Search results for: hybrid recommendation systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11049

Search results for: hybrid recommendation systems

11049 A Hybrid Recommendation System Based on Association Rules

Authors: Ahmed Mohammed Alsalama

Abstract:

Recommendation systems are widely used in e-commerce applications. The engine of a current recommendation system recommends items to a particular user based on user preferences and previous high ratings. Various recommendation schemes such as collaborative filtering and content-based approaches are used to build a recommendation system. Most of the current recommendation systems were developed to fit a certain domain such as books, articles, and movies. We propose a hybrid framework recommendation system to be applied on two-dimensional spaces (User x Item) with a large number of Users and a small number of Items. Moreover, our proposed framework makes use of both favorite and non-favorite items of a particular user. The proposed framework is built upon the integration of association rules mining and the content-based approach. The results of experiments show that our proposed framework can provide accurate recommendations to users.

Keywords: data mining, association rules, recommendation systems, hybrid systems

Procedia PDF Downloads 453
11048 Societal Impacts of Algorithmic Recommendation System: Economy, International Relations, Political Ideologies, and Education

Authors: Maggie Shen

Abstract:

Ever since the late 20th century, business giants have been competing to provide better experiences for their users. One way they strive to do so is through more efficiently connecting users with their goals, with recommendation systems that filter out unnecessary or less relevant information. Today’s top online platforms such as Amazon, Netflix, Airbnb, Tiktok, Facebook, and Google all utilize algorithmic recommender systems for different purposes—Product recommendation, movie recommendation, travel recommendation, relationship recommendation, etc. However, while bringing unprecedented convenience and efficiency, the prevalence of algorithmic recommendation systems also influences society in many ways. In using a variety of primary, secondary, and social media sources, this paper explores the impacts of algorithms, particularly algorithmic recommender systems, on different sectors of society. Four fields of interest will be specifically addressed in this paper: economy, international relations, political ideologies, and education.

Keywords: algorithms, economy, international relations, political ideologies, education

Procedia PDF Downloads 199
11047 State of the Art on the Recommendation Techniques of Mobile Learning Activities

Authors: Nassim Dennouni, Yvan Peter, Luigi Lancieri, Zohra Slama

Abstract:

The objective of this article is to make a bibliographic study on the recommendation of mobile learning activities that are used as part of the field trip scenarios. Indeed, the recommendation systems are widely used in the context of mobility because they can be used to provide learning activities. These systems should take into account the history of visits and teacher pedagogy to provide adaptive learning according to the instantaneous position of the learner. To achieve this objective, we review the existing literature on field trip scenarios to recommend mobile learning activities.

Keywords: mobile learning, field trip, mobile learning activities, collaborative filtering, recommendation system, point of interest, ACO algorithm

Procedia PDF Downloads 446
11046 Book Exchange System with a Hybrid Recommendation Engine

Authors: Nilki Upathissa, Torin Wirasinghe

Abstract:

This solution addresses the challenges faced by traditional bookstores and the limitations of digital media, striking a balance between the tactile experience of printed books and the convenience of modern technology. The book exchange system offers a sustainable alternative, empowering users to access a diverse range of books while promoting community engagement. The user-friendly interfaces incorporated into the book exchange system ensure a seamless and enjoyable experience for users. Intuitive features for book management, search, and messaging facilitate effortless exchanges and interactions between users. By streamlining the process, the system encourages readers to explore new books aligned with their interests, enhancing the overall reading experience. Central to the system's success is the hybrid recommendation engine, which leverages advanced technologies such as Long Short-Term Memory (LSTM) models. By analyzing user input, the engine accurately predicts genre preferences, enabling personalized book recommendations. The hybrid approach integrates multiple technologies, including user interfaces, machine learning models, and recommendation algorithms, to ensure the accuracy and diversity of the recommendations. The evaluation of the book exchange system with the hybrid recommendation engine demonstrated exceptional performance across key metrics. The high accuracy score of 0.97 highlights the system's ability to provide relevant recommendations, enhancing users' chances of discovering books that resonate with their interests. The commendable precision, recall, and F1score scores further validate the system's efficacy in offering appropriate book suggestions. Additionally, the curve classifications substantiate the system's effectiveness in distinguishing positive and negative recommendations. This metric provides confidence in the system's ability to navigate the vast landscape of book choices and deliver recommendations that align with users' preferences. Furthermore, the implementation of this book exchange system with a hybrid recommendation engine has the potential to revolutionize the way readers interact with printed books. By facilitating book exchanges and providing personalized recommendations, the system encourages a sense of community and exploration within the reading community. Moreover, the emphasis on sustainability aligns with the growing global consciousness towards eco-friendly practices. With its robust technical approach and promising evaluation results, this solution paves the way for a more inclusive, accessible, and enjoyable reading experience for book lovers worldwide. In conclusion, the developed book exchange system with a hybrid recommendation engine represents a progressive solution to the challenges faced by traditional bookstores and the limitations of digital media. By promoting sustainability, widening access to printed books, and fostering engagement with reading, this system addresses the evolving needs of book enthusiasts. The integration of user-friendly interfaces, advanced machine learning models, and recommendation algorithms ensure accurate and diverse book recommendations, enriching the reading experience for users.

