Search results for: hybrid reactor system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18689

Search results for: hybrid reactor system

18599 A Study on Mesh Size Dependency on Bed Expansion Zone in a Three-Phase Fluidized Bed Reactor

Authors: Liliana Patricia Olivo Arias

Abstract:

The present study focused on the hydrodynamic study in a three-phase fluidized bed reactor and the influence of important aspects, such as volume fractions (Hold up), velocity magnitude of gas, liquid and solid phases (hydrogen, gasoil, and gamma alumina), interactions of phases, through of drag models with the k-epsilon turbulence model. For this purpose was employed a Euler-Euler model and also considers the system is constituted of three phases, gaseous, liquid and solid, characterized by its physical and thermal properties, the transport processes that are developed within the transient regime. The proposed model of the three-phase fluidized bed reactor was solved numerically using the ANSYS-Fluent software with different mesh refinements on bed expansion zone in order to observe the influence of the hydrodynamic parameters and convergence criteria. With this model and the numerical simulations obtained for its resolution, it was possible to predict the results of the volume fractions (Hold ups) and the velocity magnitude for an unsteady system from the initial and boundaries conditions were established.

Keywords: three-phase fluidized bed system, CFD simulation, mesh dependency study, hydrodynamic study

Procedia PDF Downloads 141
18598 Hydrodynamics and Heat Transfer Characteristics of a Solar Thermochemical Fluidized Bed Reactor

Authors: Selvan Bellan, Koji Matsubara, Nobuyuki Gokon, Tatsuya Kodama, Hyun Seok-Cho

Abstract:

In concentrated solar thermal industry, fluidized-bed technology has been used to produce hydrogen by thermochemical two step water splitting cycles, and synthetic gas by gasification of coal coke. Recently, couple of fluidized bed reactors have been developed and tested at Niigata University, Japan, for two-step thermochemical water splitting cycles and coal coke gasification using Xe light, solar simulator. The hydrodynamic behavior of the gas-solid flow plays a vital role in the aforementioned fluidized bed reactors. Thus, in order to study the dynamics of dense gas-solid flow, a CFD-DEM model has been developed; in which the contact forces between the particles have been calculated by the spring-dashpot model, based on the soft-sphere method. Heat transfer and hydrodynamics of a solar thermochemical fluidized bed reactor filled with ceria particles have been studied numerically and experimentally for beam-down solar concentrating system. An experimental visualization of particles circulation pattern and mixing of two-tower fluidized bed system has been presented. Simulation results have been compared with experimental data to validate the CFD-DEM model. Results indicate that the model can predict the particle-fluid flow of the two-tower fluidized bed reactor. Using this model, the key operating parameters can be optimized.

Keywords: solar reactor, CFD-DEM modeling, fluidized bed, beam-down solar concentrating system

Procedia PDF Downloads 172
18597 Design and Manufacture of a Hybrid Gearbox Reducer System

Authors: Ahmed Mozamel, Kemal Yildizli

Abstract:

Due to mechanical energy losses and a competitive of minimizing these losses and increases the machine efficiency, the need for contactless gearing system has raised. In this work, one stage of mechanical planetary gear transmission system integrated with one stage of magnetic planetary gear system is designed as a two-stage hybrid gearbox system. The permanent magnets internal energy in the form of the magnetic field is used to create meshing between contactless magnetic rotors in order to provide self-system protection against overloading and decrease the mechanical loss of the transmission system by eliminating the friction losses. Classical methods, such as analytical, tabular method and the theory of elasticity are used to calculate the planetary gear design parameters. The finite element method (ANSYS Maxwell) is used to predict the behaviors of a magnetic gearing system. The concentric magnetic gearing system has been modeled and analyzed by using 2D finite element method (ANSYS Maxwell). In addition to that, design and manufacturing processes of prototype components (a planetary gear, concentric magnetic gear, shafts and the bearings selection) of a gearbox system are investigated. The output force, the output moment, the output power and efficiency of the hybrid gearbox system are experimentally evaluated. The viability of applying a magnetic force to transmit mechanical power through a non-contact gearing system is presented. The experimental test results show that the system is capable to operate continuously within the range of speed from 400 rpm to 3000 rpm with the reduction ratio of 2:1 and maximum efficiency of 91%.

