Search results for: fractional partial differential equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4056

Search results for: fractional partial differential equations

486 Performance Estimation of Small Scale Wind Turbine Rotor for Very Low Wind Regime Condition

Authors: Vilas Warudkar, Dinkar Janghel, Siraj Ahmed

Abstract:

Rapid development experienced by India requires huge amount of energy. Actual supply capacity additions have been consistently lower than the targets set by the government. According to World Bank 40% of residences are without electricity. In 12th five year plan 30 GW grid interactive renewable capacity is planned in which 17 GW is Wind, 10 GW is from solar and 2.1 GW from small hydro project, and rest is compensated by bio gas. Renewable energy (RE) and energy efficiency (EE) meet not only the environmental and energy security objectives, but also can play a crucial role in reducing chronic power shortages. In remote areas or areas with a weak grid, wind energy can be used for charging batteries or can be combined with a diesel engine to save fuel whenever wind is available. India according to IEC 61400-1 belongs to class IV Wind Condition; it is not possible to set up wind turbine in large scale at every place. So, the best choice is to go for small scale wind turbine at lower height which will have good annual energy production (AEP). Based on the wind characteristic available at MANIT Bhopal, rotor for small scale wind turbine is designed. Various Aero foil data is reviewed for selection of airfoil in the Blade Profile. Airfoil suited of Low wind conditions i.e. at low Reynold’s number is selected based on Coefficient of Lift, Drag and angle of attack. For designing of the rotor blade, standard Blade Element Momentum (BEM) Theory is implanted. Performance of the Blade is estimated using BEM theory in which axial induction factor and angular induction factor is optimized using iterative technique. Rotor performance is estimated for particular designed blade specifically for low wind Conditions. Power production of rotor is determined at different wind speeds for particular pitch angle of the blade. At pitch 15o and velocity 5 m/sec gives good cut in speed of 2 m/sec and power produced is around 350 Watts. Tip speed of the Blade is considered as 6.5 for which Coefficient of Performance of the rotor is calculated 0.35, which is good acceptable value for Small scale Wind turbine. Simple Load Model (SLM, IEC 61400-2) is also discussed to improve the structural strength of the rotor. In SLM, Edge wise Moment and Flap Wise moment is considered which cause bending stress at the root of the blade. Various Load case mentioned in the IEC 61400-2 is calculated and checked for the partial safety factor of the wind turbine blade.

Keywords: annual energy production, Blade Element Momentum Theory, low wind Conditions, selection of airfoil

Procedia PDF Downloads 314
485 Isolation and Screening of Antagonistic Bacteria against Wheat Pathogenic Fungus Tilletia indica

Authors: Sugandha Asthana, Geetika Vajpayee, Pratibha Kumari, Shanthy Sundaram

Abstract:

An economically important disease of wheat in North Western region of India is Karnal Bunt caused by smut fungus Tilletia indica. This fungal pathogen spreads by air, soil and seed borne sporodia at the time of flowering, which ultimately leads to partial bunting of wheat kernels with fishy odor and taste to wheat flour. It has very serious effects due to quarantine measures which have to be applied for grain exports. Chemical fungicides such as mercurial compounds and Propiconazole applied to the control of Karnal bunt have been only partially successful. Considering the harmful effects of chemical fungicides on man as well as environment, many countries are developing biological control as the superior substitute to chemical control. Repeated use of fungicides can be responsible for the development of resistance in fungal pathogens against certain chemical compounds. The present investigation is based on the isolation and evaluation of antifungal properties of some isolated (from natural manure) and commercial bacterial strains against Tilletia indica. Total 23 bacterial isolates were obtained and antagonistic activity of all isolates and commercial bacterial strains (Bacillus subtilis MTCC8601, Bacillus pumilus MTCC 8743, Pseudomonas aeruginosa) were tested against T. indica by dual culture plate assay (pour plate and streak plate). Test for the production of antifungal volatile organic compounds (VOCs) by antagonistic bacteria was done by sealed plate method. Amongst all s1, s3, s5, and B. subtilis showed more than 80% inhibition. Production of extracellular hydrolytic enzymes such as protease, beta 1, 4 glucanase, HCN and ammonia was studied for confirmation of antifungal activity. s1, s3, s5 and B. subtilis were found to be the best for protease activity and s5 and B. subtilis for beta 1, 4 glucanase activity. Bacillus subtilis was significantly effective for HCN whereas s3, s5 and Bacillus subtilis for ammonia production. Isolates were identified as Pseudomonas aeruginosa (s1) and B. licheniformis (s3, s5) by various biochemical assays and confirmed by16s rRNA sequencing. Use of microorganisms or their secretions as biocontrol agents to avoid plant diseases is ecologically safe and may offer long term of protection to crop. The above study reports the promising effects of these strains in better pathogen free crop production and quality maintenance as well as prevention of the excessive use of synthetic fungicides.

