Search results for: gray zone
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1729

Search results for: gray zone

1459 The Structure of Southern Tunisian Atlas Deformation Front: Integrated Geological and Geophysical Interpretation

Authors: D. Manai, J. Alvarez-Marron, M. Inoubli

Abstract:

The southern Tunisian Atlas is a part of the wide Cenozoic intracontinental deformation that affected North Africa as a result of convergence between African and Eurasian plates. The Southern Tunisian Atlas Front (STAF) corresponds to the chotts area that covers several hundreds of Km² and represents a 60 km wide transition between the deformed Tunisian Atlas to the North and the undeformed Saharan platform to the South. It includes three morphostructural alignments, a fold and thrust range in the North, a wide depression in the middle and a monocline to horizontal zone to the south. Four cross-sections have been constructed across the chotts area to illustrate the structure of the Southern Tunisian Atlas Front based on integrated geological and geophysical data including geological maps, petroleum wells, and seismic data. The fold and thrust zone of the northern chotts is interpreted as related to a detachment level near the Triassic-Jurassic contact. The displacement of the basal thrust seems to die out progressively under the Fejej antiform and it is responsible to the south dipping of the southern chotts range. The restoration of the cross-sections indicates that the Southern Tunisian Atlas front is a weakly deformed wide zone developed during the Cenozoic inversion with a maximum calculated shortening in the order of 1000 m. The wide structure of this STAF has been influenced by a pre-existing large thickness of upper Jurassic-Aptian sediments related to the rifting episodes associated to the evolution of Tethys in the Maghreb. During Jurassic to Aptian period, the chotts area corresponded to a highly subsiding basin.

Keywords: Southern Tunisian Atlas Front, subsident sub- basin, wide deformation, balanced cross-sections.

Procedia PDF Downloads 112
1458 Seismic Analysis of Vertical Expansion Hybrid Structure by Response Spectrum Method Concern with Disaster Management and Solving the Problems of Urbanization

Authors: Gautam, Gurcharan Singh, Mandeep Kaur, Yogesh Aggarwal, Sanjeev Naval

Abstract:

The present ground reality scenario of suffering of humanity shows the evidence of failure to take wrong decisions to shape the civilization with Irresponsibilities in the history. A strong positive will of right responsibilities make the right civilization structure which affects itself and the whole world. Present suffering of humanity shows and reflect the failure of past decisions taken to shape the true culture with right social structure of society, due to unplanned system of Indian civilization and its rapid disaster of population make the failure to face all kind of problems which make the society sufferer. Our India is still suffering from disaster like earthquake, floods, droughts, tsunamis etc. and we face the uncountable disaster of deaths from the beginning of humanity at the present time. In this research paper our focus is to make a Disaster Resistance Structure having the solution of dense populated urban cities area by high vertical expansion HYBRID STRUCTURE. Our efforts are to analyse the Reinforced Concrete Hybrid Structure at different seismic zones, these concrete frames were analyzed using the response spectrum method to calculate and compare the different seismic displacement and drift. Seismic analysis by this method generally is based on dynamic analysis of building. Analysis results shows that the Reinforced Concrete Building at seismic Zone V having maximum peak story shear, base shear, drift and node displacement as compare to the analytical results of Reinforced Concrete Building at seismic Zone III and Zone IV. This analysis results indicating to focus on structural drawings strictly at construction site to make a HYBRID STRUCTURE. The study case is deal with the 10 story height of a vertical expansion Hybrid frame structure at different zones i.e. zone III, zone IV and zone V having the column 0.45x0.36mt and beam 0.6x0.36mt. with total height of 30mt, to make the structure more stable bracing techniques shell be applied like mage bracing and V shape bracing. If this kind of efforts or structure drawings are followed by the builders and contractors then we save the lives during earthquake disaster at Bhuj (Gujarat State, India) on 26th January, 2001 which resulted in more than 19,000 deaths. This kind of Disaster Resistance Structure having the capabilities to solve the problems of densely populated area of cities by the utilization of area in vertical expansion hybrid structure. We request to Government of India to make new plans and implementing it to save the lives from future disasters instead of unnecessary wants of development plans like Bullet Trains.

Keywords: history, irresponsibilities, unplanned social structure, humanity, hybrid structure, response spectrum analysis, DRIFT, and NODE displacement

Procedia PDF Downloads 173
1457 Brain Age Prediction Based on Brain Magnetic Resonance Imaging by 3D Convolutional Neural Network

Authors: Leila Keshavarz Afshar, Hedieh Sajedi

Abstract:

Estimation of biological brain age from MR images is a topic that has been much addressed in recent years due to the importance it attaches to early diagnosis of diseases such as Alzheimer's. In this paper, we use a 3D Convolutional Neural Network (CNN) to provide a method for estimating the biological age of the brain. The 3D-CNN model is trained by MRI data that has been normalized. In addition, to reduce computation while saving overall performance, some effectual slices are selected for age estimation. By this method, the biological age of individuals using selected normalized data was estimated with Mean Absolute Error (MAE) of 4.82 years.

Keywords: brain age estimation, biological age, 3D-CNN, deep learning, T1-weighted image, SPM, preprocessing, MRI, canny, gray matter

Procedia PDF Downloads 117
1456 Radionuclides Transport Phenomena in Vadose Zone

Authors: R. Testoni, R. Levizzari, M. De Salve

Abstract:

Radioactive waste management is fundamental to safeguard population and environment by radiological risks. Environmental assessment of a site, where nuclear activities are located, allows understanding the hydro geological system and the radionuclides transport in groundwater and subsoil. Use of dedicated software is the basis of transport phenomena investigation and for dynamic scenarios prediction; this permits to understand the evolution of accidental contamination events, but at the same time the potentiality of the software itself can be verified. The aim of this paper is to perform a numerical analysis by means of HYDRUS 1D code, so as to evaluate radionuclides transport in a nuclear site in Piedmont region (Italy). In particular, the behaviour in vadose zone was investigated. An iterative assessment process was performed for risk assessment of radioactive contamination. The analysis therein developed considers the following aspects: i) hydro geological site characterization; ii) individuation of the main intrinsic and external site factors influencing water flow and radionuclides transport phenomena; iii) software potential for radionuclides leakage simulation purposes.

