Search results for: gas plant facility
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4065

Search results for: gas plant facility

4035 Simulation Modeling and Analysis of In-Plant Logistics at a Cement Manufacturing Plant in India

Authors: Sachin Kamble, Shradha Gawankar

Abstract:

This paper presents the findings of successful implementation of Business Process Reengineering (BPR) of cement dispatch activities in a cement manufacturing plant located in India. Simulation model was developed for the purpose of identifying and analyzing the areas for improvement. The company was facing a problem of low throughput rate and subsequent forced stoppages of the plant leading to a high production loss of 15000MT per month. It was found from the study that the present systems and procedures related to the in-plant logistics plant required significant changes. The major recommendations included process improvement at the entry gate, reducing the cycle time at the security gate and installation of an additional weigh bridge. This paper demonstrates how BPR can be implemented for improving the in-plant logistics process. Various recommendations helped the plant to increase its throughput by 14%.

Keywords: in-plant logistics, cement logistics, simulation modelling, business process re-engineering, supply chain management

Procedia PDF Downloads 268
4034 Implementing Internet of Things through Building Information Modelling in Order to Assist with the Maintenance Stage of Commercial Buildings

Authors: Ushir Daya, Zenadene Lazarus, Dimelle Moodley, Ehsan Saghatforoush

Abstract:

It was found through literature that there is a lack of implementation of the Internet of Things (IoT) incorporated into Building Information Modelling (BIM) in South Africa. The research aims to find if the implementation of IoT into BIM will make BIM more useful during the maintenance stage of buildings and assist facility managers when doing their job. The research will look at the existing problematic areas with building information modelling, specifically BIM 7D. This paper will look at the capabilities of IoT and what issues IoT will be able to resolve in BIM software, as well as how IoT into BIM will assist facility managers and if such an implementation will make a facility manager's job more efficient.

Keywords: internet of things, building information modeling, facilities management, structural health monitoring

Procedia PDF Downloads 168
4033 Decommissioning of Nuclear Power Plants: The Current Position and Requirements

Authors: A. Stifi, S. Gentes

Abstract:

Undoubtedly from construction's perspective, the use of explosives will remove a large facility such as a 40-storey building , that took almost 3 to 4 years for construction, in few minutes. Usually, the reconstruction or decommissioning, the last phase of life cycle of any facility, is considered to be the shortest. However, this is proved to be wrong in the case of nuclear power plant. Statistics says that in the last 30 years, the construction of a nuclear power plant took an average time of 6 years whereas it is estimated that decommissioning of such plants may take even a decade or more. This paper is all about the decommissioning phase of a nuclear power plant which needs to be given more attention and encouragement from the research institutes as well as the nuclear industry. Currently, there are 437 nuclear power reactors in operation and 70 reactors in construction. With around 139 nuclear facilities already been shut down and are in different decommissioning stages and approximately 347 nuclear reactors will be in decommissioning phase in the next 20 years (assuming the operation time of a reactor as 40 years), This fact raises the following two questions (1) How far is the nuclear and construction Industry ready to face the challenges of decommissioning project? (2) What is required for a safety and reliable decommissioning project delivery? The decommissioning of nuclear facilities across the global have severe time and budget overruns. Largely the decommissioning processes are being executed by the force of manual labour where the change in regulations is respectively observed. In term of research and development, some research projects and activities are being carried out in this area, but the requirement seems to be much more. The near future of decommissioning shall be better through a sustainable development strategy where all stakeholders agree to implement innovative technologies especially for dismantling and decontamination processes and to deliever a reliable and safety decommissioning. The scope of technology transfer from other industries shall be explored. For example, remotery operated robotic technologies used in automobile and production industry to reduce time and improve effecincy and saftey shall be tried here. However, the innovative technologies are highly requested but they are alone not enough, the implementation of creative and innovative management methodologies should be also investigated and applied. Lean Management with it main concept "elimination of waste within process", is a suitable example here. Thus, the cooperation between international organisations and related industries and the knowledge-sharing may serve as a key factor for the successful decommissioning projects.

Keywords: decommissioning of nuclear facilities, innovative technology, innovative management, sustainable development

Procedia PDF Downloads 444
4032 Robotic Solution for Nuclear Facility Safety and Monitoring System

Authors: Altab Hossain, Shakerul Islam, Golamur R. Khan, Abu Zafar M. Salahuddin

Abstract:

An effective identification of breakdowns is of premier importance for the safe and reliable operation of Nuclear Power Plants (NPP) and its associated facilities. A great number of monitoring and diagnosis methodologies are applied and used worldwide in areas such as industry, automobiles, hospitals, and power plant to detect and reduce human disasters. The potential consequences of several hazardous activities may harm the society using nuclear and its associated facilities. Hence, one of the most popular and effective methods to ensure safety and monitor the entire nuclear facility and imply risk-free operation without human interference during the hazardous situation is using a robot. Therefore, in this study, an advanced autonomous robot has been designed and developed that can monitor several parameters in the NPP to ensure the safety and do some risky job in case of nuclear disaster. The robot consisted of autonomous track following unit, data processing and transmitting unit can follow a straight line and take turn as the bank greater than 90 degrees. The developed robot can analyze various parameters such as temperature, altitude, radiation, obstacle, humidity, detecting fire, measuring distance, ultrasonic scan and taking the heat of any particular object. It has an ability to broadcast live stream and can record the document to its own server memory. There is a separate control unit constructed with a baseboard which processes the recorded data and a transmitter which transmits the processed data. To make the robot user-friendly, the code is developed such a way that a user can control any of robotic arm as per types of work. To control at any place and without the track, there is an advanced code has been developed to take manual overwrite. Through this process, administrator who has logged in permission to Dynamic Host Client Protocol (DHCP) can make the handover of the control of the robot. In this process, this robot is provided maximum nuclear security from being hacked. Not only NPP, this robot can be used to maximize the real-time monitoring system of any nuclear facility as well as nuclear material transportation and decomposition system.

