Search results for: hierarchal cluster analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27235

Search results for: hierarchal cluster analysis

26935 Off-Line Detection of "Pannon Wheat" Milling Fractions by Near-Infrared Spectroscopic Methods

Authors: E. Izsó, M. Bartalné-Berceli, Sz. Gergely, A. Salgó

Abstract:

The aims of this investigation is to elaborate near-infrared methods for testing and recognition of chemical components and quality in “Pannon wheat” allied (i.e. true to variety or variety identified) milling fractions as well as to develop spectroscopic methods following the milling processes and evaluate the stability of the milling technology by different types of milling products and according to sampling times, respectively. This wheat categories produced under industrial conditions where samples were collected versus sampling time and maximum or minimum yields. The changes of the main chemical components (such as starch, protein, lipid) and physical properties of fractions (particle size) were analysed by dispersive spectrophotometers using visible (VIS) and near-infrared (NIR) regions of the electromagnetic radiation. Close correlation were obtained between the data of spectroscopic measurement techniques processed by various chemometric methods (e.g. principal component analysis (PCA), cluster analysis (CA) and operation condition of milling technology. Its obvious that NIR methods are able to detect the deviation of the yield parameters and differences of the sampling times by a wide variety of fractions, respectively. NIR technology can be used in the sensitive monitoring of milling technology.

Keywords: near infrared spectroscopy, wheat categories, milling process, monitoring

Procedia PDF Downloads 386
26934 Typology of Customers in Fitness Centres

Authors: Josef Voracek, Jan Sima

Abstract:

The main purpose of our study is to state the basic types of fitness customers. This paper aims to create a specific customer typology in today’s fitness centres in the region of Prague. Our suggested typology of Prague fitness centres customers is based on answers to the questions: What are the customers like, what are their preferences, and what kinds of services do they use more often in Prague fitness centres? These are the main aspects of the presented typology. A survey was conducted on a sample of 1004 respondents from 48 fitness centres, which ran during May 2012. We used questionnaires and latent class analysis for the assessment and interpretation of data. Gender was especially the main filter criterion. In the population, there were 522 males and 482 females. Data were analysed using the LCA method. We identified 6 segments of typical customers, of which three are male and three are female. Each segment is influenced primarily by the age of customers, from which we can develop further characteristics, such as education, income, marital status, etc. Male segments use the main workout area above all, whilst female segments use a much wider range of services offered, for example, group exercises, personal training, and cardio theatres. LCA method was found to be the most suitable tool, because cluster analysis is very limited in the forms and numbers of variables and indicators. Models of 3 latent classes for each gender are optimal, as it is demonstrated by entropy indices and matrices of the likelihood of the membership to the classes. A probable weak point of the survey is the selection of fitness centres, because of the market in Prague is really specific.

Keywords: customer, fitness, latent class analysis, typology

Procedia PDF Downloads 193
26933 Effects of a Cluster Grouping of Gifted and Twice Exceptional Students on Academic Motivation, Socio-emotional Adjustment, and Life Satisfaction

Authors: Line Massé, Claire Baudry, Claudia Verret, Marie-France Nadeau, Anne Brault-Labbé

Abstract:

Little research has been conducted on educational services adapted for twice exceptional students. Within an action research, a cluster grouping was set up in an elementary school in Quebec, bringing together gifted or doubly exceptional (2E) students (n = 11) and students not identified as gifted (n = 8) within a multilevel class (3ᵣ𝒹 and 4ₜₕ years). 2E students had either attention deficit hyperactivity disorder (n = 8, including 3 with specific learning disability) or autism spectrum disorder (n = 2). Differentiated instructions strategies were implemented, including the possibility of progressing at their own pace of learning, independent study or research projects, flexible accommodation, tutoring with older students and the development of socio-emotional learning. A specialized educator also supported the teacher in the class for behavioural and socio-affective aspects. Objectives: The study aimed to assess the impacts of the grouping on all students, their academic motivation, and their socio-emotional adaptation. Method: A mixed method was used, combining a qualitative approach with a quantitative approach. Semi-directed interviews were conducted with students (N = 18, 4 girls and 14 boys aged 8 to 9) and one of their parents (N = 18) at the end of the school year. Parents and students completed two questionnaires at the beginning and end of the school year: the Behavior Assessment System for Children-3, children or parents versions (BASC-3, Reynolds and Kampus, 2015) and the Academic Motivation in Education (Vallerand et al., 1993). Parents also completed the Multidimensional Student Life Satisfaction Scale (Huebner, 1994, adapted by Fenouillet et al., 2014) comprising three domains (school, friendships, and motivation). Mixed thematic analyzes were carried out on the data from the interviews using the N'Vivo software. Related-samples Wilcoxon rank-sums tests were conducted for the data from the questionnaires. Results: Different themes emerge from the students' comments, including a positive impact on school motivation or attitude toward school, improved school results, reduction of their behavioural difficulties and improvement of their social relations. These remarks were more frequent among 2E students. Most 2E students also noted an improvement in their academic performance. Most parents reported improvements in attitudes toward school and reductions in disruptive behaviours in the classroom. Some parents also observed changes in behaviours at home or in the socio-emotional well-being of their children, here again, particularly parents of 2E children. Analysis of questionnaires revealed significant differences at the end of the school year, more specifically pertaining to extrinsic motivation identified, problems of conduct, attention, emotional self-control, executive functioning, negative emotions, functional deficiencies, and satisfaction regarding friendships. These results indicate that this approach could benefit not only gifted and doubly exceptional students but also students not identified as gifted.

