and duration on carbon isotope discrimination (Δ) of Matricaria chamomilla and Matricaria aurea were evaluated. Four ecotypes of M. chamomilla and four ecotypes of M. aurea were grown at different NaCl concentrations (control, 6, 12 and 18 dS/m) in sand culture condition. Carbon isotope discrimination (Δ) varied significantly (p<0.001) among ecotypes. The amount of carbon isotope discrimination (Δ) increased in first salinity level (6 dS/m), but in other levels (12 and 18 dS/m) it did not increase. Stages of salinity treatments (two stages: first from seedling stage until the end of the experiment and second stage of stress exertion began at stem elongation and seedlings emergence from rosette stage to harvest) had not a significant difference. Study of two spices of chamomile showed the M. aurea had a higher amount of carbon isotope discrimination (Δ) (22.9%) than M. chamomilla (22.48%).

Keywords: salinity, carbon isotope discrimination, Matricaria chamomilla, Matricaria aurea

Procedia PDF Downloads 412
2930 GGE-Biplot Analysis of Nano-Titanium Dioxide and Nano-Silica Effects on Sunflower

Authors: Naser Sabaghnia, Mohsen Janmohammadi, Mehdi Mohebodini

Abstract:

Present investigation is performed to evaluate the effects of foliar application of salicylic acid, glycine betaine, ascorbic acid, nano-silica, and nano-titanium dioxide on sunflower. Results showed that the first two principal components were sufficient to create a two-dimensional treatment by trait biplot, and such biplot accounted percentages of 49% and 19%, respectively of the interaction between traits and treatments. The vertex treatments of polygon were ascorbic acid, glycine betaine, nano-TiO2, and control indicated that high performance in some important traits consists of number of days to seed maturity, number of seeds per head, number heads per single plant, hundred seed weight, seed length, seed yield performance, and oil content. Treatments suitable for obtaining the high seed yield were identified in the vector-view function of biplot and displayed nano-silica and nano titanium dioxide as the best treatments suitable for obtaining of high seed yield.

Keywords: drought stress, nano-silicon dioxide, oil content, TiO2 nanoparticles

Procedia PDF Downloads 303
2929 Construction of a Low Carbon Eco-City Index System Based on CAS Theory: A Case of Hexi Newtown in Nanjing, China

Authors: Xu Tao, Yilun Xu, Dingwei Xiang, Yaofei Sun

Abstract:

The practice of urban planning and construction based on the concept of the “low carbon eco-city” has been universally accepted by the academic community in response to urban issues such as population, resources, environment, and social development. Based on this, the current article first analyzes the concepts of low carbon eco-city, then builds a complex adaptive system (CAS) theory based on Chinese traditional philosophical thinking, and analyzes the adaptive relationship between material and non-material elements. A three-dimensional evaluation model of natural ecology, economic low carbon, and social harmony was constructed. Finally, the construction of a low carbon eco-city index system in Hexi Newtown of Nanjing was used as an example to verify the effectiveness of the research results; this paradigm provides a new way to achieve a low carbon eco-city system.

Keywords: complex adaptive system, low carbon ecology, index system, model

Procedia PDF Downloads 131
2928 Harnessing Renewable Energy as a Strategy to Combating Climate Change in Sub Saharan Africa

Authors: Gideon Nyuimbe Gasu

Abstract:

Sub Saharan Africa is at a critical point, experiencing rapid population growth, particularly in urban areas and young growing force. At the same time, the growing risk of catastrophic global climate change threatens to weaken food production system, increase intensity and frequency of drought, flood, and fires and undermine gains on development and poverty reduction. Although the region has the lowest per capital greenhouse gas emission level in the world, it will need to join global efforts to address climate change, including action to avoid significant increases and to encourage a green economy. Thus, there is a need for the concept of 'greening the economy' as was prescribed at Rio Summit of 1992. Renewable energy is one of the criterions to achieve this laudable goal of maintaining a green economy. There is need to address climate change while facilitating continued economic growth and social progress as energy today is critical to economic growth. Fossil fuels remain the major contributor of greenhouse gas emission. Thus, cleaner technologies such as carbon capture storage, renewable energy have emerged to be commercially competitive. This paper sets out to examine how to achieve a low carbon economy with minimal emission of carbon dioxide and other greenhouse gases which is one of the outcomes of implementing a green economy. Also, the paper examines the different renewable energy sources such as nuclear, wind, hydro, biofuel, and solar voltaic as a panacea to the looming climate change menace. Finally, the paper assesses the different renewable energy and energy efficiency as a propeller to generating new sources of income and jobs and in turn reduces carbon emission. The research shall engage qualitative, evaluative and comparative methods. The research will employ both primary and secondary sources of information. The primary sources of information shall be drawn from the sub Saharan African region and the global environmental organizations, energy legislation, policies and related industries and the judicial processes. The secondary sources will be made up of some books, journal articles, commentaries, discussions, observations, explanations, expositions, suggestions, prescriptions and other material sourced from the internet on renewable energy as a panacea to climate change. All information obtained from these sources will be subject to content analysis. The research result will show that the entire planet is warming as a result of the activities of mankind which is clear evidence that the current development is fundamentally unsustainable. Equally, the study will reveal that a low carbon development pathway in the sub Saharan African region should be embraced to minimize emission of greenhouse gases such as using renewable energy rather than coal, oil, and gas. The study concludes that until adequate strategies are devised towards the use of renewable energy the region will continue to add and worsen the current climate change menace and other adverse environmental conditions.