Keywords: HYDRUS 1D, radionuclides transport phenomena, site characterization, radiation protection

Procedia PDF Downloads 377
1455 Effect of Cellulase Pretreatment for n-Hexane Extraction of Oil from Garden Cress Seeds

Authors: Boutemak Khalida, Dahmani Siham

Abstract:

Garden cress (Lepidium Sativum L.) belonging to the family Brassicaceae, is edible growing annual herb. Its various parts (roots, leaves and seeds) have been used to treat various human ailments. Its seed extracts have been screened for various biological activities like hypotensive, antimicrobial, bronchodilator, hypoglycaemic and antianemic. The aim of the present study is to optimize the process parameters (cellulase concentration and incubation time) of enzymatic pre-treatment of the garden cress seeds and to evaluate the effect of cellulase pre-treatment of the crushed seeds on the oil yield, physico-chemical properties and antibacterial activity and comparing to non-enzymatic method. The optimum parameters of cellulase pre-treatment were as follows: cellulase of 0,1% w/w and incubation time of 2h. After enzymatic pre-treatment, the oil was extracted by n-hexane for 1.5 h, the oil yield was 4,01% for cellulase pre-treatment as against 10,99% in the control sample. The decrease in yield might be caused a result of mucilage. Garden cress seeds are covered with a layer of mucilage which gels on contact with water. At the same time, the antibacterial activity was carried out using agar diffusion method against 4 food-borne pathogens (Escherichia coli, Salmonella typhi,Staphylococcus aureus, Bacillus subtilis). The results showed that bacterial strains are very sensitive to the oil with cellulase pre-treatment. Staphylococcus aureus is extremely sensitive with the largest zone of inhibition (40 mm), Escherichia coli and salmonella typhi had a very sensitive to the oil with a zone of inhibition (26 mm). Bacillus subtilizes is averagely sensitive which gave an inhibition of 16 mm. But it does not exhibit sensivity to the oil without enzymatic pre-treatment with a zone inhibition (< 8 mm). Enzymatic pre-treatment could be useful for antimicrobial activity of the oil, and hold a good potential for use in food and pharmaceutical industries.

Keywords: Lepidium sativum L., cellulase, enzymatic pretreatment, antibacterial activity.

Procedia PDF Downloads 430
1454 Multi-Particle Finite Element Modelling Simulation Based on Cohesive Zone Method of Cold Compaction Behavior of Laminar Al and NaCl Composite Powders

Authors: Yanbing Feng, Deqing Mei, Yancheng Wang, Zichen Chen

Abstract:

With the advantage of low volume density, high specific surface area, light weight and good permeability, porous aluminum material has the potential to be used in automotive, railway, chemistry and construction industries, etc. A layered powder sintering and dissolution method were developed to fabricate the porous surface Al structure with high efficiency. However, the densification mechanism during the cold compaction of laminar composite powders is still unclear. In this study, multi particle finite element modelling (MPFEM) based on the cohesive zone method (CZM) is used to simulate the cold compaction behavior of laminar Al and NaCl composite powders. To obtain its densification mechanism, the macro and micro properties of final compacts are characterized and analyzed. The robustness and accuracy of the numerical model is firstly verified by experimental results and data fitting. The results indicate that the CZM-based multi particle FEM is an effective way to simulate the compaction of the laminar powders and the fracture process of the NaCl powders. In the compaction of the laminar powders, the void is mainly filled by the particle rearrangement, plastic deformation of Al powders and brittle fracture of NaCl powders. Large stress is mainly concentrated within the NaCl powers and the contact force network is formed. The Al powder near the NaCl powder or the mold has larger stress distribution on its contact surface. Therefore, the densification process of cold compaction of laminar Al and NaCl composite powders is successfully analyzed by the CZM-based multi particle FEM.

Keywords: cold compaction, cohesive zone, multi-particle FEM, numerical modeling, powder forming

Procedia PDF Downloads 120
1453 Characteristics of Pyroclastic and Igenous Rocks Mineralogy of Lahat Regency, South Sumatra

Authors: Ridho Widyantama Putra, Endang Wiwik Dyah Hastuti

Abstract:

The study area is located in Lahat Regency, South Sumatra and is part of a 500 m – 2000 m elevated perbukitan barisan zone controlled by the main fault of Sumatra (Semangko Fault), administratively located on S4.08197 - E103.01403 and S4.16786 - E103.07700, the product of Semangko Fault in the form of normal fault flight trending north-southeast, composed of lithologic is a pyroclastic rock, volcanic rock and plutonic rock intrusion. On the Manna and Enggano sheets of volcanic quartenary products are located along perbukitan barisan zone. Petrology types of pyroclastic rocks encountered in the form of welded tuff, tuff lapilli, agglomerate, pyroclastic sandstone, pyroclastic claystone, and lava. Some pyroclastic material containing sulfide minerals (pyrite), the type of sedimentation flow with different grain size from ash to lapilli. The present of tuff lapilli covers almost 50% of the total research area, through observation petrography encountered minerals in the form of glass, quartz, palgioklas, and biotite. Lava in this area has been altered characterized by the presence of minerals such as chlorite and secondary biotite, this change is caused by the structure that develops in the hilly zone and is proved by the presence of secondary structures in the form of stocky and normal faults as well as the primary structure of columnar joint, From medial facies to distal facies, the division of facies is divided based on geomorphological observations and dominant types of lithology.