Keywords: Cluster grouping, elementary school, giftedness, mixed methods, twice exceptional students

Procedia PDF Downloads 50
26932 Phonological Characteristics of Severe to Profound Hearing Impaired Children

Authors: Akbar Darouie, Mamak Joulaie

Abstract:

In regard of phonological skills development importance and its influence on other aspects of language, this study has been performed. Determination of some phonological indexes in children with hearing impairment and comparison with hearing children was the objective. A sample of convenience was selected from a rehabilitation center and a kindergarten in Karaj, Iran. Participants consisted of 12 hearing impaired and 12 hearing children (age range: 5 years and 6 months to 6 years and 6 months old). Hearing impaired children suffered from severe to profound hearing loss while three of them were cochlear implanted and the others were wearing hearing aids. Conversational speech of these children was recorded and 50 first utterances were selected to analyze. Percentage of consonant correct (PCC) and vowel correct (PVC), initial and final consonant omission error, cluster consonant omission error and syllabic structure variety were compared in two groups. Data were analyzed with t test (version 16th SPSS). Comparison between PCC and PVC averages in two groups showed a significant difference (P< 0/01). There was a significant difference about final consonant emission error (P<0/001) and initial consonant emission error (P<0/01) too. Also, the differences between two groups on cluster consonant omission were significant (P<0/001). Therefore, some changes were seen in syllabic structures in children with hearing impairment compared to typical group. This study demonstrates some phonological differences in Farsi language between two groups of children. Therefore, it seems, in clinical practices we must notice this issue.

Keywords: hearing impairment, phonology, vowel, consonant

Procedia PDF Downloads 219
26931 Optimization of Territorial Spatial Functional Partitioning in Coal Resource-based Cities Based on Ecosystem Service Clusters - The Case of Gujiao City in Shanxi Province

Authors: Gu Sihao

Abstract:

The coordinated development of "ecology-production-life" in cities has been highly concerned by the country, and the transformation development and sustainable development of resource-based cities have become a hot research topic at present. As an important part of China's resource-based cities, coal resource-based cities have the characteristics of large number and wide distribution. However, due to the adjustment of national energy structure and the gradual exhaustion of urban coal resources, the development vitality of coal resource-based cities is gradually reduced. In many studies, the deterioration of ecological environment in coal resource-based cities has become the main problem restricting their urban transformation and sustainable development due to the "emphasis on economy and neglect of ecology". Since the 18th National Congress of the Communist Party of China (CPC), the Central Government has been deepening territorial space planning and development. On the premise of optimizing territorial space development pattern, it has completed the demarcation of ecological protection red lines, carried out ecological zoning and ecosystem evaluation, which have become an important basis and scientific guarantee for ecological modernization and ecological civilization construction. Grasp the regional multiple ecosystem services is the precondition of the ecosystem management, and the relationship between the multiple ecosystem services study, ecosystem services cluster can identify the interactions between multiple ecosystem services, and on the basis of the characteristics of the clusters on regional ecological function zoning, to better Social-Ecological system management. Based on this cognition, this study optimizes the spatial function zoning of Gujiao, a coal resource-based city, in order to provide a new theoretical basis for its sustainable development. This study is based on the detailed analysis of characteristics and utilization of Gujiao city land space, using SOFM neural networks to identify local ecosystem service clusters, according to the cluster scope and function of ecological function zoning of space partition balance and coordination between different ecosystem services strength, establish a relationship between clusters and land use, and adjust the functions of territorial space within each zone. Then, according to the characteristics of coal resources city and national spatial function zoning characteristics, as the driving factors of land change, by cellular automata simulation program, such as simulation under different restoration strategy situation of urban future development trend, and provides relevant theories and technical methods for the "third-line" demarcations of Gujiao's territorial space planning, optimizes territorial space functions, and puts forward targeted strategies for the promotion of regional ecosystem services, providing theoretical support for the improvement of human well-being and sustainable development of resource-based cities.

Keywords: coal resource-based city, territorial spatial planning, ecosystem service cluster, gmop model, geosos-FLUS model, functional zoning optimization and upgrading

Procedia PDF Downloads 36
26930 Non-Coplanar Nuclei in Heavy-Ion Reactions

Authors: Sahila Chopra, Hemdeep, Arshdeep Kaur, Raj K. Gupta

Abstract:

In recent times, we noticed an interesting and important role of non-coplanar degree-of-freedom (Φ = 00) in heavy ion reactions. Using the dynamical cluster-decay model (DCM) with Φ degree-of-freedom included, we have studied three compound systems 246Bk∗, 164Yb∗ and 105Ag∗. Here, within the DCM with pocket formula for nuclear proximity potential, we look for the effects of including compact, non-coplanar configurations (Φc = 00) on the non-compound nucleus (nCN) contribution in total fusion cross section σfus. For 246Bk∗, formed in 11B+235U and 14N+232Th reaction channels, the DCM with coplanar nuclei (Φc = 00) shows an nCN contribution for 11B+235U channel, but none for 14N+232Th channel, which on including Φ gives both reaction channels as pure compound nucleus decays. In the case of 164Yb∗, formed in 64Ni+100Mo, the small nCN effects for Φ=00 are reduced to almost zero for Φ = 00. Interestingly, however, 105Ag∗ for Φ = 00 shows a small nCN contribution, which gets strongly enhanced for Φ = 00, such that the characteristic property of PCN presents a change of behaviour, like that of a strongly fissioning superheavy element to a weakly fissioning nucleus; note that 105Ag∗ is a weakly fissioning nucleus and Psurv behaves like one for a weakly fissioning nucleus for both Φ = 00 and Φ = 00. Apparently, Φ is presenting itself like a good degree-of-freedom in the DCM.

Keywords: dynamical cluster-decay model, fusion cross sections, non-compound nucleus effects, non-coplanarity

Procedia PDF Downloads 275
26929 A Hybrid Method for Determination of Effective Poles Using Clustering Dominant Pole Algorithm

Authors: Anuj Abraham, N. Pappa, Daniel Honc, Rahul Sharma

Abstract:

In this paper, an analysis of some model order reduction techniques is presented. A new hybrid algorithm for model order reduction of linear time invariant systems is compared with the conventional techniques namely Balanced Truncation, Hankel Norm reduction and Dominant Pole Algorithm (DPA). The proposed hybrid algorithm is known as Clustering Dominant Pole Algorithm (CDPA) is able to compute the full set of dominant poles and its cluster center efficiently. The dominant poles of a transfer function are specific eigenvalues of the state space matrix of the corresponding dynamical system. The effectiveness of this novel technique is shown through the simulation results.