Keywords: hybrid gearbox, mechanical gearboxes, magnetic gears, magnetic torque

Procedia PDF Downloads 127
18596 Electromagnetic-Mechanical Stimulation on PC12 for Enhancement of Nerve Axonal Extension

Authors: E. Nakamachi, K. Matsumoto, K. Yamamoto, Y. Morita, H. Sakamoto

Abstract:

In recently, electromagnetic and mechanical stimulations have been recognized as the effective extracellular environment stimulation technique to enhance the defected peripheral nerve tissue regeneration. In this study, we developed a new hybrid bioreactor by adopting 50 Hz uniform alternative current (AC) magnetic stimulation and 4% strain mechanical stimulation. The guide tube for nerve regeneration is mesh structured tube made of biodegradable polymer, such as polylatic acid (PLA). However, when neural damage is large, there is a possibility that peripheral nerve undergoes necrosis. So it is quite important to accelerate the nerve tissue regeneration by achieving enhancement of nerve axonal extension rate. Therefore, we try to design and fabricate the system that can simultaneously load the uniform AC magnetic field stimulation and the stretch stimulation to cells for enhancement of nerve axonal extension. Next, we evaluated systems performance and the effectiveness of each stimulation for rat adrenal pheochromocytoma cells (PC12). First, we designed and fabricated the uniform AC magnetic field system and the stretch stimulation system. For the AC magnetic stimulation system, we focused on the use of pole piece structure to carry out in-situ microscopic observation. We designed an optimum pole piece structure using the magnetic field finite element analyses and the response surface methodology. We fabricated the uniform AC magnetic field stimulation system as a bio-reactor by adopting analytically determined design specifications. We measured magnetic flux density that is generated by the uniform AC magnetic field stimulation system. We confirmed that measurement values show good agreement with analytical results, where the uniform magnetic field was observed. Second, we fabricated the cyclic stretch stimulation device under the conditions of particular strains, where the chamber was made of polyoxymethylene (POM). We measured strains in the PC12 cell culture region to confirm the uniform strain. We found slightly different values from the target strain. Finally, we concluded that these differences were allowable in this mechanical stimulation system. We evaluated the effectiveness of each stimulation to enhance the nerve axonal extension using PC12. We confirmed that the average axonal extension length of PC12 under the uniform AC magnetic stimulation was increased by 16 % at 96 h in our bio-reactor. We could not confirm that the axonal extension enhancement under the stretch stimulation condition, where we found the exfoliating of cells. Further, the hybrid stimulation enhanced the axonal extension. Because the magnetic stimulation inhibits the exfoliating of cells. Finally, we concluded that the enhancement of PC12 axonal extension is due to the magnetic stimulation rather than the mechanical stimulation. Finally, we confirmed that the effectiveness of the uniform AC magnetic field stimulation for the nerve axonal extension using PC12 cells.

Keywords: nerve cell PC12, axonal extension, nerve regeneration, electromagnetic-mechanical stimulation, bioreactor

Procedia PDF Downloads 232
18595 Microfluidic Continuous Approaches to Produce Magnetic Nanoparticles with Homogeneous Size Distribution

Authors: Ane Larrea, Victor Sebastian, Manuel Arruebo, Jesus Santamaria

Abstract:

We present a gas-liquid microfluidic system as a reactor to obtain magnetite nanoparticles with an excellent degree of control regarding their crystalline phase, shape and size. Several types of microflow approaches were selected to prevent nanomaterial aggregation and to promote homogenous size distribution. The selected reactor consists of a mixer stage aided by ultrasound waves and a reaction stage using a N2-liquid segmented flow to prevent magnetite oxidation to non-magnetic phases. A milli-fluidic reactor was developed to increase the production rate where a magnetite throughput close to 450 mg/h in a continuous fashion was obtained.

Keywords: continuous production, magnetic nanoparticles, microfluidics, nanomaterials

Procedia PDF Downloads 559
18594 On the Representation of Actuator Faults Diagnosis and Systems Invertibility

Authors: F. Sallem, B. Dahhou, A. Kamoun

Abstract:

In this work, the main problem considered is the detection and the isolation of the actuator fault. A new formulation of the linear system is generated to obtain the conditions of the actuator fault diagnosis. The proposed method is based on the representation of the actuator as a subsystem connected with the process system in cascade manner. The designed formulation is generated to obtain the conditions of the actuator fault detection and isolation. Detectability conditions are expressed in terms of the invertibility notions. An example and a comparative analysis with the classic formulation illustrate the performances of such approach for simple actuator fault diagnosis by using the linear model of nuclear reactor.

Keywords: actuator fault, Fault detection, left invertibility, nuclear reactor, observability, parameter intervals, system inversion

Procedia PDF Downloads 364
18593 Somatic Hybridization of between Citrus and Murraya paniculata Cells Applied by Electro-Fusion

Authors: Hasan Basri Jumin

Abstract:

Protoplasts isolated from embryogenic callus of Citrus sinensis were electrically used with mesophyll protoplasts isolated from seedless Citrus relatives. Hybrid of somatic embryos plantlets was obtained after 7 months of culture. Somatic hybrid plants were regenerated into normal seedlings and successfully transferred to soil after strictly acclimatization in the glass pot. The somatic hybrid plants were obtained by screening on the basis of chromosomes count. The number of chromosome of root tip counting revealed plantlets tetraploids (2n = 4x = 36) and the other were diploids (2n = 2x = 18) morphologically resembling the mesophyll parent. This somatic hybrid will be utilized as a possible pollen parent for improving the Citrus sinensis. A complete protoplast-to-plant system of somatic hybrid was developed for Citrus sinensis and Citrus relatives which could facilitate the transfer of nuclear and cytoplasmic genes from this species into cultivated Citrus through protoplast fusion.