Keywords: tuff lapili, pyroclastic, mineral, petrography, volcanic, lava

Procedia PDF Downloads 136
1452 Investigating the Significance of Ground Covers and Partial Root Zone Drying Irrigation for Water Conservation Weed Suppression and Quality Traits of Wheat

Authors: Muhammad Aown Sammar Raza, Salman Ahmad, Muhammad Farrukh Saleem, Muhammad Saqlain Zaheer, Rashid Iqbal, Imran Haider, Muhammad Usman Aslam, Muhammad Adnan Nazar

Abstract:

One of the main negative effects of climate change is the increasing scarcity of water worldwide, especially for irrigation purpose. In order to ensure food security with less available water, there is a need to adopt easy and economic techniques. Two of the effective techniques are; use of ground covers and partial root zone drying (PRD). A field experiment was arranged to find out the most suitable mulch for PRD irrigation system in wheat. The experiment was comprised of two irrigation methods (I0 = irrigation on both sides of roots and I1= irrigation to only one side of the root as alternate irrigation) and four ground covers (M0= open ground without any cover, M1= black plastic cover, M2= wheat straw cover and M4= cotton sticks cover). More plant height, spike length, number of spikelets and number of grains were found in full irrigation treatment. While water use efficiency and grain nutrient (NPK) contents were more in PRD irrigation. All soil covers suppress the weeds and significantly influenced the yield attributes, final yield as well as the grain nutrient contents. However black plastic cover performed the best. It was concluded that joint use of both techniques was more effective for water conservation and increasing grain yield than their sole application and combination of PRD with black plastic mulch performed the best than other ground covers combination used in the experiment.

Keywords: ground covers, partial root zone drying, grain yield, quality traits, WUE, weed control efficiency

Procedia PDF Downloads 212
1451 Effects of Food Habits on Road Accidents Due to Micro-Sleepiness and Analysis of Attitudes to Develop a Food Product as a Preventive Measure

Authors: Rumesh Liyanage, S. B. Nawaratne, K. K. D. S. Ranaweera, Indira Wickramasinghe, K. G. S. C. Katukurunda

Abstract:

Study it was attempted to identify an effect of food habits and publics’ attitudes on micro-sleepiness and preventive measures to develop a food product to combat. Statistical data pertaining to road accidents were collected from, Sri Lanka Police Traffic Division and a pre-tested questionnaire was used to collect data from 250 respondents. They were selected representing drivers (especially highway drivers), private and public sector workers (shift based) and cramming students (university and school). Questionnaires were directed to fill independently and personally and collected data were analyzed statistically. Results revealed that 76.84, 96.39 and 80.93% out of total respondents consumed rice for all three meals which lead to ingesting higher glycemic meals. Taking two hyper glycemic meals before 14.00h was identified as a cause of micro-sleepiness within these respondents. Peak level of road accidents were observed at 14.00 - 20.00h (38.2%)and intensity of micro-sleepiness falls at the same time period (37.36%) while 14.00 to 16.00h was the peak time, 16.00 to 18.00h was the least; again 18.00 to 20.00h it reappears slightly. Even though respondents of the survey expressed that peak hours of micro- sleepiness is 14.00-16.00h, according to police reports, peak hours fall in between 18.00-20.00h. Out of the interviewees, 69.27% strongly wanted to avoid micro-sleepiness and intend to spend LKR 10-20 on a commercial product to combat micro sleepiness. As age-old practices to suppress micro-sleepiness are time taken, modern day respondents (51.64%) like to have a quick solution through a drink. Therefore, food habits of morning and noon may cause for micro- sleepiness while dinner may cause for both, natural and micro-sleepiness due to the heavy glycemic load of food. According to the study micro-sleepiness, can be categorized into three zones such as low-risk zone (08.00-10.00h and 18.00-20.00h), manageable zone (10.00-12.00h), and high- risk zone (14.00-16.00h).

Keywords: food habits, glycemic load, micro-sleepiness, road accidents

Procedia PDF Downloads 516
1450 Physiological and Biochemical Based Analysis to Assess the Efficacy of Mulch under Partial Root Zone Drying in Wheat

Authors: Salman Ahmad, Muhammad Aown Sammar Raza, Muhammad Farrukh Saleem, Rashid Iqbal, Muhammad Saqlain Zaheer, Muhammad Usman Aslam, Imran Haider, Muhammad Adnan Nazar, Muhammad Ali

Abstract:

Among the various abiotic stresses, drought stress is one of the most challenging for field crops. Wheat is one of the major staple food of the world, which is highly affected by water deficit stress in the current scenario of climate change. In order to ensure food security by depleting water resources, there is an urgent need to adopt technologies which result in sufficient crop yield with less water consumption. Mulching and partial rootzone drying (PRD) are two important management techniques used for water conservation and to mitigate the negative impacts of drought. The experiment was conducted to screen out the best-suited mulch for wheat under PRD system. Two water application techniques (I1= full irrigation I2= PRD irrigation) and four mulch treatments (M0= un-mulched, M1= black plastic mulch, M2= wheat straw mulch and M4= cotton sticks mulch) were conducted in completely randomized design with four replications. The treatment, black plastic mulch was performed the best than other mulch treatments. For irrigation levels, higher values of growth, physiological and water-related parameters were recorded in control treatment while, quality traits and enzymatic activities were higher under partial root zone drying. The current study concluded that adverse effects of drought on wheat can be significantly mitigated by using mulches but black plastic mulch was best suited for partial rootzone drying irrigation system in wheat.

Keywords: antioxidants, leaf water relations, Mulches, osmolytes, partial root zone drying, photosynthesis

Procedia PDF Downloads 230
1449 Using Traffic Micro-Simulation to Assess the Benefits of Accelerated Pavement Construction for Reducing Traffic Emissions

Authors: Sudipta Ghorai, Ossama Salem

Abstract:

Pavement maintenance, repair, and rehabilitation (MRR) processes may have considerable environmental impacts due to traffic disruptions associated with work zones. The simulation models in use to predict the emission of work zones were mostly static emission factor models (SEFD). SEFD calculates emissions based on average operation conditions e.g. average speed and type of vehicles. Although these models produce accurate results for large-scale planning studies, they are not suitable for analyzing driving conditions at the micro level such as acceleration, deceleration, idling, cruising, and queuing in a work zone. The purpose of this study is to prepare a comprehensive work zone environmental assessment (WEA) framework to calculate the emissions caused due to disrupted traffic; by integrating traffic microsimulation tools with emission models. This will help highway officials to assess the benefits of accelerated construction and opt for the most suitable TMP not only economically but also from an environmental point of view.