Keywords: balanced truncation, clustering, dominant pole, Hankel norm, model reduction

Procedia PDF Downloads 577
26928 Characteristics and Item Parameters Fitness on Chemistry Teacher-Made Test Instrument

Authors: Rizki Nor Amelia, Farida A. Setiawati

Abstract:

This study aimed to: (1) describe the characteristics of teacher-made test instrument used to measure the ability of students’chemistry, and (2) identify the presence of the compability difficulty level set by teachers to difficulty level by empirical results. Based on these objectives, this study was a descriptive research. The analysis in this study used the Rasch model and Chi-square statistics. Analysis using Rasch Model was based on the response patterns of high school students to the teacher-made test instrument on chemistry subject Academic Year 2015/2016 in the Yogyakarta. The sample of this research were 358 students taken by cluster random sampling technique. The analysis showed that: (1) a teacher-made tests instrument has a medium on the mean difficulty level. This instrument is capable to measure the ability on the interval of -0,259 ≤ θ ≤ 0,659 logit. Maximum Test Information Function obtained at 18.187 on the ability +0,2 logit; (2) 100% items categorized either as easy or difficult by rasch model is match with the teachers’ judgment; while 37 items are categorized according to rasch model which 8.10% and 10.81% categorized as easy and difficult items respectively according to the teachers, the others are medium categorized. Overall, the distribution of the level of difficulty formulated by the teachers has the distinction (not match) to the level of difficulty based on the empirical results.

Keywords: chemistry, items parameter fitness, Rasch model, teacher-made test

Procedia PDF Downloads 206
26927 Analyzing and Predicting the CL-20 Detonation Reaction Mechanism Based on Artificial Intelligence Algorithm

Authors: Kaining Zhang, Lang Chen, Danyang Liu, Jianying Lu, Kun Yang, Junying Wu

Abstract:

In order to solve the problem of a large amount of simulation and limited simulation scale in the first-principle molecular dynamics simulation of energetic material detonation reaction, we established an artificial intelligence model for analyzing and predicting the detonation reaction mechanism of CL-20 based on the first-principle molecular dynamics simulation of the multiscale shock technique (MSST). We employed principal component analysis to identify the dominant charge features governing molecular reactions. We adopted the K-means clustering algorithm to cluster the reaction paths and screen out the key reactions. We introduced the neural network algorithm to construct the mapping relationship between the charge characteristics of the molecular structure and the key reaction characteristics so as to establish a calculation method for predicting detonation reactions based on the charge characteristics of CL-20 and realize the rapid analysis of the reaction mechanism of energetic materials.

Keywords: energetic material detonation reaction, first-principle molecular dynamics simulation of multiscale shock technique, neural network, CL-20

Procedia PDF Downloads 77
26926 Designing Floor Planning in 2D and 3D with an Efficient Topological Structure

Authors: V. Nagammai

Abstract:

Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining thousands of transistors into a single chip. Development of technology increases the complexity in IC manufacturing which may vary the power consumption, increase the size and latency period. Topology defines a number of connections between network. In this project, NoC topology is generated using atlas tool which will increase performance in turn determination of constraints are effective. The routing is performed by XY routing algorithm and wormhole flow control. In NoC topology generation, the value of power, area and latency are predetermined. In previous work, placement, routing and shortest path evaluation is performed using an algorithm called floor planning with cluster reconstruction and path allocation algorithm (FCRPA) with the account of 4 3x3 switch, 6 4x4 switch, and 2 5x5 switches. The usage of the 4x4 and 5x5 switch will increase the power consumption and area of the block. In order to avoid the problem, this paper has used one 8x8 switch and 4 3x3 switches. This paper uses IPRCA which of 3 steps they are placement, clustering, and shortest path evaluation. The placement is performed using min – cut placement and clustering are performed using an algorithm called cluster generation. The shortest path is evaluated using an algorithm called Dijkstra's algorithm. The power consumption of each block is determined. The experimental result shows that the area, power, and wire length improved simultaneously.

Keywords: application specific noc, b* tree representation, floor planning, t tree representation

Procedia PDF Downloads 370
26925 Adapting to College: Exploration of Psychological Well-Being, Coping, and Identity as Markers of Readiness

Authors: Marit D. Murry, Amy K. Marks

Abstract:

The transition to college is a critical period that affords abundant opportunities for growth in conjunction with novel challenges for emerging adults. During this time, emerging adults are garnering experiences and acquiring hosts of new information that they are required to synthesize and use to inform life-shaping decisions. This stage is characterized by instability and exploration, which necessitates a diverse set of coping skills to successfully navigate and positively adapt to their evolving environment. However, important sociocultural factors result in differences that occur developmentally for minority emerging adults (i.e., emerging adults with an identity that has been or is marginalized). While the transition to college holds vast potential, not all are afforded the same chances, and many individuals enter into this stage at varying degrees of readiness. Understanding the nuance and diversity of student preparedness for college and contextualizing these factors will better equip systems to support incoming students. Emerging adulthood for ethnic, racial minority students presents itself as an opportunity for growth and resiliency in the face of systemic adversity. Ethnic, racial identity (ERI) is defined as an identity that develops as a function of one’s ethnic-racial group membership. Research continues to demonstrate ERI as a resilience factor that promotes positive adjustment in young adulthood. Adaptive coping responses (e.g., engaging in help-seeking behavior, drawing on personal and community resources) have been identified as possible mechanisms through which ERI buffers youth against stressful life events, including discrimination. Additionally, trait mindfulness has been identified as a significant predictor of general psychological health, and mindfulness practice has been shown to be a self-regulatory strategy that promotes healthy stress responses and adaptive coping strategy selection. The current study employed a person-centered approach to explore emerging patterns across ethnic identity development and psychological well-being criterion variables among college freshmen. Data from 283 incoming college freshmen at Northeastern University were analyzed. The Brief COPE Acceptance and Emotional Support scales, the Five Factor Mindfulness Questionnaire, and MIEM Exploration and Affirmation measures were used to inform the cluster profiles. The TwoStep auto-clustering algorithm revealed an optimal three-cluster solution (BIC = 848.49), which classified 92.6% (n = 262) of participants in the sample into one of the three clusters. The clusters were characterized as ‘Mixed Adjustment’, ‘Lowest Adjustment’, and ‘Moderate Adjustment.’ Cluster composition varied significantly by ethnicity X² (2, N = 262) = 7.74 (p = .021) and gender X² (2, N = 259) = 10.40 (p = .034). The ‘Lowest Adjustment’ cluster contained the highest proportion of students of color, 41% (n = 32), and male-identifying students, 44.2% (n = 34). Follow-up analyses showed higher ERI exploration in ‘Moderate Adjustment’ cluster members, also reported higher levels of psychological distress, with significantly elevated depression scores (p = .011), psychological diagnoses of depression (p = .013), anxiety (p = .005) and psychiatric disorders (p = .025). Supporting prior research, students engaging with identity exploration processes often endure more psychological distress. These results indicate that students undergoing identity development may require more socialization and different services beyond normal strategies.