Keywords: nuclear power plant, radiation, dynamic host client protocol, nuclear security

Procedia PDF Downloads 182
4031 Analysis of Spatial Disparities of Population for Delicate Configuration of Public Service Facilities:Case of Gongshu District, Hangzhou, China

Authors: Ruan Yi-Chen, Li Wang-Ming, Fang Yuan

Abstract:

With the rapid growth of urbanization in China in recent years, public services are in short supply because of expanding population and limitation of financial support, which makes delicate configuration of public service facilities to become a trend in urban planning. Besides, the facility configuration standard implemented in China is equal to the whole the urban area without considering internal differences in it. Therefore, this article focuses on population Spatial disparities analysis in order to optimize facility configuration in communities of main city district. The used data, including population of 93 communities during 2010 to 2015, comes from GongShu district, Hangzhou city, PRC. Through the analysis of population data, especially the age structure of those communities, the communities finally divided into 3 types. Obviously, urban public service facilities allocation situation directly affect the quality of residents common lives, which turns out that deferent kinds of communities with deferent groups of citizens will have divergences in facility demanding. So in the end of the article, strategies of facility configuration will be proposed based on the population analysis in order to optimize the quantity and location of facilities with delicacy.

Keywords: delicacy, facility configuration, population spatial disparities, urban area

Procedia PDF Downloads 355
4030 Use of Analytic Hierarchy Process for Plant Site Selection

Authors: Muzaffar Shaikh, Shoaib Shaikh, Mark Moyou, Gaby Hawat

Abstract:

This paper presents the use of Analytic Hierarchy Process (AHP) in evaluating the site selection of a new plant by a corporation. Due to intense competition at a global level, multinational corporations are continuously striving to minimize production and shipping costs of their products. One key factor that plays significant role in cost minimization is where the production plant is located. In the U.S. for example, labor and land costs continue to be very high while they are much cheaper in countries such as India, China, Indonesia, etc. This is why many multinational U.S. corporations (e.g. General Electric, Caterpillar Inc., Ford, General Motors, etc.), have shifted their manufacturing plants outside. The continued expansion of the Internet and its availability along with technological advances in computer hardware and software all around the globe have facilitated U.S. corporations to expand abroad as they seek to reduce production cost. In particular, management of multinational corporations is constantly engaged in concentrating on countries at a broad level, or cities within specific countries where certain or all parts of their end products or the end products themselves can be manufactured cheaper than in the U.S. AHP is based on preference ratings of a specific decision maker who can be the Chief Operating Officer of a company or his/her designated data analytics engineer. It serves as a tool to first evaluate the plant site selection criteria and second, alternate plant sites themselves against these criteria in a systematic manner. Examples of site selection criteria are: Transportation Modes, Taxes, Energy Modes, Labor Force Availability, Labor Rates, Raw Material Availability, Political Stability, Land Costs, etc. As a necessary first step under AHP, evaluation criteria and alternate plant site countries are identified. Depending upon the fidelity of analysis, specific cities within a country can also be chosen as alternative facility locations. AHP experience in this type of analysis indicates that the initial analysis can be performed at the Country-level. Once a specific country is chosen via AHP, secondary analyses can be performed by selecting specific cities or counties within a country. AHP analysis is usually based on preferred ratings of a decision-maker (e.g., 1 to 5, 1 to 7, or 1 to 9, etc., where 1 means least preferred and a 5 means most preferred). The decision-maker assigns preferred ratings first, criterion vs. criterion and creates a Criteria Matrix. Next, he/she assigns preference ratings by alternative vs. alternative against each criterion. Once this data is collected, AHP is applied to first get the rank-ordering of criteria. Next, rank-ordering of alternatives is done against each criterion resulting in an Alternative Matrix. Finally, overall rank ordering of alternative facility locations is obtained by matrix multiplication of Alternative Matrix and Criteria Matrix. The most practical aspect of AHP is the ‘what if’ analysis that the decision-maker can conduct after the initial results to provide valuable sensitivity information of specific criteria to other criteria and alternatives.

Keywords: analytic hierarchy process, multinational corporations, plant site selection, preference ratings

Procedia PDF Downloads 261
4029 A Life Cycle Assessment (LCA) of Aluminum Production Process

Authors: Alaa Al Hawari, Mohammad Khader, Wael El Hasan, Mahmoud Alijla, Ammar Manawi, Abdelbaki Benamour

Abstract:

The production of aluminium alloys and ingots -starting from the processing of alumina to aluminium, and the final cast product- was studied using a Life Cycle Assessment (LCA) approach. The studied aluminium supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminium metal were investigated. The impact of the aluminium production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it comes to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant.