Keywords: chromosome, Murraya paniculata, protoplast fusion, somatic hybrid, tetrapoliod

Procedia PDF Downloads 315
18592 Investigation of the GFR2400 Reactivity Control System

Authors: Ján Haščík, Štefan Čerba, Jakub Lüley, Branislav Vrban

Abstract:

The presented paper is related to the design methods and neutronic characterization of the reactivity control system in the large power unit of Generation IV Gas cooled Fast Reactor – GFR2400. The reactor core is based on carbide pin fuel type with the application of refractory metallic liners used to enhance the fission product retention of the SiC cladding. The heterogeneous design optimization of control rod is presented and the results of rods worth and their interferences in a core are evaluated. In addition, the idea of reflector removal as an additive reactivity management option is investigated and briefly described.

Keywords: control rods design, GFR2400, hot spot, movable reflector, reactivity

Procedia PDF Downloads 413
18591 Hybrid Heat Pump for Micro Heat Network

Authors: J. M. Counsell, Y. Khalid, M. J. Stewart

Abstract:

Achieving nearly zero carbon heating continues to be identified by UK government analysis as an important feature of any lowest cost pathway to reducing greenhouse gas emissions. Heat currently accounts for 48% of UK energy consumption and approximately one third of UK’s greenhouse gas emissions. Heat Networks are being promoted by UK investment policies as one means of supporting hybrid heat pump based solutions. To this effect the RISE (Renewable Integrated and Sustainable Electric) heating system project is investigating how an all-electric heating sourceshybrid configuration could play a key role in long-term decarbonisation of heat.  For the purposes of this study, hybrid systems are defined as systems combining the technologies of an electric driven air source heat pump, electric powered thermal storage, a thermal vessel and micro-heat network as an integrated system.  This hybrid strategy allows for the system to store up energy during periods of low electricity demand from the national grid, turning it into a dynamic supply of low cost heat which is utilized only when required. Currently a prototype of such a system is being tested in a modern house integrated with advanced controls and sensors. This paper presents the virtual performance analysis of the system and its design for a micro heat network with multiple dwelling units. The results show that the RISE system is controllable and can reduce carbon emissions whilst being competitive in running costs with a conventional gas boiler heating system.

Keywords: gas boilers, heat pumps, hybrid heating and thermal storage, renewable integrated and sustainable electric

Procedia PDF Downloads 393
18590 Design and Study of a Wind-Solar Hybrid System for Lighting Application

Authors: Nikhil V. Nayak, P. P. Revankar, M. B. Gorawar

Abstract:

Wind energy has been shown to be one of the most viable sources of renewable energy. With current technology, the low cost of wind energy is competitive with more conventional sources of energy such as coal. Most airfoil blades available for commercial grade wind turbines incorporate a straight span-wise profile and airfoil shaped cross sections. This paper is aimed at studying and designing a wind-solar hybrid system for light load application. The tools like qblade and solidworks are used to model and analyze the wind turbine system, the material used for the blade and hub is balsa wood and the tower a lattice type. The expected power output is 100 W for an average wind speed of 4.5 m/s.

Keywords: renewable energy, hybrid, airfoil blades, wind speeds, make-in-india, camber, QBlade, solidworks, balsa wood

Procedia PDF Downloads 284
18589 Calculating Non-Unique Sliding Modes for Switched Dynamical Systems

Authors: Eugene Stepanov, Arkadi Ponossov

Abstract:

Ordinary differential equations with switching nonlinearities constitute a very useful tool in many applications. The solutions of such equations can usually be calculated analytically if they cross the discontinuities transversally. Otherwise, one has trajectories that slides along the discontinuity, and the calculations become less straightforward in this case. For instance, one of the problems one faces is non-uniqueness of the sliding modes. In the presentation, it is proposed to apply the theory of hybrid dynamical systems to calculate the solutions that are ‘hidden’ in the discontinuities. Roughly, one equips the underlying switched system with an explicitly designed discrete dynamical system (‘automaton’), which governs the dynamics of the switched system. This construction ‘splits’ the dynamics, which, as it is shown in the presentation, gives uniqueness of the resulting hybrid trajectories and at the same time provides explicit formulae for them. Projecting the hybrid trajectories back onto the original continuous system explains non-uniqueness of its trajectories. The automaton is designed with the help of the attractors of the specially constructed adjoint dynamical system. Several examples are provided in the presentation, which supports the efficiency of the suggested scheme. The method can be of interest in control theory, gene regulatory networks, neural field models and other fields, where switched dynamics is a part of the analysis.