Keywords: accelerated construction, pavement MRR, traffic microsimulation, congestion, emissions

Procedia PDF Downloads 426
1448 Development of Functional Cosmetic Materials from Demilitarized Zone Habiting Plants

Authors: Younmin Shin, Jin Kyu Kim, Mirim Jin, Jeong June Choi

Abstract:

Demilitarized Zone (DMZ) is a peace region located between South and North Korea border to avoid accidental armed conflict. Because human accessing to the area was forced to be prohibited for more than 60 years, DMZ is one of the cleanest land keeping wild lives as nature itself in South Korea. In this study, we evaluated the biological efficacies of plants (SS, PC, and AR) inhabiting in DMZ for the development of functional cosmetics. First, we tested the cytotoxicity of plant extracts in keratinocyte and melanocyte, which are the major cell components of skin. By 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with the cell lines, we determined the safety concentrations of the extracts for the efficacy tests. Next, we assessed the anti-wrinkle cosmetic function of SS by demonstrating that SS treatment decreased the expression of Matrix metalloproteinase-1 (MMP-1) in UV-irradiated keratinocytes via real-time PCR. The suppressive effect of SS was greatly potentiated by combination with other DMZ-inhabiting plants, PC and AR. The expression of tyrosinase, which is one the main enzyme that producing melanin in melanocyte, was also down-regulated by the DMZ-inhabiting SS extract. Wound healing activity was also investigated by in vitro test with HaCat cell line, a human fibroblast cell line. All the natural materials extracted form DMZ habiting plants accelerated the recovery of the cells. These results suggested that DMZ is a treasure island of functional plants and DMZ-inhabiting natural products are warranted to develop functional cosmetic materials. This study was carried out with the support of R&D Program for Forest Science Technology (Project No. 2017027A00-1819-BA01) provided by Korea Forest Service (Korea Forestry Promotion Institute).

Keywords: anti-wrinkle, Demilitarized Zone, functional cosmetics, whitening

Procedia PDF Downloads 119
1447 A Homogenized Mechanical Model of Carbon Nanotubes/Polymer Composite with Interface Debonding

Authors: Wenya Shu, Ilinca Stanciulescu

Abstract:

Carbon nanotubes (CNTs) possess attractive properties, such as high stiffness and strength, and high thermal and electrical conductivities, making them promising filler in multifunctional nanocomposites. Although CNTs can be efficient reinforcements, the expected level of mechanical performance of CNT-polymers is not often reached in practice due to the poor mechanical behavior of the CNT-polymer interfaces. It is believed that the interactions of CNT and polymer mainly result from the Van der Waals force. The interface debonding is a fracture and delamination phenomenon. Thus, the cohesive zone modeling (CZM) is deemed to give good capture of the interface behavior. The detailed, cohesive zone modeling provides an option to consider the CNT-matrix interactions, but brings difficulties in mesh generation and also leads to high computational costs. Homogenized models that smear the fibers in the ground matrix and treat the material as homogeneous are studied in many researches to simplify simulations. But based on the perfect interface assumption, the traditional homogenized model obtained by mixing rules severely overestimates the stiffness of the composite, even comparing with the result of the CZM with artificially very strong interface. A mechanical model that can take into account the interface debonding and achieve comparable accuracy to the CZM is thus essential. The present study first investigates the CNT-matrix interactions by employing cohesive zone modeling. Three different coupled CZM laws, i.e., bilinear, exponential and polynomial, are considered. These studies indicate that the shapes of the CZM constitutive laws chosen do not influence significantly the simulations of interface debonding. Assuming a bilinear traction-separation relationship, the debonding process of single CNT in the matrix is divided into three phases and described by differential equations. The analytical solutions corresponding to these phases are derived. A homogenized model is then developed by introducing a parameter characterizing interface sliding into the mixing theory. The proposed mechanical model is implemented in FEAP8.5 as a user material. The accuracy and limitations of the model are discussed through several numerical examples. The CZM simulations in this study reveal important factors in the modeling of CNT-matrix interactions. The analytical solutions and proposed homogenized model provide alternative methods to efficiently investigate the mechanical behaviors of CNT/polymer composites.

Keywords: carbon nanotube, cohesive zone modeling, homogenized model, interface debonding

Procedia PDF Downloads 98
1446 Synthesis of Brominated Pyrazoline Derived from Chalcone and Its Antimicrobial Activity

Authors: Annisa I. Reza, Jasril Karim

Abstract:

Despite the availability of antimicrobial agents in the market, the urge to study and find other chemical compounds with the better potential of replacing them still tempting the scientists. This experiment is in the aim to explore a novel brominated pyrazoline ring which was made from intermediate chalcone as a candidate to answer the challenge. Using green chemistry approach by microwave irradiation from domestic oven, both known chalcone and 5-(2-bromophenyl)-3-(naphthalen-1-yl)-4,5-dihydro-1H-pyrazole were successfully synthesized. Pyrazoline’s structure was confirmed based on UV, IR, ¹H-NMR, ¹³C-NMR and MS and together with its intermediate were examined against some microorganisms (Bacillus subtilis, Escherichia coli, and Candida albicans) under agar diffusion method. The results collected during experiment revealed that both tested compounds showed weak activity on B.subtilis which was proven by a zone of inhibitions, while there was no zone of inhibitions observed in E. coli and C. albicans. This is suggested because of the bulky structure around pyrazoline could not provide the main ring to interact with microbial’s cell wall. The study shows that the proposed compound had the low capability as a promising antimicrobial agent, yet it still enriches the information about pyrazoline ring.