Keywords: life cycle assessment, aluminium production, supply chain, ecological impacts

Procedia PDF Downloads 492
4028 A Solution for Production Facility Assignment: An Automotive Subcontract Case

Authors: Cihan Çetinkaya, Eren Özceylan, Kerem Elibal

Abstract:

This paper presents a solution method for selection of production facility. The motivation has been taken from a real life case, an automotive subcontractor which has two production facilities at different cities and parts. The problem is to decide which part(s) should be produced at which facility. To the best of our knowledge, until this study, there was no scientific approach about this problem at the firm and decisions were being given intuitively. In this study, some logistic cost parameters have been defined and with these parameters a mathematical model has been constructed. Defined and collected cost parameters are handling cost of parts, shipment cost of parts and shipment cost of welding fixtures. Constructed multi-objective mathematical model aims to minimize these costs while aims to balance the workload between two locations. Results showed that defined model can give optimum solutions in reasonable computing times. Also, this result gave encouragement to develop the model with addition of new logistic cost parameters.

Keywords: automotive subcontract, facility assignment, logistic costs, multi-objective models

Procedia PDF Downloads 338
4027 A Qualitative Analysis of Factors Influencing the Intention of Selecting the Charged Nursing Care

Authors: Hyunsik Park

Abstract:

Objective: To provide information of charged nursing care facility for helping to establish geriatric health care policy, and to figure out which factors would be the main determinants for the choice of it. Method: 46 males and 53 females, and the same number of their caregivers admitted into the charged nursing care facility were recruited for intensive interview including personal information, disease information, and economic, familial, marital and emotional statuses. This is a cross-sectional study and we analyzed the data qualitatively. Results: Patients had 3.2 diseases and a hospitalization for 2.3 years on average. They were consists of 46 singles (46.9%), 8 unmarried (8.2%), 5 divorced (5.1%) and 32 married (32.7%). More than two third (70.1%) were supported by their eldest son or daughter. Mostly, the family caregivers decided to admit into the facilities by the doctor’s recommendation (68.4%). When they made a choice for a facility, most of them (42.9%) considered environmental and sanitary conditions. According to their expectation for management in nursing care facility, most caregivers (59.2%) wanted simple-staying for the duration, but most patients (61.3%) expected to be home after taking comprehensive rehabilitation. Three-quarter of the caregivers would agree to use nursing care facilities in the future, if they would be the same situation. Conclusion: Life style and environment are rapidly changing. In the near future, we need lots of the charged nursing care facilities for the old, thus this study can be the good reference for the preparing upcoming aged and super-aged society.

Keywords: nursing care facility, aged society, qualitative analysis, health

Procedia PDF Downloads 454
4026 Supply Chain Design: Criteria Considered in Decision Making Process

Authors: Lenka Krsnakova, Petr Jirsak

Abstract:

Prior research on facility location in supply chain is mostly focused on improvement of mathematical models. It is due to the fact that supply chain design has been for the long time the area of operational research that underscores mainly quantitative criteria. Qualitative criteria are still highly neglected within the supply chain design research. Facility location in the supply chain has become multi-criteria decision-making problem rather than single criteria decision due to changes of market conditions. Thus, both qualitative and quantitative criteria have to be included in the decision making process. The aim of this study is to emphasize the importance of qualitative criteria as key parameters of relevant mathematical models. We examine which criteria are taken into consideration when Czech companies decide about their facility location. A literature review on criteria being used in facility location decision making process creates a theoretical background for the study. The data collection was conducted through questionnaire survey. Questionnaire was sent to manufacturing and business companies of all sizes (small, medium and large enterprises) with the representation in the Czech Republic within following sectors: automotive, toys, clothing industry, electronics and pharmaceutical industry. Comparison of which criteria prevail in the current research and which are considered important by companies in the Czech Republic is made. Despite the number of articles focused on supply chain design, only minority of them consider qualitative criteria and rarely process supply chain design as a multi-criteria decision making problem. Preliminary results of the questionnaire survey outlines that companies in the Czech Republic see the qualitative criteria and their impact on facility location decision as crucial. Qualitative criteria as company strategy, quality of working environment or future development expectations are confirmed to be considered by Czech companies. This study confirms that the qualitative criteria can significantly influence whether a particular location could or could not be right place for a logistic facility. The research has two major limitations: researchers who focus on improving of mathematical models mostly do not mention criteria that enter the model. Czech supply chain managers selected important criteria from the group of 18 available criteria and assign them importance weights. It does not necessarily mean that these criteria were taken into consideration when the last facility location was chosen, but how they perceive that today. Since the study confirmed the necessity of future research on how qualitative criteria influence decision making process about facility location, the authors have already started in-depth interviews with participating companies to reveal how the inclusion of qualitative criteria into decision making process about facility location influence the company´s performance.