Keywords: recommendation systems, hybrid recommendation systems, machine learning, data science, long short-term memory, recurrent neural network

Procedia PDF Downloads 94
11045 Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems

Authors: K. Kusakana

Abstract:

A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems.

Keywords: renewable energies, hybrid systems, optimization, operation control

Procedia PDF Downloads 379
11044 Context-Aware Point-Of-Interests Recommender Systems Using Integrated Sentiment and Network Analysis

Authors: Ho Yeon Park, Kyoung-Jae Kim

Abstract:

Recently, user’s interests for location-based social network service increases according to the advances of social web and location-based technologies. It may be easy to recommend preferred items if we can use user’s preference, context and social network information simultaneously. In this study, we propose context-aware POI (point-of-interests) recommender systems using location-based network analysis and sentiment analysis which consider context, social network information and implicit user’s preference score. We propose a context-aware POI recommendation system consisting of three sub-modules and an integrated recommendation system of them. First, we will develop a recommendation module based on network analysis. This module combines social network analysis and cluster-indexing collaboration filtering. Next, this study develops a recommendation module using social singular value decomposition (SVD) and implicit SVD. In this research, we will develop a recommendation module that can recommend preference scores based on the frequency of POI visits of user in POI recommendation process by using social and implicit SVD which can reflect implicit feedback in collaborative filtering. We also develop a recommendation module using them that can estimate preference scores based on the recommendation. Finally, this study will propose a recommendation module using opinion mining and emotional analysis using data such as reviews of POIs extracted from location-based social networks. Finally, we will develop an integration algorithm that combines the results of the three recommendation modules proposed in this research. Experimental results show the usefulness of the proposed model in relation to the recommended performance.

Keywords: sentiment analysis, network analysis, recommender systems, point-of-interests, business analytics

Procedia PDF Downloads 250
11043 Nitrogen and Potassium Fertilizer Response on Growth and Yield of Hybrid Luffa –Naga F1 Variety

Authors: D. R. T. N. K. Dissanayake, H. M. S. K. Herath, H. K. S. G. Gunadasa, P. Weerasinghe

Abstract:

Luffa is a tropical and subtropical vegetable, belongs to family Cucurbiteceae. It is predominantly monoecious in sex expression and provides an ample scope for utilization of hybrid vigor. Hybrid varieties develop through open pollination, produce higher yields due to its hybrid vigor. Naga F1 hybrid variety consists number of desirable traits other than higher yield such as strong and vigorous plants, fruits with long deep ridges, attractive green color fruits ,better fruit weight, length and early maturity compared to the local Luffa cultivars. Unavailability of fertilizer recommendations for hybrid cucurbit vegetables leads to an excess fertilizer application causing a vital environmental issue that creates undesirable impacts on nature and the human health. Main Objective of this research is to determine effect of different nitrogen and potassium fertilizer rates on growth and yield of Naga F1 Variety. Other objectives are, to evaluate specific growth parameters and yield, to identify the optimum nitrogen and potassium fertilizer levels based on growth and yield of hybrid Luffa variety. As well as to formulate the general fertilizer recommendation for hybrid Luffa -Naga F1 variety.