Keywords: antimicrobial, chalcone, microwave irradiation, pyrazoline

Procedia PDF Downloads 122
1445 Studying the Spatial Variations of Stable Isotopes (18O and 2H) in Precipitation and Groundwater Resources in Zagros Region

Authors: Mojtaba Heydarizad

Abstract:

Zagros mountain range is a very important precipitation zone in Iran as it receives high average annual precipitation compared to other parts of this country. Although this region is important precipitation zone in semi-arid an arid country like Iran, accurate method to study water resources in this region has not been applied yet. In this study, stable isotope δ18O content of precipitation and groundwater resources showed spatial variations across Zagros region as southern parts of Zagros region showed more enriched isotope values compared to the northern parts. This is normal as southern Zagros region is much drier with higher air temperature and evaporation compared to northern parts. In addition, the spatial variations of stable isotope δ18O in precipitation in Zagros region have been simulated by the models which consider the altitude and latitude variations as input to simulate δ18O in precipitation.

Keywords: groundwater, precipitation, simulation, stable isotopes, Zagros region

Procedia PDF Downloads 110
1444 Effect of Single Overload Ratio and Stress Ratio on Fatigue Crack Growth

Authors: M. Benachour, N. Benachour, M. Benguediab

Abstract:

In this investigation, variation of cyclic loading effect on fatigue crack growth is studied. This study is performed on 2024 T351 and 7050-T74 aluminum alloys, used in aeronautical structures. The propagation model used in this study is NASGRO model. In constant amplitude loading (CA), the effect of stress ratio has been investigated. Fatigue life and fatigue crack growth rate were affected by this factor. Results showed an increasing in fatigue crack growth rates (FCGRs) with increasing stress ratio. Variable amplitude loading (VAL) can take many forms i.e with a single overload, overload band etc. The shape of these loads affects strongly the fracture life and FCGRs. The application of a single overload (ORL) decrease the FCGR and increase the delay crack length caused by the formation of a larger plastic zone compared to the plastic zone due without VAL. The fatigue behavior of the both material under single overload has been compared.

Keywords: fatigue crack growth, overload ratio, stress ratio, generalized willenborg model, retardation, al-alloys

Procedia PDF Downloads 338
1443 Antibacterial Activity of Ethanolic and Aqueous Extracts of Punica Granatum L. Bark

Authors: H. Kadi, A. Moussaoui, A. Medah, N. Benayahia, Nahal Bouderba

Abstract:

For thousands of years, Punica granatum L. has been used in traditional medicine all over the world and predate the introduction of antibacterial drugs. The aim of the present study was to investigate the antibacterial activity of aqueous and ethanolic extracts of Punica granatum L. bark obtained by decoction and maceration. The different extracts of Punica granatum L. (Lythraceae) bark have been tested for antibacterial activity against Gram-positive bacteria (Staphylococcus aureus, Bacillus stearothermophilus) and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) by disc diffusion method. The ethanolic macerate extract showed the strong in vitro antibacterial activity against Pseudomonas aeruginosa with zone inhibition of 24.4 mm. However, the results tests by disc diffusion method revealed the effectiveness of ethanolic decoctate against Gram-positive bacteria (Staphylococcus aureus and Bacillus stearothermophilus) with diameter zone of inhibition varying with 21.1mm and 23.75 mm respectively.

Keywords: Punica granatum L. bark, antibacterial activity, maceration, decoction

Procedia PDF Downloads 423
1442 Wear Progress and -Mechanisms in Torpedo Ladles in Steel Industry

Authors: Mattahias Maj, Fabio Tatzgern, Karl Adam, Damir Kahrimanovic, Markus Varga

Abstract:

Torpedo ladles are necessary transport carriages in steel production to move the molten crude iron from the blast furnace to the steel refining plant. This requires the ladles to be high temperature resistant and insulate well to preserve the temperature and hold the risk of solidification at bay. Therefore, the involved refractories lining the inside of the torpedo ladles are chosen mostly according to their thermal properties, although wear of the materials by the liquid iron is also of major importance. In this work, we combined investigations of the thermal behaviour with wear studies of the lining over the whole lifetime of a torpedo ladle. Additional numerical simulations enabled a detailed model of the mechanical loads and temperature propagation at the various stations (heating, filling, emptying, cooling). The core of the investigation were detailed 3D measurements of the ladle’s cavity and thereby quantitative information of the wear progress at different time intervals during the lifetime of the ladles. The measurements allowed for a separation of different wear zones according to severity, namely the “splash zone” where the melt directly hits the ladle, the “melt zone” where during transport always liquid melt is present, and the “slag zone”, where the slag floats on the melt causing the most severe wear loss. Numerical simulations of the filling process were taken to calculate stress levels and temperature gradients, which led to the different onset of wear on those zones. Thermal imaging and punctual temperature measurements allowed for a study of the thermal consequences entailed by the wear onset. Additional “classical” damage analysis of the worn refractories complete the investigation. Thereby the wear mechanisms leading to the substantial wear loss were disclosed.

Keywords: high temperature, tribology, liquid-solid interaction, refractories, thermography

Procedia PDF Downloads 195
1441 Antimicrobial Activity of Endophytes on some Selected Clinical Isolates (Escherichia coli, Staphylococcus aureus, Salmonella Typhi, Bacillus subtilis, Klebsiella pneumoniae, Aspergillus fumigatus, Pseudomomonas aeruginosa and Penicillium chryysogenum)

Authors: Dawang D. N., Dasat G. S., Nden D.