Keywords: criteria influencing facility location, Czech Republic, facility location decision-making, qualitative criteria

Procedia PDF Downloads 297
4025 Analysis of Conflict and Acceptance Factors on Water and Land Photovoltaic Facility

Authors: Taehyun Kim, Taehyun Kim, Hyunjoo Park

Abstract:

Photovoltaic facility occurs conflicts and disputes over environmental issues such as soil runoff, landscapes damage, and ecosystems damage. Because of these problems, huge social and economic cost occurred. The purpose of this study is to analyze resident‘s acceptability and conflict factors on the location of PV facilities, and suggest ways to promote resident’s acceptability and solutions for conflicts. Literature review, cases analysis, and expert interview on the acceptance and conflict factors related to the location of PV facilities are used to derive results. The results of this study are expected to contribute to the minimization of environmental impact and social conflict due to the development of renewable energy in the future.

Keywords: acceptance factor, conflict factor, factor analysis, photovoltaic facility

Procedia PDF Downloads 149
4024 Exploring the Effectiveness of Robotic Companions Through the Use of Symbiotic Autonomous Plant Care Robots

Authors: Angelos Kaminis, Dakotah Stirnweis

Abstract:

Advances in robotic technology have driven the development of improved robotic companions in the last couple decades. However, commercially available robotic companions lack the ability to create an emotional connection with their user. By developing a companion robot that has a symbiotic relationship with a plant, an element of co-dependency is introduced into the human companion robot dynamic. This companion robot, while theoretically capable of providing most of the plant’s needs, still requires human interaction for watering, moving obstacles, and solar panel cleaning. To facilitate the interaction between human and robot, the robot is capable of limited auditory and visual communication to help express its and the plant’s needs. This paper seeks to fully describe the Autonomous Plant Care Robot system and its symbiotic relationship with its botanical ward and the plant and robot’s dependent relationship with their owner.

Keywords: symbiotic, robotics, autonomous, plant-care, companion

Procedia PDF Downloads 114
4023 Synthesis and Application of Oligosaccharides Representing Plant Cell Wall Polysaccharides

Authors: Mads H. Clausen

Abstract:

Plant cell walls are structurally complex and contain a larger number of diverse carbohydrate polymers. These plant fibers are a highly valuable bio-resource and the focus of food, energy and health research. We are interested in studying the interplay of plant cell wall carbohydrates with proteins such as enzymes, cell surface lectins and antibodies. However, detailed molecular level investigations of such interactions are hampered by the heterogeneity and diversity of the polymers of interest. To circumvent this, we target well-defined oligosaccharides with representative structures that can be used for characterizing protein-carbohydrate binding. The presentation will highlight chemical syntheses of plant cell wall oligosaccharides from our group and provide examples from studies of their interactions with proteins.

Keywords: oligosaccharides, carbohydrate chemistry, plant cell walls, carbohydrate-acting enzymes

Procedia PDF Downloads 276
4022 Using Computer Vision and Machine Learning to Improve Facility Design for Healthcare Facility Worker Safety

Authors: Hengameh Hosseini

Abstract:

Design of large healthcare facilities – such as hospitals, multi-service line clinics, and nursing facilities - that can accommodate patients with wide-ranging disabilities is a challenging endeavor and one that is poorly understood among healthcare facility managers, administrators, and executives. An even less-understood extension of this problem is the implications of weakly or insufficiently accommodative design of facilities for healthcare workers in physically-intensive jobs who may also suffer from a range of disabilities and who are therefore at increased risk of workplace accident and injury. Combine this reality with the vast range of facility types, ages, and designs, and the problem of universal accommodation becomes even more daunting and complex. In this study, we focus on the implication of facility design for healthcare workers suffering with low vision who also have physically active jobs. The points of difficulty are myriad and could span health service infrastructure, the equipment used in health facilities, and transport to and from appointments and other services can all pose a barrier to health care if they are inaccessible, less accessible, or even simply less comfortable for people with various disabilities. We conduct a series of surveys and interviews with employees and administrators of 7 facilities of a range of sizes and ownership models in the Northeastern United States and combine that corpus with in-facility observations and data collection to identify five major points of failure common to all the facilities that we concluded could pose safety threats to employees with vision impairments, ranging from very minor to severe. We determine that lack of design empathy is a major commonality among facility management and ownership. We subsequently propose three methods for remedying this lack of empathy-informed design, to remedy the dangers posed to employees: the use of an existing open-sourced Augmented Reality application to simulate the low-vision experience for designers and managers; the use of a machine learning model we develop to automatically infer facility shortcomings from large datasets of recorded patient and employee reviews and feedback; and the use of a computer vision model fine tuned on images of each facility to infer and predict facility features, locations, and workflows, that could again pose meaningful dangers to visually impaired employees of each facility. After conducting a series of real-world comparative experiments with each of these approaches, we conclude that each of these are viable solutions under particular sets of conditions, and finally characterize the range of facility types, workforce composition profiles, and work conditions under which each of these methods would be most apt and successful.

Keywords: artificial intelligence, healthcare workers, facility design, disability, visually impaired, workplace safety

Procedia PDF Downloads 73
4021 Investigation into Micro-Grids with Renewable Energy Sources for Use as High Reliability Electrical Power Supply in a Nuclear Facility

Authors: Gerard R. Lekhema, Willie A Cronje, Ian Korir

Abstract:

The objective of this research work is to investigate the use of a micro-grid system to improve the reliability and availability of emergency electrical power in a nuclear facility. The nuclear facility is a safety-critical application that requires reliable electrical power for safe startup, operation and normal or emergency shutdown conditions. The majority of the nuclear facilities around the world utilize diesel generators as emergency power supply during loss of offsite power events. This study proposes the micro-grid system with distributed energy sources and energy storage systems for use as emergency power supply. The systems analyzed include renewable energy sources, decay heat recovery system and large scale energy storage system. The configuration of the micro-grid system is realized with guidelines of nuclear safety standards and requirements. The investigation results presented include performance analysis of the micro-grid system in terms of reliability and availability.