Keywords: carbon dioxide, climate change, legislation/law, renewable energy

Procedia PDF Downloads 194
2927 An Efficient Activated Carbon for Copper (II) Adsorption Synthesized from Indian Gooseberry Seed Shells

Authors: Somen Mondal, Subrata Kumar Majumder

Abstract:

Removal of metal pollutants by efficient activated carbon is challenging research in the present-day scenario. In the present study, the characteristic features of an efficient activated carbon (AC) synthesized from Indian gooseberry seed shells for the copper (II) adsorption are reported. A three-step chemical activation method consisting of the impregnation, carbonization and subsequent activation is used to produce the activated carbon. The copper adsorption kinetics and isotherms onto the activated carbon were analyzed. As per present investigation, Indian gooseberry seed shells showed the BET surface area of 1359 m²/g. The maximum adsorptivity of the activated carbon at a pH value of 9.52 was found to be 44.84 mg/g at 30°C. The adsorption process followed the pseudo-second-order kinetic model along with the Langmuir adsorption isotherm. This AC could be used as a favorable and cost-effective copper (II) adsorbent in wastewater treatment to remove the metal contaminants.

Keywords: activated carbon, adsorption isotherm, kinetic model, characterization

Procedia PDF Downloads 131
2926 Seasonal and Monthly Field Soil Respiration Rate and Litter Fall Amounts of Kasuga-Yama Hill Primeval Forest

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

The seasonal (January, April, July and October) and monthly soil respiration rate and the monthly litter fall amounts were examined in the laurel-leaved (B_B-1) and Cryptomeria japonica (B_B-2 and PW) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The change of the seasonal soil respiration rate corresponded to that of the soil temperature. The soil respiration rate was higher in October when fresh organic matter was supplied in the forest floor than in April in spite of the same temperature. The seasonal soil respiration rate of B_B-1 was higher than that of B_B-2, which corresponded to more numbers of bacteria and fungi counted by the dilution plate method and by the direct count method by microscopy in B_B-1 than that of B_B-2. The seasonal soil respiration rate of B_B-2 was higher than that of PW, which corresponded to more microbial biomass by the direct count method by microscopy in B_B-2 than that of PW. The correlation coefficient with the seasonal soil respiration and the soil temperature was higher than that of the monthly soil respiration. The soil respiration carbon was more than the litter fall carbon. It was suggested that the soil respiration included in the carbon dioxide which was emitted by the plant root and soil animal, or that the litter fall supplied to the forest floor included in animal and plant litter.

Keywords: field soil respiration rate, forest soil, litter fall, mineralization rate

Procedia PDF Downloads 261
2925 Formation of in-situ Ceramic Phase in N220 Nano Carbon Containing Low Carbon Mgo-C Refractory

Authors: Satyananda Behera, Ritwik Sarkar

Abstract:

In iron and steel industries, MgO–C refractories are widely used in basic oxygen furnaces, electric arc furnaces and steel ladles due to their excellent corrosion resistance, thermal shock resistance, and other excellent hot properties. Conventionally magnesia carbon refractories contain about 8-20 wt% of carbon but the use of carbon is also associate with disadvantages like oxidation, low fracture strength, high heat loss and higher carbon pick up in steel. So, MgO-C refractory having low carbon content without compromising the beneficial properties is the challenge. Nano carbon, having finer particles, can mix and distribute within the entire matrix uniformly and can result in improved mechanical, thermo-mechanical, corrosion and other refractory properties. Previous experiences with the use of nano carbon in low carbon MgO-C refractory have indicated an optimum range of use of nano carbon around 1 wt%. This optimum nano carbon content was used in MgO-C compositions with flaky graphite followed by aluminum and silicon metal powder as an anti-oxidant. These low carbon MgO-C refractory compositions were prepared by conventional manufacturing techniques. At the same time 16 wt. % flaky graphite containing conventional MgO-C refractory was also prepared parallel under similar conditions. The developed products were characterized for various refractory related properties. Nano carbon containing compositions showed better mechanical, thermo-mechanical properties, and oxidation resistance compared to that of conventional composition. Improvement in the properties is associated with the formation of in-situ ceramic phase-like aluminum carbide, silicon carbide, and magnesium aluminum spinel. Higher surface area and higher reactivity of N220 nano carbon black resulted in greater formation in-situ ceramic phases, even at a much lower amount. Nano carbon containing compositions were found to have improved properties in MgO-C refractories compared to that of the conventional ones at much lower total carbon content.