Abstract:

Endophyte means “in the plant” are referred to all microorganisms that live in the internal tissues of stems, petioles, roots and leaves of plants causing no apparent symptoms of disease. Secondary metabolites from fungal endophytes have an enormous potential applications as antioxidant, antimicrobial, anticancer and antidiabeties. Thus, this study aimed to determine the antimicrobial activity of these metabolites against some clinical isolates. The fungi were subjected to fermentation medium and the metabolites were extracted using ethyl acetate. The fungal extracts showed both antibacterial and antifungal activities with maximum zone of inhibition diameter of 10.5mm against Aspergillus fumigatus. Staphylococcus aureus was inhibited by all the five crude extracts with inhibition zone diameter of 4mm. Endophytic fungal crude extract2 (EDF2) exhibited antimicrobial effect against all the test organisms used, EDF4 was active against all test organisms except on Penicillium chrysogenum and Klebsiella pneumoniae. Antibacterial standard of ciprofloxacin which is 15mm is comparable to the effect of endophytic extract of EDF1 and EDF2. Klebsiella pneumoniae was resistant to EDF4 and EDF5. EDF3 showed a wide range of antimicrobial activity against all the test organisms used. The highest inhibition zone diameter of 10.50mm recorded against Aspergillus fumigatus is comparable to antifungal standard of fluconazole (15.5mm). The result of this study suggests that endophytic fungi associated with the roots of Irish potato could be a promising source of novel bioactive compounds of pharmaceutical and industrial importance.

Keywords: endophyte, fungal extract, antimicrobial, potato

Procedia PDF Downloads 77
1440 Numerical Study of Blackness Factor Effect on Dark Solitons

Authors: Khelil Khadidja

Abstract:

In this paper, blackness of dark solitons is considered. The exact combination between nonlinearity and dispersion is responsible of solitons stability. Dark solitons get born when dispersion is abnormal and balanced by nonlinearity, at the opposite of brillant solitons which is born by normal dispersion and nonlinearity together. Thanks to their stability, dark solitons are suitable for transmission by optical fibers. Dark solitons which are a solution of Nonlinear Schrodinger equation are simulated with Matlab to discuss the influence of coefficient of blackness. Results show that there is a direct proportion between the coefficient of blackness and the intensity of dark soliton. Those gray solitons are stable and convenient for transmission.

Keywords: abnormal dispersion, nonlinearity, optical fiber, soliton

Procedia PDF Downloads 172
1439 Bi-Component Particle Segregation Studies in a Spiral Concentrator Using Experimental and CFD Techniques

Authors: Prudhvinath Reddy Ankireddy, Narasimha Mangadoddy

Abstract:

Spiral concentrators are commonly used in various industries, including mineral and coal processing, to efficiently separate materials based on their density and size. In these concentrators, a mixture of solid particles and fluid (usually water) is introduced as feed at the top of a spiral channel. As the mixture flows down the spiral, centrifugal and gravitational forces act on the particles, causing them to stratify based on their density and size. Spiral flows exhibit complex fluid dynamics, and interactions involve multiple phases and components in the process. Understanding the behavior of these phases within the spiral concentrator is crucial for achieving efficient separation. An experimental bi-component particle interaction study is conducted in this work utilizing magnetite (heavier density) and silica (lighter density) with different proportions processed in the spiral concentrator. The observation separation reveals that denser particles accumulate towards the inner region of the spiral trough, while a significant concentration of lighter particles are found close to the outer edge. The 5th turn of the spiral trough is partitioned into five zones to achieve a comprehensive distribution analysis of bicomponent particle segregation. Samples are then gathered from these individual streams using an in-house sample collector, and subsequent analysis is conducted to assess component segregation. Along the trough, there was a decline in the concentration of coarser particles, accompanied by an increase in the concentration of lighter particles. The segregation pattern indicates that the heavier coarse component accumulates in the inner zone, whereas the lighter fine component collects in the outer zone. The middle zone primarily consists of heavier fine particles and lighter coarse particles. The zone-wise results reveal that there is a significant fraction of segregation occurs in inner and middle zones. Finer magnetite and silica particles predominantly accumulate in outer zones with the smallest fraction of segregation. Additionally, numerical simulations are also carried out using the computational fluid dynamics (CFD) model based on the volume of fluid (VOF) approach incorporating the RSM turbulence model. The discrete phase model (DPM) is employed for particle tracking, thereby understanding the particle segregation of magnetite and silica along the spiral trough.

Keywords: spiral concentrator, bi-component particle segregation, computational fluid dynamics, discrete phase model

Procedia PDF Downloads 37
1438 Facies Analysis and Depositional Environment of the Late Carboniferous (Stephanian) Souss Basin, Morocco

Authors: Abouchouaib Belahmira, Joerg W. Schneider, Hafid Saber, Sara Akboub

Abstract:

The lithofacies analyzed herein were reported from the interbedded fluvial and lacustrine deposits of the Oued Issene and El Menizla formations. These formations are part of the sedimentary fill of the Carboniferous (Stephanian) submontaneous Souss basin. The latter is situated in the western High Atlas Mountains, south-central Morocco, about 50km east of Agadir. The Souss basin started as a single basin but was separated into sub-basins called Ida Ou Zal and Ida Ou Ziki by sinistral displacement along the west branch of the Tizi N'Test Fault during the end of the Mauritanid phase of the Variscan orogeny in Morocco, after the early Stephanian (Kasimovian) and before the late middle Permian (Capitanian). The studied succession is a monotonous finning-upward sequence of 1800 m thick. It consists of fine-grained sandstone, finely bedded siltstone and thinly laminated claystone, and black shale. Herein we provide a detailed characterization of lithofacies of the upper El Menizla and Oued Issène formations, with a focus on the prevailing overbank to flood plain fine-grained lithofacies. The studied facies are capping the Stephanian alluvial fan basal clast-supported conglomerates that are intercalated bedded coarse-grained sandstones of Ikhourba Formation in the Ou Zal subbasin and Tajgaline Formation in the Ida Ou Ziki subbasin, respectively. Within the fluvial elements, only two main facies have been observed. It comprises channel-fill and channel-bar deposits, mostly occur as lenticular –shape sand bodies or sheet-like sand greenish to gray fine-to medium (Fm), massive internally structureless, or very locally exhibits a medium to large scale trough-cross bedding medium to coarse sandstone (St), observable in relatively thicker bed. These facies are laterally extensive, with a thickness varying from a few to several meters. Finer-grained sediments such as mud can be present as drapes over bedforms. Whilst the fluvial association FA1, the overbank elements are represented by a relatively wide range of 5 facies. This exhibit mostly a cm scale horizontally bedded greenish fine- to medium sand and silt, and mm scale fossiliferous thinly laminated dark gray- black Corganic-rich clays to siltstone associated with black shale. Thus, FA2 includes flood plain fines (Fh, R) associated with the paleosols and back swamp coaly clay facies (C). The floodplain lake element comprises only laminated organic-rich dark gray facies of claystone, black shale, and graded siltstone. Bedsets are dm to several meters thick (typically < 1 m thick). They are intercalated between several m-thick fluvial sandstone, extend over a few meters, and are poorly bioturbated. The lacustrine facies described in this study have been divided into two sub-facies (Fl, B) based on field observations that indicate differing environmental conditions of formation. Thus, the thorough analysis of the lithofacies of the Souss basin units allows us to reconstruct the original environment that was interpreted as a typical fluvial-dominated braided to anastomosing wide distributary channel system and surrounding deep to shallow freshwater floodplain lakes and back swamps.