Keywords: emergency power supply, micro-grid, nuclear facility, renewable energy sources

Procedia PDF Downloads 368
4020 Design Considerations for the Construction of an Open Decontamination Facility for Managing Civil Emergencies

Authors: Sarmin, S., Ologuin, R.S.

Abstract:

Background: Rapid population growth and land constraints in Singapore results in a possible situation in which we face a higher number of casualties and lack of operational space in healthcare facilities during disasters and HAZMAT events, collectively known as Civil Emergencies. This creates a need for available working space within hospital grounds to be amphibious or multi-functional, to ensure the institution’s capability to respond efficiently to Civil Emergencies. The Emergency Department (ED) mitigates this issue by converting the Ambulance Assembly Area used during peacetime into an Open Decontamination Facility (ODF) during Civil Emergency Response, for decontamination of casualties before they proceed to treatment areas into Ambulance Assembly Area used during peacetime. Aims: To effectively operationalize the Open Decontamination Facility (ODF) through the reduction of manual handling. Methods: From past experiences on Civil Emergency exercises, it was labor-intensive for staff to set up the Open Decontamination Facility (ODF). Manual handling to set up the Decontamination lanes by bringing down the curtains and supply of water was required to be turned on. Conclusion: The effectiveness of the design construction of an Open Decontamination Facility (ODF) is based on the use of automation of bringing down the curtains on the various lanes. The use of control panels for water supply to decontaminate patients. Safety within the ODF was considered with the installation of panic buttons, intercom for staff communication, and perimeter curtains were installed with stability arm to manage the condition with high wind velocity.

Keywords: civil emergencies, disaster, emergency department, Hazmat

Procedia PDF Downloads 74
4019 Efficient Use of Energy through Incorporation of a Gas Turbine in Methanol Plant

Authors: M. Azadi, N. Tahouni, M. H. Panjeshahi

Abstract:

A techno-economic evaluation for efficient use of energy in a large scale industrial plant of methanol is carried out. This assessment is based on integration of a gas turbine with an existing plant of methanol in which the outlet gas products of exothermic reactor is expanded to power generation. Also, it is decided that methanol production rate is constant through addition of power generation system to the existing methanol plant. Having incorporated a gas turbine with the existing plant, the economic results showed total investment of MUSD 16.9, energy saving of 3.6 MUSD/yr with payback period of approximately 4.7 years.

Keywords: energy saving, methanol, gas turbine, power generation

Procedia PDF Downloads 426
4018 Shape Optimization of Header Pipes in Power Plants for Enhanced Efficiency and Environmental Sustainability

Authors: Ahmed Cherif Megri, HossamEldin ElSherif

Abstract:

In a power plant, the header pipe plays a pivotal role in optimizing the performance of diverse systems by serving as a central conduit for the collection and distribution of steam within the plant. This paper investigates the significance of header pipes within power plant setups, highlighting their critical influence on reliability, efficiency, and the performance of the power plant as a whole. The concept of shape optimization emerges as a crucial factor in power plant design and operation, with the potential to maximize performance while minimizing the use of materials. Shape optimization not only enhances efficiency but also contributes to reducing the environmental footprint of power plant installations. In this paper, we initially developed a methodology designed for optimizing header shapes with the primary goal of reducing the usage of costly new alloy materials and lowering the overall maintenance operation expenses. Secondly, we conducted a case study based on an authentic header sourced from an operational power plant.

Keywords: shape optimization, header, power plant, inconel alloy, CFD, structural optimization

Procedia PDF Downloads 39
4017 Modelling and Simulation of Natural Gas-Fired Power Plant Integrated to a CO2 Capture Plant

Authors: Ebuwa Osagie, Chet Biliyok, Yeung Hoi

Abstract:

Regeneration energy requirement and ways to reduce it is the main aim of most CO2 capture researches currently being performed and thus, post-combustion carbon capture (PCC) option is identified to be the most suitable for the natural gas-fired power plants. From current research and development (R&D) activities worldwide, two main areas are being examined in order to reduce the regeneration energy requirement of amine-based PCC, namely: (a) development of new solvents with better overall performance than 30wt% monoethanolamine (MEA) aqueous solution, which is considered as the base-line solvent for solvent-based PCC, (b) Integration of the PCC Plant to the power plant. In scaling-up a PCC pilot plant to the size required for a commercial-scale natural gas-fired power plant, process modelling and simulation is very essential. In this work, an integrated process made up of a 482MWe natural gas-fired power plant, an MEA-based PCC plant which is developed and validated has been modelled and simulated. The PCC plant has four absorber columns and a single stripper column, the modelling and simulation was performed with Aspen Plus® V8.4. The gas turbine, the heat recovery steam generator and the steam cycle were modelled based on a 2010 US DOE report, while the MEA-based PCC plant was modelled as a rate-based process. The scaling of the amine plant was performed using a rate based calculation in preference to the equilibrium based approach for 90% CO2 capture. The power plant was integrated to the PCC plant in three ways: (i) flue gas stream from the power plant which is divided equally into four stream and each stream is fed into one of the four absorbers in the PCC plant. (ii) Steam draw-off from the IP/LP cross-over pipe in the steam cycle of the power plant used to regenerate solvent in the reboiler. (iii) Condensate returns from the reboiler to the power plant. The integration of a PCC plant to the NGCC plant resulted in a reduction of the power plant output by 73.56 MWe and the net efficiency of the integrated system is reduced by 7.3 % point efficiency. A secondary aim of this study is the parametric studies which have been performed to assess the impacts of natural gas on the overall performance of the integrated process and this is achieved through investigation of the capture efficiencies.