Keywords: hybrid dynamical systems, singular perturbation analysis, sliding modes, switched dynamics

Procedia PDF Downloads 135
18588 Computational Modeling of Thermal Comfort and CO2 Distribution in Common Room-Lecture Room by Using Hybrid Air Ventilation System, Thermoelectric-PV-Silica Gel under IAQ Standard

Authors: Jirod Chaisan, Somchai Maneewan, Chantana Punlek, Ninnart Rachapradit, Surapong Chirarattananon, Pattana Rakkwamsuk

Abstract:

In this paper, simulation modeling of heat transfer, air flow and distribution emitted from CO2 was performed in a regenerated air. The study room was divided in 3 types: common room, small lecture room and large lecture room under evaluated condition in two case: released and unreleased CO2 including of used hybrid air ventilation system for regenerated air under Thailand climate conditions. The carbon dioxide was located on the center of the room and released rate approximately 900-1200 ppm corresponded with indoor air quality standard (IAQs). The indoor air in the thermal comfort zone was calculated and simulated with the numerical method that using real data from the handbook guideline. The results of the study showed that in the case of hybrid air ventilation system explained thermal and CO2 distribution due to the system was adapted significantly in the comfort zone. The results showed that when CO2 released on the center of the other room, the CO2 high concentration in comfort zone so used hybrid air ventilation that decreased CO2 with regeneration air including of reduced temperature indoor. However, the study is simulation modeling and guideline only so the future should be the experiment of hybrid air ventilation system for evaluated comparison of the systems.

Keywords: air ventilation, indoor air quality, thermal comfort, thermoelectric, photovoltaic, dehumidify

Procedia PDF Downloads 462
18587 Energy Management System with Temperature Rise Prevention on Hybrid Ships

Authors: Asser S. Abdelwahab, Nabil H. Abbasy, Ragi A. Hamdy

Abstract:

Marine shipping has now become one of the major worldwide contributors to pollution and greenhouse gas emissions. Hybrid ships technology based on multiple energy sources has taken a great scope of research to get rid of ship emissions and cut down fuel expenses. Insufficiency between power generated and the demand load to withstand the transient behavior on ships during severe climate conditions will lead to a blackout. Thus, an efficient energy management system (EMS) is a mandatory scope for achieving higher system efficiency while enhancing the lifetime of the onboard storage systems is another salient EMS scope. Considering energy storage system conditions, both the battery state of charge (SOC) and temperature represent important parameters to prevent any malfunction of the storage system that eventually degrades the whole system. In this paper, a two battery packs ratio fuzzy logic control model is proposed. The overall aim is to control the charging/discharging current while including both the battery SOC and temperature in the energy management system. The full designs of the proposed controllers are described and simulated using Matlab. The results prove the successfulness of the proposed controller in stabilizing the system voltage during both loading and unloading while keeping the energy storage system in a healthy condition.

Keywords: energy storage system, power shipboard, hybrid ship, thermal runaway

Procedia PDF Downloads 164
18586 Numerical Modeling of hybrid Photovoltaic-Thermoelectric Solar Unit by Applying Various Cross-Sections of Cooling Ducts

Authors: Ziba Khalili, Mohsen Sheikholeslami, Ladan Momayez

Abstract:

Combining the photovoltaic/thermal (PVT) systems with a thermoelectric (TE) module can raise energy yields since the TE module boosts the system's energy conversion efficiency. In the current study, a PVT system integrated with a TE module was designed and simulated in ANSYS Fluent 19.2. A copper heat transfer tube (HTT) was employed for cooling the photovoltaic (PV) cells. Four different shapes of HTT cross-section, i.e., circular, square, elliptical, and triangular, with equal cross-section areas were investigated. Also, the influence of Cu-Al2O3/water hybrid nanofluid (0.024% volume concentration), fluid inlet velocity (uᵢ ), and amount of solar radiation (G), on the PV temperature (Tₚᵥ) and system performance were investigated. The ambient temperature (Tₐ), wind speed (u𝓌), and fluid inlet temperature (Tᵢ), were considered to be 25°C, 1 m/s, and 27°C, respectively. According to the obtained data, the triangular case had the greatest impact on reducing the compared to other cases. In the triangular case, examination of the effect of hybrid nanofluid showed that the use of hybrid nanofluid at 800 W/m2 led to a reduction of the TPV by 0.6% compared to water, at 0.19 m/s. Moreover, the thermal efficiency ( ) and the overall electrical efficiency (nₜ) of the system improved by 0.93% and 0.22%, respectively, at 0.19 m/s. In a triangular case where G and were 800 W/m2 and 19 m/s, respectively, the highest amount of, thermal power (Eₜ), and, were obtained as 72.76%, 130.84 W and 12.03%, respectively.