Keywords: N220nano carbon black, refractory properties, conventionally manufacturing techniques, conventional magnesia carbon refractories

Procedia PDF Downloads 338
2924 Carbon-Foam Supported Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells

Authors: Albert Mufundirwa, Satoru Yoshioka, K. Ogi, Takeharu Sugiyama, George F. Harrington, Bretislav Smid, Benjamin Cunning, Kazunari Sasaki, Akari Hayashi, Stephen M. Lyth

Abstract:

Polymer electrolyte membrane fuel cells (PEMFCs) are electrochemical energy conversion devices used for portable, residential and vehicular applications due to their low emissions, high efficiency, and quick start-up characteristics. However, PEMFCs generally use expensive, Pt-based electrocatalysts as electrode catalysts. Due to the high cost and limited availability of platinum, research and development to either drastically reduce platinum loading, or replace platinum with alternative catalysts is of paramount importance. A combination of high surface area supports and nano-structured active sites is essential for effective operation of catalysts. We synthesize carbon foam supports by thermal decomposition of sodium ethoxide, using a template-free, gram scale, cheap, and scalable pyrolysis method. This carbon foam has a high surface area, highly porous, three-dimensional framework which is ideal for electrochemical applications. These carbon foams can have surface area larger than 2500 m²/g, and electron microscopy reveals that they have micron-scale cells, separated by few-layer graphene-like carbon walls. We applied this carbon foam as a platinum catalyst support, resulting in the improved electrochemical surface area and mass activity for the oxygen reduction reaction (ORR), compared to carbon black. Similarly, silver-decorated carbon foams showed higher activity and efficiency for electrochemical carbon dioxide conversion than silver-decorated carbon black. A promising alternative to Pt-catalysts for the ORR is iron-impregnated nitrogen-doped carbon catalysts (Fe-N-C). Doping carbon with nitrogen alters the chemical structure and modulates the electronic properties, allowing a degree of control over the catalytic properties. We have adapted our synthesis method to produce nitrogen-doped carbon foams with large surface area, using triethanolamine as a nitrogen feedstock, in a novel bottom-up protocol. These foams are then infiltrated with iron acetate (FeAc) and pyrolysed to form Fe-N-C foams. The resulting Fe-N-C foam catalysts have high initial activity (half-wave potential of 0.68 VRHE), comparable to that of commercially available Pt-free catalysts (e.g., NPC-2000, Pajarito Powder) in acid solution. In alkaline solution, the Fe-N-C carbon foam catalysts have a half-wave potential of 0.89 VRHE, which is higher than that of NPC-2000 by almost 10 mVRHE, and far out-performing platinum. However, the durability is still a problem at present. The lessons learned from X-ray absorption spectroscopy (XAS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements will be used to carefully design Fe-N-C catalysts for higher performance PEMFCs.

Keywords: carbon-foam, polymer electrolyte membrane fuel cells, platinum, Pt-free, Fe-N-C, ORR

Procedia PDF Downloads 147
2923 Experimental and Simulation Results for the Removal of H2S from Biogas by Means of Sodium Hydroxide in Structured Packed Columns

Authors: Hamadi Cherif, Christophe Coquelet, Paolo Stringari, Denis Clodic, Laura Pellegrini, Stefania Moioli, Stefano Langè

Abstract:

Biogas is a promising technology which can be used as a vehicle fuel, for heat and electricity production, or injected in the national gas grid. It is storable, transportable, not intermittent and substitutable for fossil fuels. This gas produced from the wastewater treatment by degradation of organic matter under anaerobic conditions is mainly composed of methane and carbon dioxide. To be used as a renewable fuel, biogas, whose energy comes only from methane, must be purified from carbon dioxide and other impurities such as water vapor, siloxanes and hydrogen sulfide. Purification of biogas for this application particularly requires the removal of hydrogen sulfide, which negatively affects the operation and viability of equipment especially pumps, heat exchangers and pipes, causing their corrosion. Several methods are available to eliminate hydrogen sulfide from biogas. Herein, reactive absorption in structured packed column by means of chemical absorption in aqueous sodium hydroxide solutions is considered. This study is based on simulations using Aspen Plus™ V8.0, and comparisons are done with data from an industrial pilot plant treating 85 Nm3/h of biogas which contains about 30 ppm of hydrogen sulfide. The rate-based model approach has been used for simulations in order to determine the efficiencies of separation for different operating conditions. To describe vapor-liquid equilibrium, a γ/ϕ approach has been considered: the Electrolyte NRTL model has been adopted to represent non-idealities in the liquid phase, while the Redlich-Kwong equation of state has been used for the vapor phase. In order to validate the thermodynamic model, Henry’s law constants of each compound in water have been verified against experimental data. Default values available in Aspen Plus™ V8.0 for the properties of pure components properties as heat capacity, density, viscosity and surface tension have also been verified. The obtained results for physical and chemical properties are in a good agreement with experimental data. Reactions involved in the process have been studied rigorously. Equilibrium constants for equilibrium reactions and the reaction rate constant for the kinetically controlled reaction between carbon dioxide and the hydroxide ion have been checked. Results of simulations of the pilot plant purification section show the influence of low temperatures, concentration of sodium hydroxide and hydrodynamic parameters on the selective absorption of hydrogen sulfide. These results show an acceptable degree of accuracy when compared with the experimental data obtained from the pilot plant. Results show also the great efficiency of sodium hydroxide for the removal of hydrogen sulfide. The content of this compound in the gas leaving the column is under 1 ppm.

Keywords: biogas, hydrogen sulfide, reactive absorption, sodium hydroxide, structured packed column

Procedia PDF Downloads 314
2922 Characteristics and Feature Analysis of PCF Labeling among Construction Materials

Authors: Sung-mo Seo, Chang-u Chae

Abstract:

The Product Carbon Footprint Labeling has been run for more than four years by the Ministry of Environment and there are number of products labeled by KEITI, as for declaring products with their carbon emission during life cycle stages. There are several categories for certifying products by the characteristics of usage. Building products which are applied to a building as combined components. In this paper, current status of PCF labeling has been compared with LCI DB for data composition. By this comparative analysis, we suggest carbon labeling development.

Keywords: carbon labeling, LCI DB, building materials, life cycle assessment

Procedia PDF Downloads 399
2921 Development of Electrospun Porous Carbon Fibers from Cellulose/Polyacrylonitrile Blend

Authors: Zubair Khaliq, M. Bilal Qadir, Amir Shahzad, Zulfiqar Ali, Ahsan Nazir, Ali Afzal, Abdul Jabbar

Abstract:

Carbon fibers are one of the most demanding materials on earth due to their potential application in energy, high strength materials, and conductive materials. The nanostructure of carbon fibers offers enhanced properties of conductivity due to the larger surface area. The next generation carbon nanofibers demand the porous structure as it offers more surface area. Multiple techniques are used to produce carbon fibers. However, electrospinning followed by carbonization of the polymeric materials is easy to carry process on a laboratory scale. Also, it offers multiple diversity of changing parameters to acquire the desired properties of carbon fibers. Polyacrylonitrile (PAN) is the most used material for the production of carbon fibers due to its promising processing parameters. Also, cellulose is one of the highest yield producers of carbon fibers. However, the electrospinning of cellulosic materials is difficult due to its rigid chain structure. The combination of PAN and cellulose can offer a suitable solution for the production of carbon fibers. Both materials are miscible in the mixed solvent of N, N, Dimethylacetamide and lithium chloride. This study focuses on the production of porous carbon fibers as a function of PAN/Cellulose blend ratio, solution properties, and electrospinning parameters. These single polymer and blend with different ratios were electrospun to give fine fibers. The higher amount of cellulose offered more difficulty in electrospinning of nanofibers. After carbonization, the carbon fibers were studied in terms of their blend ratio, surface area, and texture. Cellulose contents offered the porous structure of carbon fibers. Also, the presence of LiCl contributed to the porous structure of carbon fibers.