Keywords: natural gas-fired, power plant, MEA, CO2 capture, modelling, simulation

Procedia PDF Downloads 408
4016 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 3: Volume Reduction and Stabilization of Solid Waste

Authors: Masaumi Nakahara, Sou Watanabe, Hiromichi Ogi, Atsuhiro Shibata, Kazunori Nomura

Abstract:

In the Japan Atomic Energy Agency, three types of experimental research, advanced reactor fuel reprocessing, radioactive waste disposal, and nuclear fuel cycle technology, have been carried out at the Chemical Processing Facility. The facility has generated high level radioactive liquid and solid wastes in hot cells. The high level radioactive solid waste is divided into three main categories, a flammable waste, a non-flammable waste, and a solid reagent waste. A plastic product is categorized into the flammable waste and molten with a heating mantle. The non-flammable waste is cut with a band saw machine for reducing the volume. Among the solid reagent waste, a used adsorbent after the experiments is heated, and an extractant is decomposed for its stabilization. All high level radioactive solid wastes in the hot cells are packed in a high level radioactive solid waste can. The high level radioactive solid waste can is transported to the 2nd High Active Solid Waste Storage in the Tokai Reprocessing Plant in the Japan Atomic Energy Agency.

Keywords: high level radioactive solid waste, advanced reactor fuel reprocessing, radioactive waste disposal, nuclear fuel cycle technology

Procedia PDF Downloads 129
4015 Effect of Three Sand Types on Potato Vegetative Growth and Yield

Authors: Shatha A. Yousif, Qasim M. Zamil, Hasan Y. Al Muhi, Jamal A. Al Shammari

Abstract:

Potato (Solanum tuberosum L.) is one of the major vegetable crops that are grown world wide because of its economic importance. This experiment investigated the effect of local sands (River Base, Al-Ekader and Karbala) on number and total weight of mini tubers. Statistical analysis revealed that there were no significant differences among sand cultures in number of stem/plant, chlorophyll index and tubers dry weight. River Base sand had the highest plant height (74.9 cm), leaf number/plant number (39.3), leaf area (84.4 dcm2⁄plant), dry weight/plant (26.31), tubers number/plant (8.5), tubers weight/plant (635.53 gm) and potato tuber yields/trove (28.60 kg), whereas the Karbala sand had lower performance. All the characters had positive and significant correlation with yields except the traits number of stem and tuber dry weight.

Keywords: correlation, potato, sand culture, yield

Procedia PDF Downloads 447
4014 Nuclear Power Plant Radioactive Effluent Discharge Management in China

Authors: Jie Yang, Qifu Cheng, Yafang Liu, Zhijie Gu

Abstract:

Controlled emissions of effluent from nuclear power plants are an important means of ensuring environmental safety. In order to fully grasp the actual discharge level of nuclear power plant in China's nuclear power plant in the pressurized water reactor and heavy water reactor, it will use the global average nuclear power plant effluent discharge as a reference to the standard analysis of China's nuclear power plant environmental discharge status. The results show that the average normalized emission of liquid tritium in PWR nuclear power plants in China is slightly higher than the global average value, and the other nuclides emissions are lower than the global average values.

Keywords: radioactive effluent, HWR, PWR, nuclear power plant

Procedia PDF Downloads 218
4013 Performance of Derna Steam Power Plant at Varying Super-Heater Operating Conditions Based on Exergy

Authors: Idris Elfeituri

Abstract:

In the current study, energy and exergy analysis of a 65 MW steam power plant was carried out. This study investigated the effect of variations of overall conductance of the super heater on the performance of an existing steam power plant located in Derna, Libya. The performance of the power plant was estimated by a mathematical modelling which considers the off-design operating conditions of each component. A fully interactive computer program based on the mass, energy and exergy balance equations has been developed. The maximum exergy destruction has been found in the steam generation unit. A 50% reduction in the design value of overall conductance of the super heater has been achieved, which accordingly decreases the amount of the net electrical power that would be generated by at least 13 MW, as well as the overall plant exergy efficiency by at least 6.4%, and at the same time that would cause an increase of the total exergy destruction by at least 14 MW. The achieved results showed that the super heater design and operating conditions play an important role on the thermodynamics performance and the fuel utilization of the power plant. Moreover, these considerations are very useful in the process of the decision that should be taken at the occasions of deciding whether to replace or renovate the super heater of the power plant.