Keywords: electrical performance, photovoltaic/thermal, thermoelectric, hybrid nanofluid, thermal efficiency

Procedia PDF Downloads 44
18585 Depyritization of US Coal Using Iron-Oxidizing Bacteria: Batch Stirred Reactor Study

Authors: Ashish Pathak, Dong-Jin Kim, Haragobinda Srichandan, Byoung-Gon Kim

Abstract:

Microbial depyritization of coal using chemoautotrophic bacteria is gaining acceptance as an efficient and eco-friendly technique. The process uses the metabolic activity of chemoautotrophic bacteria in removing sulfur and pyrite from the coal. The aim of the present study was to investigate the potential of Acidithiobacillus ferrooxidans in removing the pyritic sulfur and iron from high iron and sulfur containing US coal. The experiment was undertaken in 8 L bench scale stirred tank reactor having 1% (w/v) pulp density of coal. The reactor was operated at 35ºC and aerobic conditions were maintained by sparging the air into the reactor. It was found that at the end of bio-depyritization process, about 90% of pyrite and 67% of pyritic sulfur was removed from the coal. The results indicate that the bio-depyritization process is an efficient process in treating the high pyrite and sulfur containing coal.

Keywords: At.ferrooxidans, batch reactor, coal desulfurization, pyrite

Procedia PDF Downloads 243
18584 A Hybrid Recommendation System Based on Association Rules

Authors: Ahmed Mohammed Alsalama

Abstract:

Recommendation systems are widely used in e-commerce applications. The engine of a current recommendation system recommends items to a particular user based on user preferences and previous high ratings. Various recommendation schemes such as collaborative filtering and content-based approaches are used to build a recommendation system. Most of the current recommendation systems were developed to fit a certain domain such as books, articles, and movies. We propose a hybrid framework recommendation system to be applied on two-dimensional spaces (User x Item) with a large number of Users and a small number of Items. Moreover, our proposed framework makes use of both favorite and non-favorite items of a particular user. The proposed framework is built upon the integration of association rules mining and the content-based approach. The results of experiments show that our proposed framework can provide accurate recommendations to users.

Keywords: data mining, association rules, recommendation systems, hybrid systems

Procedia PDF Downloads 430
18583 Utilizing Hybrid File Mapping for High-Performance I/O

Authors: Jaechun No

Abstract:

As the technology of NAND flash memory rapidly grows, SSD is becoming an excellent alternative for storage solutions, because of its high random I/O throughput and low power consumption. These SSD potentials have drawn great attention from IT enterprises that seek for better I/O performance. However, high SSD cost per capacity makes it less desirable to construct a large-scale storage subsystem solely composed of SSD devices. An alternative is to build a hybrid storage subsystem where both HDD and SSD devices are incorporated in an economic manner, while employing the strengths of both devices. This paper presents a hybrid file system, called hybridFS, that attempts to utilize the advantages of HDD and SSD devices, to provide a single, virtual address space by integrating both devices. HybridFS not only proposes an efficient implementation for the file management in the hybrid storage subsystem but also suggests an experimental framework for making use of the excellent features of existing file systems. Several performance evaluations were conducted to verify the effectiveness and suitability of hybridFS.

Keywords: hybrid file mapping, data layout, hybrid device integration, extent allocation

Procedia PDF Downloads 475
18582 Transfer Function Model-Based Predictive Control for Nuclear Core Power Control in PUSPATI TRIGA Reactor

Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha

Abstract:

The 1MWth PUSPATI TRIGA Reactor (RTP) in Malaysia Nuclear Agency has been operating more than 35 years. The existing core power control is using conventional controller known as Feedback Control Algorithm (FCA). It is technically challenging to keep the core power output always stable and operating within acceptable error bands for the safety demand of the RTP. Currently, the system could be considered unsatisfactory with power tracking performance, yet there is still significant room for improvement. Hence, a new design core power control is very important to improve the current performance in tracking and regulating reactor power by controlling the movement of control rods that suit the demand of highly sensitive of nuclear reactor power control. In this paper, the proposed Model Predictive Control (MPC) law was applied to control the core power. The model for core power control was based on mathematical models of the reactor core, MPC, and control rods selection algorithm. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The proposed MPC was presented in a transfer function model of the reactor core according to perturbations theory. The transfer function model-based predictive control (TFMPC) was developed to design the core power control with predictions based on a T-filter towards the real-time implementation of MPC on hardware. This paper introduces the sensitivity functions for TFMPC feedback loop to reduce the impact on the input actuation signal and demonstrates the behaviour of TFMPC in term of disturbance and noise rejections. The comparisons of both tracking and regulating performance between the conventional controller and TFMPC were made using MATLAB and analysed. In conclusion, the proposed TFMPC has satisfactory performance in tracking and regulating core power for controlling nuclear reactor with high reliability and safety.