Keywords: cellulose, polyacrylonitrile, carbon nanofibers, electrospinning, blend

Procedia PDF Downloads 177
2920 Experimental Investigation, Analysis and Optimization of Performance and Emission Characteristics of Composite Oil Methyl Esters at 160 bar, 180 bar and 200 bar Injection Pressures by Multifunctional Criteria Technique

Authors: Yogish Huchaiah, Chandrashekara Krishnappa

Abstract:

This study considers the optimization and validation of experimental results using Multi-Functional Criteria Technique (MFCT). MFCT is concerned with structuring and solving decision and planning problems involving multiple variables. Production of biodiesel from Composite Oil Methyl Esters (COME) of Jatropha and Pongamia oils, mixed in various proportions and Biodiesel thus obtained from two step transesterification process were tested for various Physico-Chemical properties and it has been ascertained that they were within limits proposed by ASTME. They were blended with Petrodiesel in various proportions. These Methyl Esters were blended with Petrodiesel in various proportions and coded. These blends were used as fuels in a computerized CI DI engine to investigate Performance and Emission characteristics. From the analysis of results, it was found that 180MEM4B20 blend had the maximum Performance and minimum Emissions. To validate the experimental results, MFCT was used. Characteristics such as Fuel Consumption (FC), Brake Power (BP), Brake Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTE), Carbon dioxide (CO2), Carbon Monoxide (CO), Hydro Carbon (HC) and Nitrogen oxide (NOx) were considered as dependent variables. It was found from the application of this method that the optimized combination of Injection Pressure (IP), Mix and Blend is 178MEM4.2B24. Overall corresponding variation between optimization and experimental results was found to be 7.45%.

Keywords: COME, IP, MFCT, optimization, PI, PN, PV

Procedia PDF Downloads 187
2919 Investigation on Flexural Behavior of Non-Crimp 3D Orthogonal Weave Carbon Composite Reinforcement

Authors: Sh. Minapoor, S. Ajeli

Abstract:

Non-crimp three-dimensional (3D) orthogonal carbon fabrics are one of the useful textiles reinforcements in composites. In this paper, flexural and bending properties of a carbon non-crimp 3D orthogonal woven reinforcement are experimentally investigated. The present study is focused on the understanding and measurement of the main bending parameters including flexural stress, strain, and modulus. For this purpose, the three-point bending test method is used and the load-displacement curves are analyzed. The influence of some weave's parameters such as yarn type, geometry of structure, and fiber volume fraction on bending behavior of non-crimp 3D orthogonal carbon fabric is investigated. The obtained results also represent a dataset for the simulation of flexural behavior of non-crimp 3D orthogonal weave carbon composite reinforcement.

Keywords: non-crimp 3D orthogonal weave, carbon composite reinforcement, flexural behavior, three-point bending

Procedia PDF Downloads 276
2918 Strengthening RC Columns Using Carbon Fiber Reinforced Epoxy Composites Modified with Carbon Nanotubes

Authors: Mohammad R. Irshidat, Mohammed H. Al-Saleh, Mahmoud Al-Shoubaki

Abstract:

This paper investigates the viability of using carbon fiber reinforced epoxy composites modified with carbon nano tubes to strengthening reinforced concrete (RC) columns. Six RC columns was designed and constructed according to ASCE standards. The columns were wrapped using carbon fiber sheets impregnated with either neat epoxy or CNTs modified epoxy. These columns were then tested under concentric axial loading. Test results show that; compared to the unwrapped specimens; wrapping concrete columns with carbon fiber sheet embedded in CNTs modified epoxy resulted in an increase in its axial load resistance, maximum displacement, and toughness values by 24%, 109% and 232%, respectively. These results reveal that adding CNTs into epoxy resin enhanced the confinement effect, specifically, increased the axial load resistance, maximum displacement, and toughness values by 11%, 6%, and 19%, respectively compared with columns strengthening with carbon fiber sheet embedded in neat epoxy.

Keywords: CNT, epoxy, carbon fiber, RC columns

Procedia PDF Downloads 328
2917 Technology for Biogas Upgrading with Immobilized Algae Biomass

Authors: Marcin Debowski, Marcin Zielinski, Miroslaw Krzemieniewski, Agata Glowacka-Gil, Paulina Rusanowska, Magdalena Zielinska, Agnieszka Cydzik-Kwiatkowska

Abstract:

Technologies of biogas upgrading are now perceived as competitive solution combustion and production of electricity and heat. Biomethane production will ensure broader application as energy carrier than biogas. Biomethane can be used as fuel in internal combustion engines or introduced into the natural gas transmission network. Therefore, there is a need to search for innovative, economically and technically justified methods for biogas enrichment. The aim of this paper is to present a technology solution for biogas upgrading with immobilized algae biomass. Reactor for biogas upgrading with immobilized algae biomass can be used for removing CO₂ from the biogas, flue gases and the waste gases especially coming from different industry sectors, e.g. from the food industry from yeast production process, biogas production systems, liquid and gaseous fuels combustion systems, hydrocarbon processing technology. The basis for the technological assumptions of presented technology were laboratory works and analyses that tested technological variants of biogas upgrading. The enrichment of biogas with a methane content of 90-97% pointed to technological assumptions for installation on a technical scale. Reactor for biogas upgrading with algae biomass is characterized by a significantly lower cubature in relation to the currently used solutions which use CO₂ removal processes. The invention, by its structure, assumes achieving a very high concentration of biomass of algae through its immobilization in capsules. This eliminates the phenomenon of lowering the pH value, i.e. acidification of the environment in which algae grow, resulting from the introduction of waste gases at a high CO₂ concentration. The system for introducing light into algae capsules is characterized by a higher degree of its use, due to lower losses resulting from the phenomenon of absorption of light energy by water. The light from the light source is continuously supplied to the formed biomass of algae or cyanobacteria in capsules by the light tubes. The light source may be sunlight or a light generator of a different wavelength of light from 300 nm to 800 nm. A portion of gas containing CO₂, accumulated in the tank and conveyed by the pump is periodically introduced into the housing of the photobioreactor tank. When conveying the gas that contains CO₂, it penetrates the algal biomass in capsules through the outer envelope, displacing, from the algal biomass, gaseous metabolic products which are discharged by the outlet duct for gases. It contributes to eliminating the negative impact of this factor on CO₂ binding processes. As a result of the cyclic dosing of gases containing carbon dioxide, gaseous metabolic products of algae are displaced and removed outside the technological system. Technology for biogas upgrading with immobilized algae biomass is suitable for the small biogas plant. The advantages of this technology are high efficiency as well as useful algae biomass which can be used mainly as animal feed, fertilizers and in the power industry. The construction of the device allows effective removal of carbon dioxide from gases at a high CO₂ concentration.

Keywords: biogas, carbon dioxide, immobilised biomass, microalgae, upgrading

Procedia PDF Downloads 121
2916 The impact of Climate Change and Land use/land Cover Change (LUCC) on Carbon Storage in Arid and Semi-Arid Regions of China

Authors: Xia Fang

Abstract:

Arid and semiarid areas of China (ASAC) have experienced significant land-use/cover changes (LUCC), along with intensified climate change. However, LUCC and climate changes and their individual and interactive effects on carbon stocks have not yet been fully understood in the ASAC. This study analyses the carbon stocks in the ASAC during 1980 - 2020 using the specific arid ecosystem model (AEM), and investigates the effects of LUCC and climate change on carbon stock trends. The results indicate that in the past 41 years, the ASAC carbon pool experienced an overall growth trend, with an increase of 182.03 g C/m2. Climatic factors (+291.99 g C/m2), especially the increase in precipitation, were the main drivers of the carbon pool increase. LUCC decreased the carbon pool (-112.27 g C/m2), mainly due to the decrease in grassland area (-2.77%). The climate-induced carbon sinks were distributed in northern Xinjiang, on the Ordos Plateau, and in Northeast China, while the LUCC-induced carbon sinks mainly occurred on the Ordos Plateau and the North China Plain, resulting in a net decrease in carbon sequestration in these regions according to carbon pool measurements. The study revealed that the combination of climate variability, LUCC, and increasing atmospheric CO2 concentration resulted in an increase of approximately 182.03 g C/m2, which was mainly distributed in eastern Inner Mongolia and the western Qinghai-Tibet Plateau. Our findings are essential for improving theoretical guidance to protect the ecological environment, rationally plan land use, and understand the sustainable development of arid and semiarid zones.

Keywords: AEM, climate change, LUCC, carbon stocks

Procedia PDF Downloads 46
2915 Solar Photocatalytic Degradation of Phenol in Aqueous Solutions Using Titanium Dioxide

Authors: Mohamed Gar Alalm, Ahmed Tawfik

Abstract:

In this study, photo-catalytic degradation of phenol by titanium dioxide (TiO2) in aqueous solution was evaluated. The UV energy of solar light was utilized by compound parabolic collectors (CPCs) technology. The effect of irradiation time, initial pH, and dosage of TiO2 were investigated. Aromatic intermediates (catechol, benzoquinone, and hydroquinone) were quantified during the reaction to study the pathways of the oxidation process. 94.5% degradation efficiency of phenol was achieved after 150 minutes of irradiation when the initial concentration was 100 mg/L. The dosage of TiO2 significantly affected the degradation efficiency of phenol. The observed optimum pH for the reaction was 5.2. Phenol photo-catalytic degradation fitted to the pseudo-first order kinetic according to Langmuir–Hinshelwood model.