Keywords: adjustment, coping, college, emerging adulthood, ethnic-racial identity, psychological well-being, resilience

Procedia PDF Downloads 84
26924 Global City Typologies: 300 Cities and Over 100 Datasets

Authors: M. Novak, E. Munoz, A. Jana, M. Nelemans

Abstract:

Cities and local governments the world over are interested to employ circular strategies as a means to bring about food security, create employment and increase resilience. The selection and implementation of circular strategies is facilitated by modeling the effects of strategies locally and understanding the impacts such strategies have had in other (comparable) cities and how that would translate locally. Urban areas are heterogeneous because of their geographic, economic, social characteristics, governance, and culture. In order to better understand the effect of circular strategies on urban systems, we create a dataset for over 300 cities around the world designed to facilitate circular strategy scenario modeling. This new dataset integrates data from over 20 prominent global national and urban data sources, such as the Global Human Settlements layer and International Labour Organisation, as well as incorporating employment data from over 150 cities collected bottom up from local departments and data providers. The dataset is made to be reproducible. Various clustering techniques are explored in the paper. The result is sets of clusters of cities, which can be used for further research, analysis, and support comparative, regional, and national policy making on circular cities.

Keywords: data integration, urban innovation, cluster analysis, circular economy, city profiles, scenario modelling

Procedia PDF Downloads 157
26923 Heightening Pre-Service Teachers’ Attitude towards Learning and Metacognitive Learning through Information and Communication Technology: Pre-Service Science Teachers’ Perspective

Authors: Abiodun Ezekiel Adesina, Ijeoma Ginikanwa Akubugwo

Abstract:

Information and Communication Technology, ICT can heighten pre-service teachers’ attitudes toward learning and metacognitive learning; however, there is a dearth of literature on the perception of the pre-service teachers on heightening their attitude toward learning and metacognitive learning. Thus, this study investigates the perception of pre-service science teachers on heightening their attitude towards learning and metacognitive learning through ICT. Two research questions and four hypotheses guided the research. A mixed methods research was adopted for the study in concurrent triangulation type of integrating qualitative and quantitative approaches to the study. The cluster random sampling technique was adopted to select 250 pre-service science teachers in Oyo township. Two self-constructed instruments: Heightening Pre-service Science Teachers’ Attitude towards Learning and Metacognitive Learning through Information and Communication Technology Scale (HPALMIS, r=.73), and an unstructured interview were used for data collection. Thematic analysis, frequency counts and percentages, t-tests, and analysis of variance were used for data analysis. The perception level of the pre-service science teachers on heightening their attitude towards learning and metacognitive learning through ICT is above average, with the majority perceiving that ICT can enhance their thinking about their learning. The perception was significant (mean=92.68, SD=10.86, df=249, t=134.91, p<.05). The perception was significantly differentiated by gender (t=2.10, df= 248, p<.05) in favour of the female pre-service teachers and based on the first time of ICTs use (F(5,244)= 9.586, p<.05). Lecturers of science and science related courses should therefore imbibe the use of ICTs in heightening pre-service teachers’ attitude towards learning and metacognitive learning. Government should organize workshops, seminars, lectures, and symposia along with professional bodies for the science education lecturers to keep abreast of the trending ICT.

Keywords: pre-service teachers’ attitude towards learning, metacognitive learning, ICT, pre-service teachers’ perspectives

Procedia PDF Downloads 71
26922 Performance Evaluation of Soft RoCE over 1 Gigabit Ethernet

Authors: Gurkirat Kaur, Manoj Kumar, Manju Bala

Abstract:

Ethernet is the most influential and widely used technology in the world. With the growing demand of low latency and high throughput technologies like InfiniBand and RoCE, unique features viz. RDMA (Remote Direct Memory Access) have evolved. RDMA is an effective technology which is used for reducing system load and improving performance. InfiniBand is a well known technology which provides high-bandwidth and low-latency and makes optimal use of in-built features like RDMA. With the rapid evolution of InfiniBand technology and Ethernet lacking the RDMA and zero copy protocol, the Ethernet community has came out with a new enhancements that bridges the gap between InfiniBand and Ethernet. By adding the RDMA and zero copy protocol to the Ethernet a new networking technology is evolved, called RDMA over Converged Ethernet (RoCE). RoCE is a standard released by the IBTA standardization body to define RDMA protocol over Ethernet. With the emergence of lossless Ethernet, RoCE uses InfiniBand’s efficient transport to provide the platform for deploying RDMA technology in mainstream data centres over 10GigE, 40GigE and beyond. RoCE provide all of the InfiniBand benefits transport benefits and well established RDMA ecosystem combined with converged Ethernet. In this paper, we evaluate the heterogeneous Linux cluster, having multi nodes with fast interconnects i.e. gigabit Ethernet and Soft RoCE. This paper presents the heterogeneous Linux cluster configuration and evaluates its performance using Intel’s MPI Benchmarks. Our result shows that Soft RoCE is performing better than Ethernet in various performance metrics like bandwidth, latency and throughput.