Keywords: core power control, model predictive control, PUSPATI TRIGA reactor, TFMPC

Procedia PDF Downloads 214
18581 An Expert System Designed to Be Used with MOEAs for Efficient Portfolio Selection

Authors: Kostas Metaxiotis, Kostas Liagkouras

Abstract:

This study presents an Expert System specially designed to be used with Multiobjective Evolutionary Algorithms (MOEAs) for the solution of the portfolio selection problem. The validation of the proposed hybrid System is done by using data sets from Hang Seng 31 in Hong Kong, DAX 100 in Germany and FTSE 100 in UK. The performance of the proposed system is assessed in comparison with the Non-dominated Sorting Genetic Algorithm II (NSGAII). The evaluation of the performance is based on different performance metrics that evaluate both the proximity of the solutions to the Pareto front and their dispersion on it. The results show that the proposed hybrid system is efficient for the solution of this kind of problems.

Keywords: expert systems, multi-objective optimization, evolutionary algorithms, portfolio selection

Procedia PDF Downloads 409
18580 Evaluation of Fluidized Bed Bioreactor Process for Mmabatho Waste Water Treatment Plant

Authors: Shohreh Azizi, Wag Nel

Abstract:

The rapid population growth in South Africa has increased the requirement of waste water treatment facilities. The aim of this study is to assess the potential use of Fluidized bed Bio Reactor for Mmabatho sewage treatment plant. The samples were collected from the Inlet and Outlet of reactor daily to analysis the pH, Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solid (TSS) as per standard method APHA 2005. The studies were undertaken on a continue laboratory scale, and analytical data was collected before and after treatment. The reduction of 87.22 % COD, 89.80 BOD % was achieved. Fluidized Bed Bio Reactor remove Bod/COD removal as well as nutrient removal. The efforts also made to study the impact of the biological system if the domestic wastewater gets contaminated with any industrial contamination and the result shows that the biological system can tolerate high Total dissolved solids up to 6000 mg/L as well as high heavy metal concentration up to 4 mg/L. The data obtained through the experimental research are demonstrated that the FBBR may be used (<3 h total Hydraulic Retention Time) for secondary treatment in Mmabatho wastewater treatment plant.

Keywords: fluidized bed bioreactor, wastewater treatment plant, biological system, high TDS, heavy metal

Procedia PDF Downloads 141
18579 Heavy Liquid Metal Coolant – the Key Safety Element in the Complex of New Nuclear Energy Technologies

Authors: A. Orlov, V. Rachkov

Abstract:

The future of Nuclear Energetics is seen in fast reactors with inherent safety working in the closed nuclear fuel cycle. The concept of inherent safety, which lies in deterministic elimination of the most severe accidents due to inherent properties of the reactor rather than through building up engineered barriers, is a cornerstone of success in ensuring safety and economic efficiency of future Nuclear Energetics. The focus of this paper is one of the key elements of inherent safety - the lead coolant of a nuclear reactor. Advantages of lead coolant for reactor application, influence on safety are reviewed. BREST-OD-300 fast reactor, currently being developed in Russia withing the “Proryv” Project utilizes lead coolant and a special set of measures and devices, called technology of lead coolant that ensures safe operation in a wide range of temperatures. Here these technological elements are reviewed, and current progress in their development is discussed.

Keywords: BREST-OD-300. , fast reactor, inherent safety, lead coolant

Procedia PDF Downloads 121
18578 The Use of Nuclear Generation to Provide Power System Stability

Authors: Heather Wyman-Pain, Yuankai Bian, Furong Li

Abstract:

The decreasing use of fossil fuel power stations has a negative effect on the stability of the electricity systems in many countries. Nuclear power stations have traditionally provided minimal ancillary services to support the system but this must change in the future as they replace fossil fuel generators. This paper explains the development of the four most popular reactor types still in regular operation across the world which have formed the basis for most reactor development since their commercialisation in the 1950s. The use of nuclear power in four countries with varying levels of capacity provided by nuclear generators is investigated, using the primary frequency response provided by generators as a measure for the electricity networks stability, to assess the need for nuclear generators to provide additional support as their share of the generation capacity increases.