Keywords: compound parabolic collectors, phenol, photo-catalytic, titanium dioxide

Procedia PDF Downloads 379
2914 Using Pyrolitic Carbon Black Obtained from Scrap Tires as an Adsorbent for Chromium (III) Removal from Water

Authors: Mercedeh Malekzadeh

Abstract:

Scrap tires are the source of wastes that cause the environmental problems. The major components of these tires are rubber and carbon black. These components can be used again for different applications by utilizing physical and chemical processes. Pyrolysis is a way that converts rubber portion of scrap tires to oil and gas and the carbon black recovers to pyrolytic carbon black. This pyrolytic carbon black can be used to reinforce rubber and metal, coating preparation, electronic thermal manager and so on. The porous structure of this carbon black also makes it as a suitable choice for heavy metals removal from water. In this work, the application of base treated pyrolytic carbon black was studied as an adsorbent for chromium (III) removal from water in a batch process. Pyrolytic carbon blacks in two natural and base treated forms were characterized by scanning electron microscopy and energy dispersive analysis x-ray. The effects of adsorbent dosage, contact time, initial concentration of chromium (III) and pH were considered on the adsorption process. The adsorption capacity was 19.76 mg/g. Maximum adsorption was seen after 120 min at pH=3. The equilibrium data were considered and better fitted to Langmuir model. The adsorption kinetic was evaluated and confirmed with the pseudo second order kinetic. Results have shown that the base treated pyrolytic carbon black obtained from scrap tires can be used as a cheap adsorbent for removal of chromium (III) from the water.

Keywords: chromium (III), pyrolytic carbon, scrap tire, water

Procedia PDF Downloads 169
2913 Adsorption of Paracetamol Using Activated Carbon of Dende and Babassu Coconut Mesocarp

Authors: R. C. Ferreira, H. H. C. De Lima, A. A. Cândido, O. M. Couto Junior, P. A. Arroyo, K. Q De Carvalho, G. F. Gauze, M. A. S. D. Barros

Abstract:

Removal of the widespread used drug paracetamol from water was investigated using activated carbon originated from dende coconut mesocarp and babassu coconut mesocarp. Kinetic and equilibrium data were obtained at different values of pH. Babassu activated carbon showed higher efficiency due to its acidity and higher microporosity. Pseudo-second order model was better adjusted to the kinetic results. Equilibrium data may be represented by Langmuir equation. Lower solution pH provided better removal efficiency as the carbonil groups may be attracted by the positively charged carbon surface.

Keywords: adsorption, activated carbon, babassu, dende

Procedia PDF Downloads 333
2912 Effect of Carbon Nanotubes on Nanocomposite from Nanofibrillated Cellulose

Authors: M. Z. Shazana, R. Rosazley, M. A. Izzati, A. W. Fareezal, I. Rushdan, A. B. Suriani, S. Zakaria

Abstract:

There is an increasing interest in the development of flexible energy storage for application of Carbon Nanotubes and nanofibrillated cellulose (NFC). In this study, nanocomposite is consisting of Carbon Nanotube (CNT) mixed with suspension of nanofibrillated cellulose (NFC) from Oil Palm Empty Fruit Bunch (OPEFB). The use of Carbon Nanotube (CNT) as additive nanocomposite was improved the conductivity and mechanical properties of nanocomposite from nanofibrillated cellulose (NFC). The nanocomposite were characterized for electrical conductivity and mechanical properties in uniaxial tension, which were tensile to measure the bond of fibers in nanocomposite. The processing route is environmental friendly which leads to well-mixed structures and good results as well.

Keywords: carbon nanotube (CNT), nanofibrillated cellulose (NFC), mechanical properties, electrical conductivity

Procedia PDF Downloads 297
2911 Methyl Red Adsorption and Photodegradation on TiO₂ Modified Mesoporous Carbon Photocatalyst

Authors: Seyyed Ershad Moradi, Javad Khodaveisi, Atefeh Nasrollahpour

Abstract:

In this study, the highly ordered mesoporous carbon molecular sieve with high surface area and pore volume have been synthesized and modified by TiO₂ doping. The titanium oxide modified mesoporous carbon (Ti-OMC) was characterized by scanning electron microscope (SEM), BET surface area, DRS also XRD analysis (low and wide angle). Degradation experiments were conducted in batch mode with the variables such as amount of contact time, initial solution concentration, and solution pH. The optimal conditions for the degradation of methyl red (MR) were 100 mg/L dye concentration, pH of 7, and 0.12 mg/L of TiO₂ modified mesoporous carbon photocatalyst dosage.