Keywords: hybrid, nitrogen, phosphorous, potassium

Procedia PDF Downloads 592
11042 Recommendation Systems for Cereal Cultivation using Advanced Casual Inference Modeling

Authors: Md Yeasin, Ranjit Kumar Paul

Abstract:

In recent years, recommendation systems have become indispensable tools for agricultural system. The accurate and timely recommendations can significantly impact crop yield and overall productivity. Causal inference modeling aims to establish cause-and-effect relationships by identifying the impact of variables or factors on outcomes, enabling more accurate and reliable recommendations. New advancements in causal inference models have been found in the literature. With the advent of the modern era, deep learning and machine learning models have emerged as efficient tools for modeling. This study proposed an innovative approach to enhance recommendation systems-based machine learning based casual inference model. By considering the causal effect and opportunity cost of covariates, the proposed system can provide more reliable and actionable recommendations for cereal farmers. To validate the effectiveness of the proposed approach, experiments are conducted using cereal cultivation data of eastern India. Comparative evaluations are performed against existing correlation-based recommendation systems, demonstrating the superiority of the advanced causal inference modeling approach in terms of recommendation accuracy and impact on crop yield. Overall, it empowers farmers with personalized recommendations tailored to their specific circumstances, leading to optimized decision-making and increased crop productivity.

Keywords: agriculture, casual inference, machine learning, recommendation system

Procedia PDF Downloads 79
11041 The Effects of Source and Timing on the Acceptance of New Product Recommendation: A Lab Experiment

Authors: Yani Shi, Jiaqi Yan

Abstract:

A new product is important for companies to extend consumers and manifest competitiveness. New product often involves new features that consumers might not be familiar with while it may also have a competitive advantage to attract consumers compared to established products. However, although most online retailers employ recommendation agents (RA) to influence consumers’ product choice decision, recommended new products are not accepted and chosen as expected. We argue that it might also be caused by providing a new product recommendation in the wrong way at the wrong time. This study seeks to discuss how new product evaluations sourced from third parties could be employed in RAs as evidence of the superiority for the new product and how the new product recommendation could be provided to a consumer at the right time so that it can be accepted and finally chosen during the consumer’s decision-making process. A 2*2 controlled laboratory experiment was conducted to understand the selection of new product recommendation sources and recommendation timing. Human subjects were randomly assigned to one of the four treatments to minimize the effects of individual differences on the results. Participants were told to make purchase choices from our product categories. We find that a new product recommended right after a similar existing product and with the source of the expert review will be more likely to be accepted. Based on this study, both theoretical and practical contributions are provided regarding new product recommendation.

Keywords: new product recommendation, recommendation timing, recommendation source, recommendation agents

Procedia PDF Downloads 154
11040 E-Learning Recommender System Based on Collaborative Filtering and Ontology

Authors: John Tarus, Zhendong Niu, Bakhti Khadidja

Abstract:

In recent years, e-learning recommender systems has attracted great attention as a solution towards addressing the problem of information overload in e-learning environments and providing relevant recommendations to online learners. E-learning recommenders continue to play an increasing educational role in aiding learners to find appropriate learning materials to support the achievement of their learning goals. Although general recommender systems have recorded significant success in solving the problem of information overload in e-commerce domains and providing accurate recommendations, e-learning recommender systems on the other hand still face some issues arising from differences in learner characteristics such as learning style, skill level and study level. Conventional recommendation techniques such as collaborative filtering and content-based deal with only two types of entities namely users and items with their ratings. These conventional recommender systems do not take into account the learner characteristics in their recommendation process. Therefore, conventional recommendation techniques cannot make accurate and personalized recommendations in e-learning environment. In this paper, we propose a recommendation technique combining collaborative filtering and ontology to recommend personalized learning materials to online learners. Ontology is used to incorporate the learner characteristics into the recommendation process alongside the ratings while collaborate filtering predicts ratings and generate recommendations. Furthermore, ontological knowledge is used by the recommender system at the initial stages in the absence of ratings to alleviate the cold-start problem. Evaluation results show that our proposed recommendation technique outperforms collaborative filtering on its own in terms of personalization and recommendation accuracy.

Keywords: collaborative filtering, e-learning, ontology, recommender system

Procedia PDF Downloads 379
11039 A Hybrid Approach for Thread Recommendation in MOOC Forums

Authors: Ahmad. A. Kardan, Amir Narimani, Foozhan Ataiefard

Abstract:

Recommender Systems have been developed to provide contents and services compatible to users based on their behaviors and interests. Due to information overload in online discussion forums and users diverse interests, recommending relative topics and threads is considered to be helpful for improving the ease of forum usage. In order to lead learners to find relevant information in educational forums, recommendations are even more needed. We present a hybrid thread recommender system for MOOC forums by applying social network analysis and association rule mining techniques. Initial results indicate that the proposed recommender system performs comparatively well with regard to limited available data from users' previous posts in the forum.