Keywords: Exergy, Super-heater, Fouling; Steam power plant; Off-design., Fouling;, Super-heater, Steam power plant

Procedia PDF Downloads 303
4012 Integrating Building Information Modeling into Facilities Management Operations

Authors: Mojtaba Valinejadshoubi, Azin Shakibabarough, Ashutosh Bagchi

Abstract:

Facilities such as residential buildings, office buildings, and hospitals house large density of occupants. Therefore, a low-cost facility management program (FMP) should be used to provide a satisfactory built environment for these occupants. Facility management (FM) has been recently used in building projects as a critical task. It has been effective in reducing operation and maintenance cost of these facilities. Issues of information integration and visualization capabilities are critical for reducing the complexity and cost of FM. Building information modeling (BIM) can be used as a strong visual modeling tool and database in FM. The main objective of this study is to examine the applicability of BIM in the FM process during a building’s operational phase. For this purpose, a seven-storey office building is modeled Autodesk Revit software. Authors integrated the cloud-based environment using a visual programming tool, Dynamo, for the purpose of having a real-time cloud-based communication between the facility managers and the participants involved in the project. An appropriate and effective integrated data source and visual model such as BIM can reduce a building’s operational and maintenance costs by managing the building life cycle properly.

Keywords: building information modeling, facility management, operational phase, building life cycle

Procedia PDF Downloads 128
4011 The MCNP Simulation of Prompt Gamma-Ray Neutron Activation Analysis at TRR-1/M1

Authors: S. Sangaroon, W. Ratanatongchai, S. Khaweerat, R. Picha, J. Channuie

Abstract:

The prompt gamma-ray neutron activation analysis system (PGNAA) has been constructed and installed at a 6 inch diameter neutron beam port of the Thai Research Reactor-1/ Modification 1 (TRR-1/M1) since 1989. It was designed for the reactor operating power at 1.2 MW. The purpose of the system is for an elemental and isotopic analytical. In 2016, the PGNAA facility will be developed to reduce the leakage and background of neutrons and gamma radiation at the sample and detector position. In this work, the designed condition of these facilities is carried out based on the Monte Carlo method using MCNP5 computer code. The conditions with different modification materials, thicknesses and structure of the PGNAA facility, including gamma collimator and radiation shields of the detector, are simulated, and then the optimal structure parameters with a significantly improved performance of the facility are obtained.

Keywords: MCNP simulation, PGNAA, Thai research reactor (TRR-1/M1), radiation shielding

Procedia PDF Downloads 351
4010 The Techno-Economic Comparison of Solar Power Generation Methods for Turkish Republic of North Cyprus

Authors: Mustafa Dagbasi, Olusola Bamisile, Adii Chinedum

Abstract:

The objective of this work is to examine and compare the economic and environmental feasibility of 40MW photovoltaic (PV) power plant and 40MW parabolic trough (PT) power plant to be installed in two different cities, namely Nicosia and Famagusta in Turkish Republic of Northern Cyprus (TRNC). The need for using solar power technology around the world is also emphasized. Solar radiation and sunshine data for Nicosia and Famagusta are considered and analyzed to assess the distribution of solar radiation, sunshine duration, and air temperature. Also, these two different technologies with same rated power of 40MW will be compared with the performance of the proposed Solar Power Plant at Bari, Italy. The project viability analysis is performed using System Advisor Model (SAM) through Annual Energy Production and economic parameters for both cities. It is found that for the two cities; Nicosia and Famagusta, the investment is feasible for both 40MW PV power plant and 40MW PT power plant. From the techno-economic analysis of these two different solar power technologies having same rated power and under the same environmental conditions, PT plants produce more energy than PV plant. It is also seen that if a PT plant is installed near an existing steam turbine power plant, the steam from the PT system can be used to run this turbine which makes it more feasible to invest. The high temperatures that are used to produce steam for the turbines in the PT plant system can be supplemented with a secondary plant based on natural gas or other biofuels and can be used as backup. Although the initial investment of PT plant is higher, it has higher economic return and occupies smaller area compared to PV plant of the same capacity.

Keywords: solar power, photovoltaic plant, parabolic trough plant, techno-economic analysis

Procedia PDF Downloads 257
4009 A Multi Objective Reliable Location-Inventory Capacitated Disruption Facility Problem with Penalty Cost Solve with Efficient Meta Historic Algorithms

Authors: Elham Taghizadeh, Mostafa Abedzadeh, Mostafa Setak

Abstract:

Logistics network is expected that opened facilities work continuously for a long time horizon without any failure; but in real world problems, facilities may face disruptions. This paper studies a reliable joint inventory location problem to optimize cost of facility locations, customers’ assignment, and inventory management decisions when facilities face failure risks and doesn’t work. In our model we assume when a facility is out of work, its customers may be reassigned to other operational facilities otherwise they must endure high penalty costs associated with losing service. For defining the model closer to real world problems, the model is proposed based on p-median problem and the facilities are considered to have limited capacities. We define a new binary variable (Z_is) for showing that customers are not assigned to any facilities. Our problem involve a bi-objective model; the first one minimizes the sum of facility construction costs and expected inventory holding costs, the second one function that mention for the first one is minimizes maximum expected customer costs under normal and failure scenarios. For solving this model we use NSGAII and MOSS algorithms have been applied to find the pareto- archive solution. Also Response Surface Methodology (RSM) is applied for optimizing the NSGAII Algorithm Parameters. We compare performance of two algorithms with three metrics and the results show NSGAII is more suitable for our model.