Keywords: mesoporous carbon, photodegradation, surface modification, titanium oxide

Procedia PDF Downloads 164
2910 Calculating the Carbon Footprint of Laser Cutting Machines from Cradle to Grave and Examination the Effect of the Use of the Machine on the Carbon Footprint

Authors: Melike Yaylacı, Tuğba Bilgin

Abstract:

Against the climate crisis, an increasing number of countries are working on green energy, carbon emission measurement, calculation and reduction. The work of industrial organizations with the highest carbon emissions on these issues is increasing. Aim of this paper is calculating carbon emissions of laser cutting machine with cradle-to-grave approach and discuss the potential affects of usage condisions, such as laser power, gas type, gas pressure, on carbon footprint. In particular, this study includes consumption of electricity used in production, laser cutting machine raw materials, and disposal of the machine. In the process of raw material supplying, machine procesing and shipping, all calculations were studied using the Tier1 approach. Laser cutting machines require a specified cutting parameter set for each different material in different thickneses, this parameters are a combination of laser power, gas type, cutting speed, gas pressure and focus point, The another purpose of this study is examine the potential affect of different cutting parameters for the same material in same thickness on carbon footprint.

Keywords: life cycle assessment, carbon emission, laser cutting machine, cutting parameters

Procedia PDF Downloads 63
2909 Effect of Cap and Trade Policies for Carbon Emission Reduction on Delhi Households

Authors: Vikram Singh

Abstract:

This paper aims to take into account carbon tax or cap-and-trade legislation to manage Delhi carbon emissions after a post-Kyoto treaty. This report estimated the influence of the carbon taxes or rebate/compensation cost at the household level. Here, the three possible scenarios will help to comprehend the difference between a straightforward compensation/rebate, and two clearly denoting progressive formula. The straightforward compensation is basically minimizing the regressive applications that will bears on cost. On the other hand, both the progressive formula will generate extra revenue, which will help for feasibility of more efficient, vehicles, appliances and buildings in the low-income household. For the hypothetical case of carbon price $40/tonne, low-income household for both urban and rural region could experience price burden up to 5% and 9% on their income as compared to 3% and 7% for high-income household respectively. The survey report also shown that carbon emission due low-income household are primarily by the substantive requirement like housing and transportation whereas almost 40% emission due to high-income household are by luxurious and non-essential items. The equal distribution of revenue cum incentives will not completely overcome high-income household’s investment in inessential items. However, it will merely help in investing their income in energy efficient and less carbon intensive items. Therefore, the rebate distribution on per capita basis instead on per households will benefit more especially large families at low-income group.

Keywords: household emission, carbon credit, carbon intensity, green house gas emission, carbon generation based insentives

Procedia PDF Downloads 408
2908 The Adsorption of Zinc Metal in Waste Water Using ZnCl2 Activated Pomegranate Peel

Authors: S. N. Turkmen, A. S. Kipcak, N. Tugrul, E. M. Derun, S. Piskin

Abstract:

Activated carbon is an amorphous carbon chain which has extremely extended surface area. High surface area of activated carbon is due to the porous structure. Activated carbon, using a variety of materials such as coal and cellulosic materials; can be obtained by both physical and chemical methods. The prepared activated carbon can be used for decolorize, deodorize and also can be used for removal of organic and non-organic pollution. In this study, pomegranate peel was subjected to 800W microwave power for 1 to 4 minutes. Also fresh pomegranate peel was used for the reference material. Then ZnCl2 was used for the chemical activation purpose. After the activation process, activated pomegranate peels were used for the adsorption of Zn metal (40 ppm) in the waste water. As a result of the adsorption experiments, removal of heavy metals ranged from 89% to 85%.

Keywords: activated carbon, adsorption, chemical activation, microwave, pomegranate peel

Procedia PDF Downloads 517
2907 Payment of Carbon Offsetting: A Case Study in Dharan, Nepal

Authors: Mana Shrestha, Dhruba Khatri, Pralhad Kunwor

Abstract:

The objective of the study was to explore the vehicle owners’ willingness to pay (WTP) for offsetting carbon that could eventually facilitate local governmental institutions to take further step in environmental conservation. Contingent valuation method was used to find out how much amount people were willing to pay for the carbon service they are getting from providers. Open ended questionnaire was carried out with 181 respondents randomly. The result shows different mean willingness to pay amount depending upon demographic variations like education, occupation, sex and residence but the occupation and the educational status significantly affected the WTP of respondent. Total WTP amount was calculated as 650 NRS.

Keywords: community forest, carbon offset, Kyoto, REDD WTP

Procedia PDF Downloads 280