Keywords: frequency control, nuclear power generation, power system stability, system inertia

Procedia PDF Downloads 407
18577 Design of Labview Based DAQ System

Authors: Omar A. A. Shaebi, Matouk M. Elamari, Salaheddin Allid

Abstract:

The Information Computing System of Monitoring (ICSM) for the Research Reactor of Tajoura Nuclear Research Centre (TNRC) stopped working since early 1991. According to the regulations, the computer is necessary to operate the reactor up to its maximum power (10 MW). The fund is secured via IAEA to develop a modern computer based data acquisition system to replace the old computer. This paper presents the development of the Labview based data acquisition system to allow automated measurements using National Instruments Hardware and its labview software. The developed system consists of SCXI 1001 chassis, the chassis house four SCXI 1100 modules each can maintain 32 variables. The chassis is interfaced with the PC using NI PCI-6023 DAQ Card. Labview, developed by National Instruments, is used to run and operate the DAQ System. Labview is graphical programming environment suited for high level design. It allows integrating different signal processing components or subsystems within a graphical framework. The results showed system capabilities in monitoring variables, acquiring and saving data. Plus the capability of the labview to control the DAQ.

Keywords: data acquisition, labview, signal conditioning, national instruments

Procedia PDF Downloads 473
18576 Metagenomics Profile during the Bioremediation of Fischer-Tropsch Derived Short-Chain Alcohols and Volatile Fatty Acids Using a Moving Bed Biofilm Reactor

Authors: Mabtho Moreroa-Monyelo, Grace Ijoma, Rosina Nkuna, Tonderayi Matambo

Abstract:

A moving bed biofilm reactor (MBBR) was used for the bioremediation of high strength chemical oxygen demand (COD) Fisher-Tropsch (FT) wastewater. The aerobic MBBR system was operated over 60 days. For metagenomics profile assessment of the targeted 16S sequence of bacteria involved in the bioremediation of the chemical compounds, sludge samples were collected every second day of operation. Parameters such as pH and COD were measured daily to compare the system efficiency as the changedin microbial diversity progressed. The study revealed that pH was a contributing factor to microbial diversity, which further affected the efficiency of the MBBR system. The highest COD removal rate of 86.4% was achieved at pH 8.3. It was observed that when there was more, A higher bacterial diversity led to an improvement in the reduction of COD. Furthermore, an OTUof 4530 was obtained, which were divided into 12 phyla, 27 classes, 44 orders, 74 families, and 138 genera across all sludge samples from the MBBR. A determination of the relative abundance of microorganisms at phyla level indicates that the most abundant phylum on day it was Firmicutes (50%); thereafter, the most abundant phylum changed toProteobacteria.

Keywords: biodegradation, fischer-tropsch wastewater, metagenomics, moving bed biofilm reactor

Procedia PDF Downloads 117
18575 Design and Study of a Hybrid Micro-CSP/Biomass Boiler System for Water and Space Heating in Traditional Hammam

Authors: Said Lamghari, Abdelkader Outzourhit, Hassan Hamdi, Mohamed Krarouch, Fatima Ait Nouh, Mickael Benhaim, Mehdi Khaldoun

Abstract:

Traditional Hammams are big consumers of water and wood-energy. Any approach to reduce this consumption will contribute to the preservation of these two resources that are more and more stressed in Morocco. In the InnoTherm/InnoBiomass 2014 project HYBRIDBATH, funded by the Research Institute for Solar Energy and New Energy (IRESEN), we will use a hybrid system consisting of a micro-CSP system and a biomass boiler for water and space heating of a Hammam. This will overcome the problem of intermittency of solar energy, and will ensure continuous supply of hot water and heat. We propose to use local agricultural residues (olive pomace, shells of walnuts, almonds, Argan ...). Underfloor heating using either copper or PEX tubing will perform the space heating. This work focuses on the description of the system and the activities carried out so far: The installation of the system, the principle operation of the system and some preliminary test results.

Keywords: biomass boiler, hot water, hybrid systems, micro-CSP, parabolic sensor, solar energy, solar fraction, traditional hammam, underfloor heating

Procedia PDF Downloads 277
18574 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange

Procedia PDF Downloads 302
18573 Oxidation and Reduction Kinetics of Ni-Based Oxygen Carrier for Chemical Looping Combustion

Authors: J. H. Park, R. H. Hwang, K. B. Yi

Abstract:

Carbon Capture and Storage (CCS) is one of the important technology to reduce the CO₂ emission from large stationary sources such as a power plant. Among the carbon technologies for power plants, chemical looping combustion (CLC) has attracted much attention due to a higher thermal efficiency and a lower cost of electricity. A CLC process is consists of a fuel reactor and an air reactor which are interconnected fluidized bed reactor. In the fuel reactor, an oxygen carrier (OC) is reduced by fuel gas such as CH₄, H₂, CO. And the OC is send to air reactor and oxidized by air or O₂ gas. The oxidation and reduction reaction of OC occurs between the two reactors repeatedly. In the CLC system, high concentration of CO₂ can be easily obtained by steam condensation only from the fuel reactor. It is very important to understand the oxidation and reduction characteristics of oxygen carrier in the CLC system to determine the solids circulation rate between the air and fuel reactors, and the amount of solid bed materials. In this study, we have conducted the experiment and interpreted oxidation and reduction reaction characteristics via observing weight change of Ni-based oxygen carrier using the TGA with varying as concentration and temperature. Characterizations of the oxygen carrier were carried out with BET, SEM. The reaction rate increased with increasing the temperature and increasing the inlet gas concentration. We also compared experimental results and adapted basic reaction kinetic model (JMA model). JAM model is one of the nucleation and nuclei growth models, and this model can explain the delay time at the early part of reaction. As a result, the model data and experimental data agree over the arranged conversion and time with overall variance (R²) greater than 98%. Also, we calculated activation energy, pre-exponential factor, and reaction order through the Arrhenius plot and compared with previous Ni-based oxygen carriers.