Keywords: joint inventory-location problem, facility location, NSGAII, MOSS

Procedia PDF Downloads 497
4008 Analysis and Treatment of Sewage Treatment Plant Wastewater of El-Karma, Oran

Authors: Larbi Hammadi, Abdellatif El Bari Tidjani

Abstract:

In order to reduce the flow of pollutants in the wastewater of the urban agglomerations of the city of Oran, a preliminary study was carried out at the El-Karma wastewater treatment plant. The primary objective of this study was to estimate the overall physicochemical pollution in the effluents of the El-Karma sewage treatment plant wastewater. It was found that the effluent of El-Karma wastewater treatment plant contains a significant amount of insoluble. Total suspended soli TSS concentrations ranged from 112 to 475 mg/l, with an average of 220.5 mg/l. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD₅) values remain within the reference range for domestic wastewater with an average value of COD < 125 and BOD₅ < 25. The COD/BOD₅ ratio of raw water entering the treatment plant is less than 2. This ratio would predict that the raw sewage from the El-Karma treatment plant is polluted by inorganic pollution strong enough.

Keywords: El-Karma wastewater, TSS concentrations, COD and BOD5, COD/BOD5 ratio, treatment

Procedia PDF Downloads 230
4007 Assessment of Environmental Mercury Contamination from an Old Mercury Processing Plant 'Thor Chemicals' in Cato Ridge, KwaZulu-Natal, South Africa

Authors: Yohana Fessehazion

Abstract:

Mercury is a prominent example of a heavy metal contaminant in the environment, and it has been extensively investigated for its potential health risk in humans and other organisms. In South Africa, massive mercury contamination happened in1980s when the England-based mercury reclamation processing plant relocated to Cato Ridge, KwaZulu-Natal Province, and discharged mercury waste into the Mngceweni River. This mercury waste discharge resulted in high mercury concentration that exceeded the acceptable levels in Mngceweni River, Umgeni River, and human hair of the nearby villagers. This environmental issue raised the alarm, and over the years, several environmental assessments were reported the dire environmental crises resulting from the Thor Chemicals (now known as Metallica Chemicals) and urged the immediate removal of the around 3,000 tons of mercury waste stored in the factory storage facility over two decades. Recently theft of some containers with the toxic substance from the Thor Chemicals warehouse and the subsequent fire that ravaged the facility furtherly put the factory on the spot escalating the urgency of left behind deadly mercury waste removal. This project aims to investigate the mercury contamination leaking from an old Thor Chemicals mercury processing plant. The focus will be on sediments, water, terrestrial plants, and aquatic weeds such as the prominent water hyacinth weeds in the nearby water systems of Mngceweni River, Umgeni River, and Inanda Dam as a bio-indicator and phytoremediator for mercury pollution. Samples will be collected in spring around October when the condition is favourable for microbial activity to methylate mercury incorporated in sediments and blooming season for some aquatic weeds, particularly water hyacinth. Samples of soil, sediment, water, terrestrial plant, and aquatic weed will be collected per sample site from the point of source (Thor Chemicals), Mngceweni River, Umgeni River, and the Inanda Dam. One-way analysis of variance (ANOVA) tests will be conducted to determine any significant differences in the Hg concentration among all sampling sites, followed by Least Significant Difference post hoc test to determine if mercury contamination varies with the gradient distance from the source point of pollution. The flow injection atomic spectrometry (FIAS) analysis will also be used to compare the mercury sequestration between the different plant tissues (roots and stems). The principal component analysis is also envisaged for use to determine the relationship between the source of mercury pollution and any of the sampling points (Umgeni and Mngceweni Rivers and the Inanda Dam). All the Hg values will be expressed in µg/L or µg/g in order to compare the result with the previous studies and regulatory standards. Sediments are expected to have relatively higher levels of Hg compared to the soils, and aquatic macrophytes, water hyacinth weeds are expected to accumulate a higher concentration of mercury than terrestrial plants and crops.

Keywords: mercury, phytoremediation, Thor chemicals, water hyacinth

Procedia PDF Downloads 179
4006 The Continuous Facility Location Problem and Transportation Mode Selection in the Supply Chain under Sustainability

Authors: Abdulaziz Alageel, Martino Luis, Shuya Zhong

Abstract:

The main focus of this research study is on the challenges faced in decision-making in a supply chain network regarding the facility location while considering carbon emissions. The study aims (i) to locate facilities (i.e., distribution centeres) in a continuous space considering limitations of capacity and the costs associated with opening and (ii) to reduce the cost of carbon emissions by selecting the mode of transportation. The problem is formulated as mixed-integer linear programming. This study hybridised a greedy randomised adaptive search (GRASP) and variable neighborhood search (VNS) to deal with the problem. Well-known datasets from the literature (Brimberg et al. 2001) are used and adapted in order to assess the performance of the proposed method. The proposed hybrid method produces encouraging results based on computational analysis. The study also highlights some research avenues for future recommendations.

Keywords: supply chain, facility location, weber problem, sustainability

Procedia PDF Downloads 75