Keywords: Souss, carboniferous, facies, depositional setting

Procedia PDF Downloads 62
1437 Resilience of the American Agriculture Sector

Authors: Dipak Subedi, Anil Giri, Christine Whitt, Tia McDonald

Abstract:

This study aims to understand the impact of the pandemic on the overall economic well-being of the agricultural sector of the United States. The two key metrics used to examine the economic well-being are the bankruptcy rate of the U.S. farm operations and the operating profit margin. One of the primary reasons for farm operations (in the U.S.) to file for bankruptcy is continuous negative profit or a significant decrease in profit. The pandemic caused significant supply and demand shocks in the domestic market. Furthermore, the ongoing trade disruptions, especially with China, also impacted the prices of agricultural commodities. The significantly reduced demand for ethanol and closure of meat processing plants affected both livestock and crop producers. This study uses data from courts to examine the bankruptcy rate over time of U.S. farm operations. Preliminary results suggest there wasn’t an increase in farm operations filing for bankruptcy in 2020. This was most likely because of record high Government payments to producers in 2020. The Federal Government made direct payments of more than $45 billion in 2020. One commonly used economic metric to measure farm profitability is the operating profit margin (OPM). Operating profit margin measures profitability as a share of the total value of production and government payments. The Economic Research Service of the United States Department of Agriculture defines a farm operation to be in a) a high-risk zone if the OPM is less than 10 percent and b) a low-risk zone if the OPM is higher than 25 percent. For this study, OPM was calculated for small, medium, and large-scale farm operations using the data from the Agriculture Resource Management Survey (OPM). Results show that except for small family farms, the share of farms in high-risk zone decreased in 2020 compared to the most recent non-pandemic year, 2019. This was most likely due to higher commodity prices at the end of 2020 and record-high government payments. Further investigation suggests a lower share of smaller farm operations receiving lower average government payments resulting in a large share (over 70 percent) being in the critical zone. This study should be of interest to multiple stakeholders, including policymakers across the globe, as it shows the resilience of the U.S. agricultural system as well as (some) impact of government payments.

Keywords: U.S. farm sector, COVID-19, operating profit margin, farm bankruptcy, ag finance, government payments to the farm sector

Procedia PDF Downloads 64
1436 Research of Possibilities to Influence the Metal Cross-Section Deformation during Cold Rolling with the Help of Local Deformation Zone Creation

Authors: A. Pesin, D. Pustovoytov, A. Kolesnik, M. Sverdlik

Abstract:

Rolling disturbances often arise which might lead to defects such as nonflatness, warpage, corrugation, etc. Numerous methods of compensation for such disturbances are well known. However, most of them preserve the initial form of transverse flow of the strip, such as convex, concave or asymmetric (for example, sphenoid). Sometimes, the form inherited (especially asymmetric) is undesirable. Technical solutions have been developed which include providing conditions for transverse metal flow in deformation zone. It should be noted that greater reduction is followed by transverse flow increase, while less reduction causes a corresponding decrease in metal flow for differently deformed metal lengths to remain approximately the same and in order to avoid the defects mentioned above. One of the solutions suggests sequential strip deforming from rectangular cross-section profile with periodical rectangular grooves back into rectangular profile again. The work was carried out in DEFORM 3D program complex. Experimental rolling was performed on laboratory mill 150. Comparison of experimental and theoretical results demonstrated good correlation.

Keywords: FEM, cross-section deformation, mechanical engineering, applied mechanics

Procedia PDF Downloads 323
1435 Biological Studies on Producing Samoli Bread Supplement with Irradiated Sunflower Flour by Gamma Rays

Authors: Amal. N. Al-Kuraieef

Abstract:

Smoli bread was made by supplementation sunflower flour which was prepared from sunflower (Dahr-EL-Haea) gray after hilling and milling, flour was irradiated by two doses (5 and 10 kGy). After that, the ratios of irradiated sunflower flour were 5 and 10%. All samples of samoli bread were examined for organoleptic and biological evaluation. Biological assay (PER, NPU, FE, DC and BV) was carried out on rats fed 5 and 10% irradiated and non-irradiated sunflower Samoli bread. Results obtained showed that, total lipids, cholesterol and triglycerides were reduced comparable, to that of casein. Also, figures of the biological evaluations were higher than those of the control samoli bread and improved its nutritive values.