Keywords: association rule mining, hybrid recommender system, massive open online courses, MOOCs, social network analysis

Procedia PDF Downloads 294
11038 Network Connectivity Knowledge Graph Using Dwave Quantum Hybrid Solvers

Authors: Nivedha Rajaram

Abstract:

Hybrid Quantum solvers have been given prime focus in recent days by computation problem-solving domain industrial applications. D’Wave Quantum Computers are one such paragon of systems built using quantum annealing mechanism. Discrete Quadratic Models is a hybrid quantum computing model class supplied by D’Wave Ocean SDK - a real-time software platform for hybrid quantum solvers. These hybrid quantum computing modellers can be employed to solve classic problems. One such problem that we consider in this paper is finding a network connectivity knowledge hub in a huge network of systems. Using this quantum solver, we try to find out the prime system hub, which acts as a supreme connection point for the set of connected computers in a large network. This paper establishes an innovative problem approach to generate a connectivity system hub plot for a set of systems using DWave ocean SDK hybrid quantum solvers.

Keywords: quantum computing, hybrid quantum solver, DWave annealing, network knowledge graph

Procedia PDF Downloads 127
11037 Distributed Energy System - Microgrid Integration of Hybrid Power Systems

Authors: Pedro Esteban

Abstract:

Planning a hybrid power system (HPS) that integrates renewable generation sources, non-renewable generation sources and energy storage, involves determining the capacity and size of various components to be used in the system to be able to supply reliable electricity to the connected load as required. Nowadays it is very common to integrate solar photovoltaic (PV) power plants for renewable generation as part of HPS. The solar PV system is usually balanced via a second form of generation (renewable such as wind power or using fossil fuels such as a diesel generator) or an energy storage system (such as a battery bank). Hybrid power systems can also provide other forms of power such as heat for some applications. Modern hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.

Keywords: microgrids, hybrid power systems, energy storage, grid code compliance

Procedia PDF Downloads 146
11036 Application of Artificial Immune Systems Combined with Collaborative Filtering in Movie Recommendation System

Authors: Pei-Chann Chang, Jhen-Fu Liao, Chin-Hung Teng, Meng-Hui Chen

Abstract:

This research combines artificial immune system with user and item based collaborative filtering to create an efficient and accurate recommendation system. By applying the characteristic of antibodies and antigens in the artificial immune system and using Pearson correlation coefficient as the affinity threshold to cluster the data, our collaborative filtering can effectively find useful users and items for rating prediction. This research uses MovieLens dataset as our testing target to evaluate the effectiveness of the algorithm developed in this study. The experimental results show that the algorithm can effectively and accurately predict the movie ratings. Compared to some state of the art collaborative filtering systems, our system outperforms them in terms of the mean absolute error on the MovieLens dataset.

Keywords: artificial immune system, collaborative filtering, recommendation system, similarity

Procedia PDF Downloads 535
11035 Hybrid Collaborative-Context Based Recommendations for Civil Affairs Operations

Authors: Patrick Cummings, Laura Cassani, Deirdre Kelliher

Abstract:

In this paper we present findings from a research effort to apply a hybrid collaborative-context approach for a system focused on Marine Corps civil affairs data collection, aggregation, and analysis called the Marine Civil Information Management System (MARCIMS). The goal of this effort is to provide operators with information to make sense of the interconnectedness of entities and relationships in their area of operation and discover existing data to support civil military operations. Our approach to build a recommendation engine was designed to overcome several technical challenges, including 1) ensuring models were robust to the relatively small amount of data collected by the Marine Corps civil affairs community; 2) finding methods to recommend novel data for which there are no interactions captured; and 3) overcoming confirmation bias by ensuring content was recommended that was relevant for the mission despite being obscure or less well known. We solve this by implementing a combination of collective matrix factorization (CMF) and graph-based random walks to provide recommendations to civil military operations users. We also present a method to resolve the challenge of computation complexity inherent from highly connected nodes through a precomputed process.