Keywords: ethernet, InfiniBand, RoCE, RDMA, MPI, Soft RoCE

Procedia PDF Downloads 437
26921 Catalytic Thermodynamics of Nanocluster Adsorbates from Informational Statistical Mechanics

Authors: Forrest Kaatz, Adhemar Bultheel

Abstract:

We use an informational statistical mechanics approach to study the catalytic thermodynamics of platinum and palladium cuboctahedral nanoclusters. Nanoclusters and their adatoms are viewed as chemical graphs with a nearest neighbor adjacency matrix. We use the Morse potential to determine bond energies between cluster atoms in a coordination type calculation. We use adsorbate energies calculated from density functional theory (DFT) to study the adatom effects on the thermodynamic quantities, which are derived from a Hamiltonian. Oxygen radical and molecular adsorbates are studied on platinum clusters and hydrogen on palladium clusters. We calculate the entropy, free energy, and total energy as the coverage of adsorbates increases from bridge and hollow sites on the surface. Thermodynamic behavior versus adatom coverage is related to the structural distribution of adatoms on the nanocluster surfaces. The thermodynamic functions are characterized using a simple adsorption model, with linear trends as the coverage of adatoms increases. The data exhibits size effects for the measured thermodynamic properties with cluster diameters between 2 and 5 nm. Entropy and enthalpy calculations of Pt-O2 compare well with previous theoretical data for Pt(111)-O2, and our Pd-H results show similar trends as experimental measurements for Pd-H2 nanoclusters. Our methods are general and may be applied to wide variety of nanocluster adsorbate systems.

Keywords: catalytic thermodynamics, palladium nanocluster absorbates, platinum nanocluster absorbates, statistical mechanics

Procedia PDF Downloads 129
26920 Data-Driven Market Segmentation in Hospitality Using Unsupervised Machine Learning

Authors: Rik van Leeuwen, Ger Koole

Abstract:

Within hospitality, marketing departments use segmentation to create tailored strategies to ensure personalized marketing. This study provides a data-driven approach by segmenting guest profiles via hierarchical clustering based on an extensive set of features. The industry requires understandable outcomes that contribute to adaptability for marketing departments to make data-driven decisions and ultimately driving profit. A marketing department specified a business question that guides the unsupervised machine learning algorithm. Features of guests change over time; therefore, there is a probability that guests transition from one segment to another. The purpose of the study is to provide steps in the process from raw data to actionable insights, which serve as a guideline for how hospitality companies can adopt an algorithmic approach.

Keywords: hierarchical cluster analysis, hospitality, market segmentation

Procedia PDF Downloads 78
26919 Analysis of Air-Water Two-Phase Flow in a 3x3 Rod Bundle

Authors: Pei-Syuan Ruan, Ya-Chi Yu, Shao-Wen Chen, Jin-Der Lee, Jong-Rong Wang, Chunkuan Shih

Abstract:

This study investigated the void fraction characteristics under low superficial gas velocity (Jg) and low superficial fluid velocity (Jf) conditions in a 3x3 rod bundle geometry. Three arrangements of conductivity probes were set to measure the void fraction at various cross-sectional regions, including rod-gap, sub-channel and rod-wall regions. The experimental tests were performed under the flow conditions of Jg = 0-0.236 m/s and Jf = 0-0.142 m/s, and the time-averaged void fractions were recorded at each flow condition. It was observed that while the superficial gas velocity increases, the small bubbles started to cluster together and become big bubbles. As the superficial fluid velocity increases, the local void fractions of the three test regions will get closer and the bubble distribution will be more uniform across the cross section.

Keywords: conductivity probes, rod bundles, two-phase flow, void fraction

Procedia PDF Downloads 138
26918 Comparison of Artificial Neural Networks and Statistical Classifiers in Olive Sorting Using Near-Infrared Spectroscopy

Authors: İsmail Kavdır, M. Burak Büyükcan, Ferhat Kurtulmuş

Abstract:

Table olive is a valuable product especially in Mediterranean countries. It is usually consumed after some fermentation process. Defects happened naturally or as a result of an impact while olives are still fresh may become more distinct after processing period. Defected olives are not desired both in table olive and olive oil industries as it will affect the final product quality and reduce market prices considerably. Therefore it is critical to sort table olives before processing or even after processing according to their quality and surface defects. However, doing manual sorting has many drawbacks such as high expenses, subjectivity, tediousness and inconsistency. Quality criterions for green olives were accepted as color and free of mechanical defects, wrinkling, surface blemishes and rotting. In this study, it was aimed to classify fresh table olives using different classifiers and NIR spectroscopy readings and also to compare the classifiers. For this purpose, green (Ayvalik variety) olives were classified based on their surface feature properties such as defect-free, with bruised defect and with fly defect using FT-NIR spectroscopy and classification algorithms such as artificial neural networks, ident and cluster. Bruker multi-purpose analyzer (MPA) FT-NIR spectrometer (Bruker Optik, GmbH, Ettlingen Germany) was used for spectral measurements. The spectrometer was equipped with InGaAs detectors (TE-InGaAs internal for reflectance and RT-InGaAs external for transmittance) and a 20-watt high intensity tungsten–halogen NIR light source. Reflectance measurements were performed with a fiber optic probe (type IN 261) which covered the wavelengths between 780–2500 nm, while transmittance measurements were performed between 800 and 1725 nm. Thirty-two scans were acquired for each reflectance spectrum in about 15.32 s while 128 scans were obtained for transmittance in about 62 s. Resolution was 8 cm⁻¹ for both spectral measurement modes. Instrument control was done using OPUS software (Bruker Optik, GmbH, Ettlingen Germany). Classification applications were performed using three classifiers; Backpropagation Neural Networks, ident and cluster classification algorithms. For these classification applications, Neural Network tool box in Matlab, ident and cluster modules in OPUS software were used. Classifications were performed considering different scenarios; two quality conditions at once (good vs bruised, good vs fly defect) and three quality conditions at once (good, bruised and fly defect). Two spectrometer readings were used in classification applications; reflectance and transmittance. Classification results obtained using artificial neural networks algorithm in discriminating good olives from bruised olives, from olives with fly defect and from the olive group including both bruised and fly defected olives with success rates respectively changing between 97 and 99%, 61 and 94% and between 58.67 and 92%. On the other hand, classification results obtained for discriminating good olives from bruised ones and also for discriminating good olives from fly defected olives using the ident method ranged between 75-97.5% and 32.5-57.5%, respectfully; results obtained for the same classification applications using the cluster method ranged between 52.5-97.5% and between 22.5-57.5%.