Keywords: chemical looping combustion, kinetic, nickel-based, oxygen carrier, spray drying method

Procedia PDF Downloads 181
18572 Design and Development of Real-Time Optimal Energy Management System for Hybrid Electric Vehicles

Authors: Masood Roohi, Amir Taghavipour

Abstract:

This paper describes a strategy to develop an energy management system (EMS) for a charge-sustaining power-split hybrid electric vehicle. This kind of hybrid electric vehicles (HEVs) benefit from the advantages of both parallel and series architecture. However, it gets relatively more complicated to manage power flow between the battery and the engine optimally. The applied strategy in this paper is based on nonlinear model predictive control approach. First of all, an appropriate control-oriented model which was accurate enough and simple was derived. Towards utilization of this controller in real-time, the problem was solved off-line for a vast area of reference signals and initial conditions and stored the computed manipulated variables inside look-up tables. Look-up tables take a little amount of memory. Also, the computational load dramatically decreased, because to find required manipulated variables the controller just needed a simple interpolation between tables.

Keywords: hybrid electric vehicles, energy management system, nonlinear model predictive control, real-time

Procedia PDF Downloads 319
18571 A Real Time Expert System for Decision Support in Nuclear Power Plants

Authors: Andressa dos Santos Nicolau, João P. da S.C Algusto, Claudio Márcio do N. A. Pereira, Roberto Schirru

Abstract:

In case of abnormal situations, the nuclear power plant (NPP) operators must follow written procedures to check the condition of the plant and to classify the type of emergency. In this paper, we proposed a Real Time Expert System in order to improve operator’s performance in case of transient or accident with reactor shutdown. The expert system’s knowledge is based on the sequence of events (SoE) of known accident and two emergency procedures of the Brazilian Pressurized Water Reactor (PWR) NPP and uses two kinds of knowledge representation: rule and logic trees. The results show that the system was able to classify the response of the automatic protection systems, as well as to evaluate the conditions of the plant, diagnosing the type of occurrence, recovery procedure to be followed, indicating the shutdown root cause, and classifying the emergency level.

Keywords: emergence procedure, expert system, operator support, PWR nuclear power plant

Procedia PDF Downloads 307
18570 Development of Transmission and Packaging for Parallel Hybrid Light Commercial Vehicle

Authors: Vivek Thorat, Suhasini Desai

Abstract:

The hybrid electric vehicle is widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and low emissions at competitive costs. Retro fitment of hybrid components into a conventional vehicle for achieving better performance is the best solution so far. But retro fitment includes major modifications into a conventional vehicle with a high cost. This paper focuses on the development of a P3x hybrid prototype with rear wheel drive parallel hybrid electric Light Commercial Vehicle (LCV) with minimum and low-cost modifications. This diesel Hybrid LCV is different from another hybrid with regard to the powertrain. The additional powertrain consists of continuous contact helical gear pair followed by chain and sprocket as a coupler for traction motor. Vehicle powertrain which is designed for the intended high-speed application. This work focuses on targeting of design, development, and packaging of this unique parallel diesel-electric vehicle which is based on multimode hybrid advantages. To demonstrate the practical applicability of this transmission with P3x hybrid configuration, one concept prototype vehicle has been build integrating the transmission. The hybrid system makes it easy to retrofit existing vehicle because the changes required into the vehicle chassis are a minimum. The additional system is designed for mainly five modes of operations which are engine only mode, electric-only mode, hybrid power mode, engine charging battery mode and regenerative braking mode. Its driving performance, fuel economy and emissions are measured and results are analyzed over a given drive cycle. Finally, the output results which are achieved by the first vehicle prototype during experimental testing is carried out on a chassis dynamometer using MIDC driving cycle. The results showed that the prototype hybrid vehicle is about 27% faster than the equivalent conventional vehicle. The fuel economy is increased by 20-25% approximately compared to the conventional powertrain.

Keywords: P3x configuration, LCV, hybrid electric vehicle, ROMAX, transmission

Procedia PDF Downloads 220