Keywords: Recommendation engine, collaborative filtering, context based recommendation, graph analysis, coverage, civil affairs operations, Marine Corps

Procedia PDF Downloads 125
11034 Context-Aware Recommender Systems Using User's Emotional State

Authors: Hoyeon Park, Kyoung-jae Kim

Abstract:

The product recommendation is a field of research that has received much attention in the recent information overload phenomenon. The proliferation of the mobile environment and social media cannot help but affect the results of the recommendation depending on how the factors of the user's situation are reflected in the recommendation process. Recently, research has been spreading attention to the context-aware recommender system which is to reflect user's contextual information in the recommendation process. However, until now, most of the context-aware recommender system researches have been limited in that they reflect the passive context of users. It is expected that the user will be able to express his/her contextual information through his/her active behavior and the importance of the context-aware recommender system reflecting this information can be increased. The purpose of this study is to propose a context-aware recommender system that can reflect the user's emotional state as an active context information to recommendation process. The context-aware recommender system is a recommender system that can make more sophisticated recommendations by utilizing the user's contextual information and has an advantage that the user's emotional factor can be considered as compared with the existing recommender systems. In this study, we propose a method to infer the user's emotional state, which is one of the user's context information, by using the user's facial expression data and to reflect it on the recommendation process. This study collects the facial expression data of a user who is looking at a specific product and the user's product preference score. Then, we classify the facial expression data into several categories according to the previous research and construct a model that can predict them. Next, the predicted results are applied to existing collaborative filtering with contextual information. As a result of the study, it was shown that the recommended results of the context-aware recommender system including facial expression information show improved results in terms of recommendation performance. Based on the results of this study, it is expected that future research will be conducted on recommender system reflecting various contextual information.

Keywords: context-aware, emotional state, recommender systems, business analytics

Procedia PDF Downloads 229
11033 Trimma: Trimming Metadata Storage and Latency for Hybrid Memory Systems

Authors: Yiwei Li, Boyu Tian, Mingyu Gao

Abstract:

Hybrid main memory systems combine both performance and capacity advantages from heterogeneous memory technologies. With larger capacities, higher associativities, and finer granularities, hybrid memory systems currently exhibit significant metadata storage and lookup overheads for flexibly remapping data blocks between the two memory tiers. To alleviate the inefficiencies of existing designs, we propose Trimma, the combination of a multi-level metadata structure and an efficient metadata cache design. Trimma uses a multilevel metadata table to only track truly necessary address remap entries. The saved memory space is effectively utilized as extra DRAM cache capacity to improve performance. Trimma also uses separate formats to store the entries with non-identity and identity mappings. This improves the overall remap cache hit rate, further boosting the performance. Trimma is transparent to software and compatible with various types of hybrid memory systems. When evaluated on a representative DDR4 + NVM hybrid memory system, Trimma achieves up to 2.4× and on average 58.1% speedup benefits, compared with a state-of-the-art design that only leverages the unallocated fast memory space for caching. Trimma addresses metadata management overheads and targets future scalable large-scale hybrid memory architectures.

Keywords: memory system, data cache, hybrid memory, non-volatile memory

Procedia PDF Downloads 78
11032 Hybrid Diagrid System for High-Rise Buildings

Authors: Seyed Saeid Tabaee, Mohammad Afshari, Bahador Ziaeemehr, Omid Bahar

Abstract:

Nowadays, using modern structural systems with specific capabilities, like Diagrid, is emerging around the world. In this paper, a new resisting system, a combination of both Diagrid axial behavior and proper seismic performance of regular moment frames in tall buildings, named 'Hybrid Diagrid' is presented. The scaled specimen of the suggested hybrid system was built and tested using IIEES shaking table. The natural frequency and structural response of the analytical model were updated with the real experimental results. In order to compare its performance with the traditional Diagrid and moment frame systems, time history analysis was carried out. Extensive analysis shows the efficient seismic responses and economical behavior of Hybrid Diagrid structure with respect to the other two systems.

Keywords: hybrid diagrid system, moment frame, shaking table, tall buildings, time history analysis

Procedia PDF Downloads 215
11031 An Analytical Study of FRP-Concrete Bridge Superstructures

Authors: Wael I. Alnahhal

Abstract:

It is a major challenge to build a bridge superstructure that has long-term durability and low maintenance requirements. A solution to this challenge may be to use new materials or to implement new structural systems. Fiber reinforced polymer (FRP) composites have continued to play an important role in solving some of persistent problems in infrastructure applications because of its high specific strength, light weight, and durability. In this study, the concept of the hybrid FRP-concrete structural systems is applied to a bridge superstructure. The hybrid FRP-concrete bridge superstructure is intended to have durable, structurally sound, and cost effective hybrid system that will take full advantage of the inherent properties of both FRP materials and concrete. In this study, two hybrid FRP-concrete bridge systems were investigated. The first system consists of trapezoidal cell units forming a bridge superstructure. The second one is formed by arch cells. The two systems rely on using cellular components to form the core of the bridge superstructure, and an outer shell to warp around those cells to form the integral unit of the bridge. Both systems were investigated analytically by using finite element (FE) analysis. From the rigorous FE studies, it was concluded that first system is more efficient than the second.