Keywords: gamma rays, sunflower, samoli bread, cholesterol, lipids, triglycerides

Procedia PDF Downloads 130
1434 The Effect of Shading on Cooling Tower Performance

Authors: Eitidal Albassam

Abstract:

Cooling towers (CTs) in arid zone countries, used for heat rejection in water-cooled (WC) systems, consume a large quantity of water. Universally, water conservation is an issue because of the scarcity of fresh water and natural resources. Therefore, many studies have aimed to conserve fresh water and limit the water wasted. Nonetheless, all these methods are not related to improving the weather conditions around the entering air to CT. In Kuwait and other arid-zone countries, the dry bulb temperature (DBT) during the summer season is significantly greater than the incoming hot water temperature, and the air undergoes sensible cooling. This high DBT leads to extra heat transfer from air to water, demanding high water vaporization to achieve the required cooling of water. Thus, any reduction in ambient air temperature around the CT will minimize water consumption. This paper aims to discuss theoretically the effect of reducing the DBT around the cooling tower when considering the sun-shading barrier. The theoretical simulation model results show that if the DBT reduces by 2.8 °C approximately, the percentage of water evaporation savings in gallon per minute (GPM) starts from 6.48% when DBT reaches 51.67 °C till 9.80% for 37.78 °C. Moreover, the performance of the cooling tower will be improved when considering the appropriate shading barriers, which will not affect the existing wet-bulb temperature.

Keywords: dry-bulb temperature, entering air, water consumption, water vaporization

Procedia PDF Downloads 113
1433 A Study on Mesh Size Dependency on Bed Expansion Zone in a Three-Phase Fluidized Bed Reactor

Authors: Liliana Patricia Olivo Arias

Abstract:

The present study focused on the hydrodynamic study in a three-phase fluidized bed reactor and the influence of important aspects, such as volume fractions (Hold up), velocity magnitude of gas, liquid and solid phases (hydrogen, gasoil, and gamma alumina), interactions of phases, through of drag models with the k-epsilon turbulence model. For this purpose was employed a Euler-Euler model and also considers the system is constituted of three phases, gaseous, liquid and solid, characterized by its physical and thermal properties, the transport processes that are developed within the transient regime. The proposed model of the three-phase fluidized bed reactor was solved numerically using the ANSYS-Fluent software with different mesh refinements on bed expansion zone in order to observe the influence of the hydrodynamic parameters and convergence criteria. With this model and the numerical simulations obtained for its resolution, it was possible to predict the results of the volume fractions (Hold ups) and the velocity magnitude for an unsteady system from the initial and boundaries conditions were established.

Keywords: three-phase fluidized bed system, CFD simulation, mesh dependency study, hydrodynamic study

Procedia PDF Downloads 140
1432 Studies on Microstructure and Mechanical Properties of Simulated Heat Affected Zone in a Micro Alloyed Steel

Authors: Sanjeev Kumar, S. K. Nath

Abstract:

Proper selection of welding parameters for getting excellent weld is a challenge. HAZ simulation helps in identifying suitable welding parameters like heating rate, cooling rate, peak temperature, and energy input. In this study, the influence of weld thermal cycle of heat affected zone (HAZ) is simulated for Submerged Arc Welding (SAW) using Gleeble ® 3800 thermomechanical simulator. A (Micro-alloyed) MA steel plate of thickness 18 mm having yield strength 450MPa is used for making test specimens. Determination of the mechanical properties of weld simulated specimens including Charpy V-notch toughness and hardness is performed. Peak temperatures of 1300°C, 1150°C, 1000°C, 900°C, 800°C, heat energy input of 22KJ/cm and preheat temperatures of 30°C have been used with Rykalin-3D simulation model. It is found that the impact toughness (75J) is the best for the simulated HAZ specimen at the peak temperature 900ºC. For parent steel, impact toughness value is 26.8J at -50°C in transverse direction.

Keywords: HAZ simulation, mechanical properties, peak temperature, ship hull steel, weldability

Procedia PDF Downloads 533
1431 The Impact of Modeling Method of Moisture Emission from the Swimming Pool on the Accuracy of Numerical Calculations of Air Parameters in Ventilated Natatorium

Authors: Piotr Ciuman, Barbara Lipska

Abstract:

The aim of presented research was to improve numerical predictions of air parameters distribution in the actual natatorium by the selection of calculation formula of mass flux of moisture emitted from the pool. Selected correlation should ensure the best compliance of numerical results with the measurements' results of these parameters in the facility. The numerical model of the natatorium was developed, for which boundary conditions were prepared on the basis of measurements' results carried out in the actual facility. Numerical calculations were carried out with the use of ANSYS CFX software, with six formulas being implemented, which in various ways made the moisture emission dependent on water surface temperature and air parameters in the natatorium. The results of calculations with the use of these formulas were compared for air parameters' distributions: Specific humidity, velocity and temperature in the facility. For the selection of the best formula, numerical results of these parameters in occupied zone were validated by comparison with the measurements' results carried out at selected points of this zone.

Keywords: experimental validation, indoor swimming pool, moisture emission, natatorium, numerical calculations CFD, thermal and humidity conditions, ventilation

Procedia PDF Downloads 372
1430 Coupling of Two Discretization Schemes for the Lattice Boltzmann Equation

Authors: Tobias Horstmann, Thomas Le Garrec, Daniel-Ciprian Mincu, Emmanuel Lévêque

Abstract:

Despite the efficiency and low dissipation of the stream-collide formulation of the Lattice Boltzmann (LB) algorithm, which is nowadays implemented in many commercial LBM solvers, there are certain situations, e.g. mesh transition, in which a classical finite-volume or finite-difference formulation of the LB algorithm still bear advantages. In this paper, we present an algorithm that combines the node-based streaming of the distribution functions with a second-order finite volume discretization of the advection term of the BGK-LB equation on a uniform D2Q9 lattice. It is shown that such a coupling is possible for a multi-domain approach as long as the overlap, or buffer zone, between two domains, is achieved on at least 2Δx. This also implies that a direct coupling (without buffer zone) of a stream-collide and finite-volume LB algorithm on a single grid is not stable. The critical parameter in the coupling is the CFL number equal to 1 that is imposed by the stream-collide algorithm. Nevertheless, an explicit filtering step on the finite-volume domain can stabilize the solution. In a further investigation, we demonstrate how such a coupling can be used for mesh transition, resulting in an intrinsic conservation of mass over the interface.

Keywords: algorithm coupling, finite volume formulation, grid refinement, Lattice Boltzmann method

Procedia PDF Downloads 348