Keywords: artificial neural networks, statistical classifiers, NIR spectroscopy, reflectance, transmittance

Procedia PDF Downloads 223
26917 Multimodal Optimization of Density-Based Clustering Using Collective Animal Behavior Algorithm

Authors: Kristian Bautista, Ruben A. Idoy

Abstract:

A bio-inspired metaheuristic algorithm inspired by the theory of collective animal behavior (CAB) was integrated to density-based clustering modeled as multimodal optimization problem. The algorithm was tested on synthetic, Iris, Glass, Pima and Thyroid data sets in order to measure its effectiveness relative to CDE-based Clustering algorithm. Upon preliminary testing, it was found out that one of the parameter settings used was ineffective in performing clustering when applied to the algorithm prompting the researcher to do an investigation. It was revealed that fine tuning distance δ3 that determines the extent to which a given data point will be clustered helped improve the quality of cluster output. Even though the modification of distance δ3 significantly improved the solution quality and cluster output of the algorithm, results suggest that there is no difference between the population mean of the solutions obtained using the original and modified parameter setting for all data sets. This implies that using either the original or modified parameter setting will not have any effect towards obtaining the best global and local animal positions. Results also suggest that CDE-based clustering algorithm is better than CAB-density clustering algorithm for all data sets. Nevertheless, CAB-density clustering algorithm is still a good clustering algorithm because it has correctly identified the number of classes of some data sets more frequently in a thirty trial run with a much smaller standard deviation, a potential in clustering high dimensional data sets. Thus, the researcher recommends further investigation in the post-processing stage of the algorithm.

Keywords: clustering, metaheuristics, collective animal behavior algorithm, density-based clustering, multimodal optimization

Procedia PDF Downloads 201
26916 Post Harvest Fungi Diversity and Level of Aflatoxin Contamination in Stored Maize: Cases of Kitui, Nakuru and Trans-Nzoia Counties in Kenya

Authors: Gachara Grace, Kebira Anthony, Harvey Jagger, Wainaina James

Abstract:

Aflatoxin contamination of maize in Africa poses a major threat to food security and the health of many African people. In Kenya, aflatoxin contamination of maize is high due to the environmental, agricultural and socio-economic factors. Many studies have been conducted to understand the scope of the problem, especially at pre-harvest level. This research was carried out to gather scientific information on the fungi population, diversity and aflatoxin level during the post-harvest period. The study was conducted in three geographical locations of; Kitui, Kitale and Nakuru. Samples were collected from storage structures of farmers and transported to the Biosciences eastern and central Africa (BecA), International Livestock and Research Institute (ILRI) hub laboratories. Mycoflora was recovered using the direct plating method. A total of five fungal genera (Aspergillus, Penicillium, Fusarium, Rhizopus and Bssyochlamys spp.) were isolated from the stored maize samples. The most common fungal species that were isolated from the three study sites included A. flavus at 82.03% followed by A.niger and F.solani at 49% and 26% respectively. The aflatoxin producing fungi A. flavus was recovered in 82.03% of the samples. Aflatoxin levels were analysed on both the maize samples and in vitro. Most of the A. flavus isolates recorded a high level of aflatoxin when they were analysed for presence of aflatoxin B1 using ELISA. In Kitui, all the samples (100%) had aflatoxin levels above 10ppb with a total aflatoxin mean of 219.2ppb. In Kitale, only 3 samples (n=39) had their aflatoxin levels less than 10ppb while in Nakuru, the total aflatoxin mean level of this region was 239.7ppb. When individual samples were analysed using Vicam fluorometer method, aflatoxin analysis revealed that most of the samples (58.4%) had been contaminated. The means were significantly different (p=0.00<0.05) in all the three locations. Genetic relationships of A. flavus isolates were determined using 13 Simple Sequence Repeats (SSRs) markers. The results were used to generate a phylogenetic tree using DARwin5 software program. A total of 5 distinct clusters were revealed among the genotypes. The isolates appeared to cluster separately according to the geographical locations. Principal Coordinates Analysis (PCoA) of the genetic distances among the 91 A. flavus isolates explained over 50.3% of the total variation when two coordinates were used to cluster the isolates. Analysis of Molecular Variance (AMOVA) showed a high variation of 87% within populations and 13% among populations. This research has shown that A. flavus is the main fungal species infecting maize grains in Kenya. The influence of aflatoxins on human populations in Kenya demonstrates a clear need for tools to manage contamination of locally produced maize. Food basket surveys for aflatoxin contamination should be conducted on a regular basis. This would assist in obtaining reliable data on aflatoxin incidence in different food crops. This would go a long way in defining control strategies for this menace.

Keywords: aflatoxin, Aspergillus flavus, genotyping, Kenya

Procedia PDF Downloads 253
26915 Improving Similarity Search Using Clustered Data

Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong

Abstract:

This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.

Keywords: visual search, deep learning, convolutional neural network, machine learning

Procedia PDF Downloads 190
26914 Improved K-Means Clustering Algorithm Using RHadoop with Combiner

Authors: Ji Eun Shin, Dong Hoon Lim

Abstract:

Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases.

Keywords: big data, combiner, K-means clustering, RHadoop

Procedia PDF Downloads 402
26913 Developing Structured Sizing Systems for Manufacturing Ready-Made Garments of Indian Females Using Decision Tree-Based Data Mining

Authors: Hina Kausher, Sangita Srivastava

Abstract:

In India, there is a lack of standard, systematic sizing approach for producing readymade garments. Garments manufacturing companies use their own created size tables by modifying international sizing charts of ready-made garments. The purpose of this study is to tabulate the anthropometric data which covers the variety of figure proportions in both height and girth. 3,000 data has been collected by an anthropometric survey undertaken over females between the ages of 16 to 80 years from some states of India to produce the sizing system suitable for clothing manufacture and retailing. This data is used for the statistical analysis of body measurements, the formulation of sizing systems and body measurements tables. Factor analysis technique is used to filter the control body dimensions from a large number of variables. Decision tree-based data mining is used to cluster the data. The standard and structured sizing system can facilitate pattern grading and garment production. Moreover, it can exceed buying ratios and upgrade size allocations to retail segments.