Keywords: bridge superstructure, hybrid system, fiber reinforced polymer, finite element analysis

Procedia PDF Downloads 333
11030 A Case Study for User Rating Prediction on Automobile Recommendation System Using Mapreduce

Authors: Jiao Sun, Li Pan, Shijun Liu

Abstract:

Recommender systems have been widely used in contemporary industry, and plenty of work has been done in this field to help users to identify items of interest. Collaborative Filtering (CF, for short) algorithm is an important technology in recommender systems. However, less work has been done in automobile recommendation system with the sharp increase of the amount of automobiles. What’s more, the computational speed is a major weakness for collaborative filtering technology. Therefore, using MapReduce framework to optimize the CF algorithm is a vital solution to this performance problem. In this paper, we present a recommendation of the users’ comment on industrial automobiles with various properties based on real world industrial datasets of user-automobile comment data collection, and provide recommendation for automobile providers and help them predict users’ comment on automobiles with new-coming property. Firstly, we solve the sparseness of matrix using previous construction of score matrix. Secondly, we solve the data normalization problem by removing dimensional effects from the raw data of automobiles, where different dimensions of automobile properties bring great error to the calculation of CF. Finally, we use the MapReduce framework to optimize the CF algorithm, and the computational speed has been improved times. UV decomposition used in this paper is an often used matrix factorization technology in CF algorithm, without calculating the interpolation weight of neighbors, which will be more convenient in industry.

Keywords: collaborative filtering, recommendation, data normalization, mapreduce

Procedia PDF Downloads 217
11029 Hydrogen: Contention-Aware Hybrid Memory Management for Heterogeneous CPU-GPU Architectures

Authors: Yiwei Li, Mingyu Gao

Abstract:

Integrating hybrid memories with heterogeneous processors could leverage heterogeneity in both compute and memory domains for better system efficiency. To ensure performance isolation, we introduce Hydrogen, a hardware architecture to optimize the allocation of hybrid memory resources to heterogeneous CPU-GPU systems. Hydrogen supports efficient capacity and bandwidth partitioning between CPUs and GPUs in both memory tiers. We propose decoupled memory channel mapping and token-based data migration throttling to enable flexible partitioning. We also support epoch-based online search for optimized configurations and lightweight reconfiguration with reduced data movements. Hydrogen significantly outperforms existing designs by 1.21x on average and up to 1.31x.

Keywords: hybrid memory, heterogeneous systems, dram cache, graphics processing units

Procedia PDF Downloads 96
11028 Combination Urea and KCl with Powder Coal Sub-Bituminous to Increase Nutrient Content of Ultisols in Limau Manis Padang West Sumatra

Authors: Amsar Maulana, Rafdea Syafitri, Topanal Gustiranda, Natasya Permatasari, Herviyanti

Abstract:

Coal as an alternative source of humic material that has the potential of 973.92 million tons (sub-bituminous amounted to 673.70 million tons) in West Sumatera. The purpose of this research was to study combination Urea and KCl with powder coal Sub-bituminous to increase nutrient content of Ultisols In Limau Manis Padang West Sumatera. The experiment was designed in Completely Randomized Design with 3 replications, those were T1) 0.5% (50g plot-1) of powder coal Sub-bituminous; T2) T1 and 125% (7.03g plot-1 ) of Urea recommendation; T3) T1 and 125% (5.85g plot-1) of KCl recommendation; T4) 1.0% (100g plot-1) of powder coal Sub-bituminous; T5) T4 and 125% (7.03g plot-1 ) of Urea recommendation; T6) T4 and 125% (5.85g plot-1) of KCl recommendation; T7) 1.5% (150g plot-1) of powder coal Sub-bituminous; T8) T7 and 125% (7.03g plot-1 ) of Urea recommendation; T9) T7 and 125% (5.85g plot-1) of KCl recommendation. The results showed that application 1.5% of powder coal Sub-bituminous and 125% of Urea recommendation could increase nutrient content of Ultisols such as pH by 0.33 unit, Organic – C by 2.03%, total – N by 0.31%, Available P by 14.16 ppm and CEC by 19.38 me 100g-1 after 2 weeks of incubation process.

Keywords: KCl, sub-bituminous, ultisols, urea

Procedia PDF Downloads 264
11027 The Potential of 48V HEV in Real Driving Operation

Authors: Mark Schudeleit, Christian Sieg, Ferit Küçükay

Abstract:

This publication focuses on the limits and potentials of 48V hybrid systems, which are especially due to the cost advantages an attractive alternative, compared to established high volt-age HEVs and thus will gain relevant market shares in the future. Firstly, at market overview is given which shows the current known 48V hybrid concepts and demonstrators. These topologies will be analyzed and evaluated regarding the system power and the battery capacity as well as their implemented hybrid functions. The potential in fuel savings and CO2 reduction is calculated followed by the customer-relevant dimensioning of the electric motor and the battery. For both measured data of the real customer operation is used. Subsequently, the CO2 saving potentials of the customer-oriented dimensioned powertrain will be presented for the NEDC and the customer operation. With a comparison of the newly defined drivetrain with existing 48V systems the question can be answered whether current systems are dimensioned optimally for the customer operation or just for legislated driving cycles.

Keywords: 48V hybrid systems, market comparison, requirements and potentials in customer operation, customer-oriented dimensioning, CO2 savings

Procedia PDF Downloads 550
11026 Outline of a Technique for the Recommendation of Tourism Products in Cuba Using GIS

Authors: Jesse D. Cano, Marlon J. Remedios

Abstract:

Cuban tourism has developed so much in the last 30 years to the point of becoming one of the engines of the Cuban economy. With such a development, Cuban companies opting for e-tourism as a way to publicize their products and attract customers has also grown. Despite this fact, the majority of Cuban tourism-themed websites simply provide information on the different products and services they offer which results in many cases, in the user getting overwhelmed with the amount of information available which results in the user abandoning the search before he can find a product that fits his needs. Customization has been recognized as a critical factor for successful electronic tourism business and the use of recommender systems is the best approach to address the problem of personalization. This paper aims to outline a preliminary technique to obtain predictions about which products a particular user would give a better evaluation; these products would be those which the website would show in the first place. To achieve this, the theoretical elements of the Cuban tourism environment are discussed; recommendation systems and geographic information systems as tools for information representation are also discussed. Finally, for each structural component identified, we define a set of rules that allows obtaining an electronic tourism system that handles the personalization of the service provided effectively.

Keywords: geographic information system, technique, tourism products, recommendation

Procedia PDF Downloads 503
11025 Hybrid Subspace Approach for Time Delay Estimation in MIMO Systems

Authors: Mojtaba Saeedinezhad, Sarah Yousefi

Abstract:

In this paper, we present a hybrid subspace approach for Time Delay Estimation (TDE) in multivariable systems. While several methods have been proposed for time delay estimation in SISO systems, delay estimation in MIMO systems were always a big challenge. In these systems the existing TDE methods have significant limitations because most of procedures are just based on system response estimation or correlation analysis. We introduce a new hybrid method for TDE in MIMO systems based on subspace identification and explicit output error method; and compare its performance with previously introduced procedures in presence of different noise levels and in a statistical manner. Then the best method is selected with multi objective decision making technique. It is shown that the performance of new approach is much better than the existing methods, even in low signal-to-noise conditions.

Keywords: system identification, time delay estimation, ARX, OE, merit ratio, multi variable decision making

Procedia PDF Downloads 346
11024 Economic and Technical Study for Hybrid (PV/Wind) Power System in the North East of Algeria

Authors: Nabila Louai, Fouad Khaldi, Houria Benharchache

Abstract:

In this paper, the case of meeting a household’s electrical energy demand with hybrid systems has been examined. The objective is to study technological feasibility and economic viability of the electrification project by a hybrid system (PV/ wind) of a residential home located in Batna-Algeria and to reduce the emissions from traditional power by using renewable energy. An autonomous hybrid wind/photovoltaic (PV)/battery power system and a PV/Wind grid connected system, has been carried out using Hybrid Optimization Model for Electric Renewable (HOMER) simulation software. As a result, it has been found that electricity from the grid can be supplied at a lower price than electricity from renewable energy at this moment.