Keywords: anthropometric data, data mining, decision tree, garments manufacturing, sizing systems, ready-made garments

Procedia PDF Downloads 112
26912 Application of Latent Class Analysis and Self-Organizing Maps for the Prediction of Treatment Outcomes for Chronic Fatigue Syndrome

Authors: Ben Clapperton, Daniel Stahl, Kimberley Goldsmith, Trudie Chalder

Abstract:

Chronic fatigue syndrome (CFS) is a condition characterised by chronic disabling fatigue and other symptoms that currently can't be explained by any underlying medical condition. Although clinical trials support the effectiveness of cognitive behaviour therapy (CBT), the success rate for individual patients is modest. Patients vary in their response and little is known which factors predict or moderate treatment outcomes. The aim of the project is to develop a prediction model from baseline characteristics of patients, such as demographics, clinical and psychological variables, which may predict likely treatment outcome and provide guidance for clinical decision making and help clinicians to recommend the best treatment. The project is aimed at identifying subgroups of patients with similar baseline characteristics that are predictive of treatment effects using modern cluster analyses and data mining machine learning algorithms. The characteristics of these groups will then be used to inform the types of individuals who benefit from a specific treatment. In addition, results will provide a better understanding of for whom the treatment works. The suitability of different clustering methods to identify subgroups and their response to different treatments of CFS patients is compared.

Keywords: chronic fatigue syndrome, latent class analysis, prediction modelling, self-organizing maps

Procedia PDF Downloads 198
26911 Carbon Aerogel Spheres from Resorcinol/Phenol and Formaldehyde for CO₂ Adsorption

Authors: Jessica Carolina Hernandez Galeano, Juan Carlos Moreno Pirajan, Liliana Giraldo

Abstract:

Carbon gels are materials whose structure and porous texture can be designed and controlled on a nanoscale. Among their characteristics it is found their low density, large surface area and high degree of porosity. These materials are produced by a sol-gel polymerization of organic monomers using basic or acid catalysts, followed by drying and controlled carbonization. In this work, the synthesis and characterization of carbon aerogels from resorcinol, phenol and formaldehyde in ethanol is described. The aim of this study is obtaining different carbonaceous materials in the form of spheres using the Stöber method to perform a further evaluation of CO₂ adsorption of each material. In general, the synthesis consisted of a sol-gel polymerization process that generates a cluster (cross-linked organic monomers) from the precursors in the presence of NH₃ as a catalyst. This cluster was subjected to specific conditions of gelling and curing (30°C for 24 hours and 100°C for 24 hours, respectively) and CO₂ supercritical drying. Finally, the dry material was subjected to a process of carbonization or pyrolysis, in N₂ atmosphere at 350°C (1° C / min) for 2 h and 600°C (1°C / min) for 4 hours, to obtain porous solids that retain the structure initially desired. For this work, both the concentrations of the precursors and the proportion of ammonia in the medium where modify to describe the effect of the use of phenol and the amount of catalyst in the resulting material. Carbon aerogels were characterized by Scanning Electron Microscope (SEM), N₂ isotherms, infrared spectroscopy (IR) and X-ray Powder Diffraction (XRD) showing the obtention of carbon spheres in the nanometric scale with BET areas around 500 m2g-1.

Keywords: carbon aerogels, carbon spheres, CO₂ adsorption, Stöber method

Procedia PDF Downloads 113
26910 Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models

Authors: I. V. Pinto, M. R. Sooriyarachchi

Abstract:

It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 & order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 & order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model.

Keywords: goodness-of-fit test, marginal quasi-likelihood, multilevel modelling, penalized quasi-likelihood, power, quasi-likelihood, type-I error

Procedia PDF Downloads 118
26909 Applying Concept Mapping to Explore Temperature Abuse Factors in the Processes of Cold Chain Logistics Centers

Authors: Marco F. Benaglia, Mei H. Chen, Kune M. Tsai, Chia H. Hung

Abstract:

As societal and family structures, consumer dietary habits, and awareness about food safety and quality continue to evolve in most developed countries, the demand for refrigerated and frozen foods has been growing, and the issues related to their preservation have gained increasing attention. A well-established cold chain logistics system is essential to avoid any temperature abuse; therefore, assessing potential disruptions in the operational processes of cold chain logistics centers becomes pivotal. This study preliminarily employs HACCP to find disruption factors in cold chain logistics centers that may cause temperature abuse. Then, concept mapping is applied: selected experts engage in brainstorming sessions to identify any further factors. The panel consists of ten experts, including four from logistics and home delivery, two from retail distribution, one from the food industry, two from low-temperature logistics centers, and one from the freight industry. Disruptions include equipment-related aspects, human factors, management aspects, and process-related considerations. The areas of observation encompass freezer rooms, refrigerated storage areas, loading docks, sorting areas, and vehicle parking zones. The experts also categorize the disruption factors based on perceived similarities and build a similarity matrix. Each factor is evaluated for its impact, frequency, and investment importance. Next, multiple scale analysis, cluster analysis, and other methods are used to analyze these factors. Simultaneously, key disruption factors are identified based on their impact and frequency, and, subsequently, the factors that companies prioritize and are willing to invest in are determined by assessing investors’ risk aversion behavior. Finally, Cumulative Prospect Theory (CPT) is applied to verify the risk patterns. 66 disruption factors are found and categorized into six clusters: (1) "Inappropriate Use and Maintenance of Hardware and Software Facilities", (2) "Inadequate Management and Operational Negligence", (3) "Product Characteristics Affecting Quality and Inappropriate Packaging", (4) "Poor Control of Operation Timing and Missing Distribution Processing", (5) "Inadequate Planning for Peak Periods and Poor Process Planning", and (6) "Insufficient Cold Chain Awareness and Inadequate Training of Personnel". This study also identifies five critical factors in the operational processes of cold chain logistics centers: "Lack of Personnel’s Awareness Regarding Cold Chain Quality", "Personnel Not Following Standard Operating Procedures", "Personnel’s Operational Negligence", "Management’s Inadequacy", and "Lack of Personnel’s Knowledge About Cold Chain". The findings show that cold chain operators prioritize prevention and improvement efforts in the "Inappropriate Use and Maintenance of Hardware and Software Facilities" cluster, particularly focusing on the factors of "Temperature Setting Errors" and "Management’s Inadequacy". However, through the application of CPT theory, this study reveals that companies are not usually willing to invest in the improvement of factors related to the "Inappropriate Use and Maintenance of Hardware and Software Facilities" cluster due to its low occurrence likelihood, but they acknowledge the severity of the consequences if it does occur. Hence, the main implication is that the key disruption factors in cold chain logistics centers’ processes are associated with personnel issues; therefore, comprehensive training, periodic audits, and the establishment of reasonable incentives and penalties for both new employees and managers may significantly reduce disruption issues.

Keywords: concept mapping, cold chain, HACCP, cumulative prospect theory

Procedia PDF Downloads 34
26908 Development of an Improved Paradigm for the Tourism Sector in the Department of Huila, Colombia: A Theoretical and Empirical Approach

Authors: Laura N. Bolivar T.

Abstract:

The tourism importance for regional development is mainly highlighted by the collaborative, cooperating and competitive relationships of the involved agents. The fostering of associativity processes, in particular, the cluster approach emphasizes the beneficial outcomes from the concentration of enterprises, where innovation and entrepreneurship flourish and shape the dynamics for tourism empowerment. Considering the department of Huila, it is located in the south-west of Colombia and holds the biggest coffee production in the country, although it barely contributes to the national GDP. Hence, its economic development strategy is looking for more dynamism and Huila could be consolidated as a leading destination for cultural, ecological and heritage tourism, if at least the public policy making processes for the tourism management of La Tatacoa Desert, San Agustin Park and Bambuco’s National Festival, were implemented in a more efficient manner. In this order of ideas, this study attempts to address the potential restrictions and beneficial factors for the consolidation of the tourism sector of Huila-Colombia as a cluster and how could it impact its regional development. Therefore, a set of theoretical frameworks such as the Tourism Routes Approach, the Tourism Breeding Environment, the Community-based Tourism Method, among others, but also a collection of international experiences describing tourism clustering processes and most outstanding problematics, is analyzed to draw up learning points, structure of proceedings and success-driven factors to be contrasted with the local characteristics in Huila, as the region under study. This characterization involves primary and secondary information collection methods and comprises the South American and Colombian context together with the identification of involved actors and their roles, main interactions among them, major tourism products and their infrastructure, the visitors’ perspective on the situation and a recap of the related needs and benefits regarding the host community. Considering the umbrella concepts, the theoretical and the empirical approaches, and their comparison with the local specificities of the tourism sector in Huila, an array of shortcomings is analytically constructed and a series of guidelines are proposed as a way to overcome them and simultaneously, raise economic development and positively impact Huila’s well-being. This non-exhaustive bundle of guidelines is focused on fostering cooperating linkages in the actors’ network, dealing with Information and Communication Technologies’ innovations, reinforcing the supporting infrastructure, promoting the destinations considering the less known places as well, designing an information system enabling the tourism network to assess the situation based on reliable data, increasing competitiveness, developing participative public policy-making processes and empowering the host community about the touristic richness. According to this, cluster dynamics would drive the tourism sector to meet articulation and joint effort, then involved agents and local particularities would be adequately assisted to cope with the current changing environment of globalization and competition.

Keywords: innovative strategy, local development, network of tourism actors, tourism cluster

Procedia PDF Downloads 114
26907 Understanding the Influence of Cross-National Distances on Tourist Expenditure

Authors: Wei-Ting Hung

Abstract:

Inbound tourist expenditure might not only have influenced by individual tourist characteristics but may also be affected by nationality characteristics. The cross national distance effects on tourist consumption behavior should be incorporated in the analytical framework. Additionally, the often used factor analysis, cluster analysis and regression analysis overlook the hierarchical tourist consumption data structure and may lead to misleading results. The objectives of the present study were twofold. First, we propose a multilevel model that takes individual and cross-national differences into account under a hierarchical framework. Second, we further sought to determine the types of cross-national differences affecting tourist expenditure. Thus, this study incorporates the individual tourist effects and cross national distance effects simultaneously, uses the data of 2010 Annual Survey Report on Visitors’ Expenditure and Trends in Taiwan to investigate the determinants of inbound tourist expenditure. Multilevel analysis was used to investigate the influence of individual tourist effects and cross national distance effects on inbound tourist expenditure. The empirical results show that cross national distance plays a crucial role in tourist consumption behavior. Our findings also indicate age and income have positive influence on tourism expenditure., whereas education and gender do not have significant impact. Regarding macro-level factors, geographic and cultural differences exhibited significant positive relationships on tourism expenditure, while economic differences did not. Based on the above empirical results, it is suggested that tour operators should take tourists’ individual attributes, particularly their income and age, into consideration when arranging tours. In addition, nationality holds sway over tourists’ consumption behavior, of which geographic and cultural differences are the two major factors at play. The empirical results of this study serve as practical suggestions for tourism marketing strategies and policy implications for government policies.

Keywords: cross national distance, inbound tourist, multilevel analysis, tourist expenditure

Procedia PDF Downloads 329
26906 Non-Invasive Techniques of Analysis of Painting in Forensic Fields

Authors: Radka Sefcu, Vaclava Antuskova, Ivana Turkova

Abstract:

A growing market with modern artworks of a high price leads to the creation and selling of artwork counterfeits. Material analysis is an important part of the process of assessment of authenticity. Knowledge of materials and techniques used by original authors is also necessary. The contribution presents possibilities of non-invasive methods of structural analysis in research on paintings. It was proved that unambiguous identification of many art materials is feasible without sampling. The combination of Raman spectroscopy with FTIR-external reflection enabled the identification of pigments and binders on selected artworks of prominent Czech painters from the first half of the 20th century – Josef Čapek, Emil Filla, Václav Špála and Jan Zrzavý. Raman spectroscopy confirmed the presence of a wide range of white pigments - lead white, zinc white, titanium white, barium white and also Freeman's white as a special white pigment of painting. Good results were obtained for red, blue and most of the yellow areas. Identification of green pigments was often impossible due to strong fluorescence. Oil was confirmed as a binding medium on most of the analyzed artworks via FTIR - external reflection. Collected data present the valuable background for the determination of art materials characteristic for each painter (his palette) and its development over time. Obtained results will further serve as comparative material for the authentication of artworks. This work has been financially supported by the project of the Ministry of the Interior of the Czech Republic: The Development of a Strategic Cluster for Effective Instrumental Technological Methods of Forensic Authentication of Modern Artworks (VJ01010004).

Keywords: non-invasive analysis, Raman spectroscopy, FTIR-external reflection, forgeries

Procedia PDF Downloads 147