Keywords: batna, household, hybrid system, renewable energy, techno-economy

Procedia PDF Downloads 601
11023 Efficient Recommendation System for Frequent and High Utility Itemsets over Incremental Datasets

Authors: J. K. Kavitha, D. Manjula, U. Kanimozhi

Abstract:

Mining frequent and high utility item sets have gained much significance in the recent years. When the data arrives sporadically, incremental and interactive rule mining and utility mining approaches can be adopted to handle user’s dynamic environmental needs and avoid redundancies, using previous data structures, and mining results. The dependence on recommendation systems has exponentially risen since the advent of search engines. This paper proposes a model for building a recommendation system that suggests frequent and high utility item sets over dynamic datasets for a cluster based location prediction strategy to predict user’s trajectories using the Efficient Incremental Rule Mining (EIRM) algorithm and the Fast Update Utility Pattern Tree (FUUP) algorithm. Through comprehensive evaluations by experiments, this scheme has shown to deliver excellent performance.

Keywords: data sets, recommendation system, utility item sets, frequent item sets mining

Procedia PDF Downloads 293
11022 Analysis of Organizational Hybrid Agile Methods Environments: Frameworks, Benefits, and Challenges

Authors: Majid Alsubaie, Hamed Sarbazhosseini

Abstract:

Many working environments have experienced increased uncertainty due to the fast-moving and unpredictable world. IT systems development projects, in particular, face several challenges because of their rapidly changing environments and emerging technologies. Information technology organizations within these contexts adapt systems development methodology and new software approaches to address this issue. One of these methodologies is the Agile method, which has gained huge attention in recent years. However, due to failure rates in IT projects, there is an increasing demand for the use of hybrid Agile methods among organizations. The scarce research in the area means that organizations do not have solid evidence-based knowledge for the use of hybrid Agile. This research was designed to provide further insights into the development of hybrid Agile methods within systems development projects, including how frameworks and processes are used and what benefits and challenges are gained and faced as a result of hybrid Agile methods. This paper presents how three organizations (two government and one private) use hybrid Agile methods in their Agile environments. The data was collected through interviews and a review of relevant documents. The results indicate that these organizations do not predominantly use pure Agile. Instead, they are waterfall organizations by virtue of systems nature and complexity, and Agile is used underneath as the delivery model. Prince2 Agile framework, SAFe, Scrum, and Kanban were the identified models and frameworks followed. This study also found that customer satisfaction and the ability to build quickly are the most frequently perceived benefits of using hybrid Agile methods. In addition, team resistance and scope changes are the common challenges identified by research participants in their working environments. The findings can help to understand Agile environmental conditions and projects that can help get better success rates and customer satisfaction.

Keywords: agile, hybrid, IT systems, management, success rate, technology

Procedia PDF Downloads 108
11021 Developing NAND Flash-Memory SSD-Based File System Design

Authors: Jaechun No

Abstract:

This paper focuses on I/O optimizations of N-hybrid (New-Form of hybrid), which provides a hybrid file system space constructed on SSD and HDD. Although the promising potentials of SSD, such as the absence of mechanical moving overhead and high random I/O throughput, have drawn a lot of attentions from IT enterprises, its high ratio of cost/capacity makes it less desirable to build a large-scale data storage subsystem composed of only SSDs. In this paper, we present N-hybrid that attempts to integrate the strengths of SSD and HDD, to offer a single, large hybrid file system space. Several experiments were conducted to verify the performance of N-hybrid.

Keywords: SSD, data section, I/O optimizations, hybrid system

Procedia PDF Downloads 418
11020 User Intention Generation with Large Language Models Using Chain-of-Thought Prompting Title

Authors: Gangmin Li, Fan Yang

Abstract:

Personalized recommendation is crucial for any recommendation system. One of the techniques for personalized recommendation is to identify the intention. Traditional user intention identification uses the user’s selection when facing multiple items. This modeling relies primarily on historical behaviour data resulting in challenges such as the cold start, unintended choice, and failure to capture intention when items are new. Motivated by recent advancements in Large Language Models (LLMs) like ChatGPT, we present an approach for user intention identification by embracing LLMs with Chain-of-Thought (CoT) prompting. We use the initial user profile as input to LLMs and design a collection of prompts to align the LLM's response through various recommendation tasks encompassing rating prediction, search and browse history, user clarification, etc. Our tests on real-world datasets demonstrate the improvements in recommendation by explicit user intention identification and, with that intention, merged into a user model.

Keywords: personalized recommendation, generative user modelling, user intention identification, large language models, chain-of-thought prompting

Procedia PDF Downloads 53