Keywords: antagonistic, antifungal, biocontrol, Karnal bunt

Procedia PDF Downloads 251
484 HIV-1 Nef Mediates Host Invasion by Differential Expression of Alpha-Enolase

Authors: Reshu Saxena, R. K. Tripathi

Abstract:

HIV-1 transmission and spread involves significant host-virus interaction. Potential targets for prevention of HIV-1 lies at the site of mucosal barriers. Thus a better understanding of how HIV-1 infects target cells at such sites and lead their invasion is required, with prime focus on the host determinants regulating HIV-1 spread. HIV-1 Nef is important for viral infectivity and pathogenicity. It promotes HIV-1 replication, facilitating immune evasion by interacting with various host factors and altering cellular pathways via multiple protein-protein interactions. In this study nef was sequenced from HIV-1 patients, and showed specific mutations revealing sequence variability in nef. To explore the difference in Nef functionality based on sequence variability we have studied the effects of HIV-1 Nef in human SupT1 T cell line and (THP-1) monocyte-macrophage cell lines through proteomics approach. 2D-Gel Electrophoresis in control and Nef-transfected SupT1 cells demonstrated several differentially expressed proteins with significant modulation of alpha-enolase. Through further studies, effects of Nef on alpha-enolase regulation were found to be cell lineage-specific, being stimulatory in macrophages/monocytes, inhibitory in T cells and without effect in HEK-293 cells. Cell migration and invasion studies were employed to determine biological function affected by Nef mediated regulation of alpha-enolase. Cell invasion was enhanced in THP-1 cells but was inhibited in SupT1 cells by wildtype nef. In addition, the modulation of enolase and cell invasion remained unaffected by a unique nef variant. These results indicated that regulation of alpha-enolase expression and invasive property of host cells by Nef is sequence specific, suggesting involvement of a particular motif of Nef. To precisely determine this site, we designed a heptapeptide including the suggested alpha-enolase regulating sequence of nef and a nef mutant with deletion of this site. Macrophages/monocytes being the major cells affected by HIV-1 at mucosal barriers, were particularly investigated by the nef mutant and peptide. Both the nef mutant and heptapeptide led to inhibition of enhanced enolase expression and increased invasiveness in THP-1 cells. Together, these findings suggest a possible mechanism of host invasion by HIV-1 through Nef mediated regulation of alpha-enolase and identifies a potential therapeutic target for HIV-1 entry at mucosal barriers.

Keywords: HIV-1 Nef, nef variants, host-virus interaction, tissue invasion

Procedia PDF Downloads 384
483 Self-Sensing Concrete Nanocomposites for Smart Structures

Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi

Abstract:

In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.

Keywords: carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring

Procedia PDF Downloads 205
482 Development of a Tilt-Rotor Aircraft Model Using System Identification Technique

Authors: Ferdinando Montemari, Antonio Vitale, Nicola Genito, Giovanni Cuciniello

Abstract:

The introduction of tilt-rotor aircraft into the existing civilian air transportation system will provide beneficial effects due to tilt-rotor capability to combine the characteristics of a helicopter and a fixed-wing aircraft into one vehicle. The disposability of reliable tilt-rotor simulation models supports the development of such vehicle. Indeed, simulation models are required to design automatic control systems that increase safety, reduce pilot's workload and stress, and ensure the optimal aircraft configuration with respect to flight envelope limits, especially during the most critical flight phases such as conversion from helicopter to aircraft mode and vice versa. This article presents a process to build a simplified tilt-rotor simulation model, derived from the analysis of flight data. The model aims to reproduce the complex dynamics of tilt-rotor during the in-flight conversion phase. It uses a set of scheduled linear transfer functions to relate the autopilot reference inputs to the most relevant rigid body state variables. The model also computes information about the rotor flapping dynamics, which are useful to evaluate the aircraft control margin in terms of rotor collective and cyclic commands. The rotor flapping model is derived through a mixed theoretical-empirical approach, which includes physical analytical equations (applicable to helicopter configuration) and parametric corrective functions. The latter are introduced to best fit the actual rotor behavior and balance the differences existing between helicopter and tilt-rotor during flight. Time-domain system identification from flight data is exploited to optimize the model structure and to estimate the model parameters. The presented model-building process was applied to simulated flight data of the ERICA Tilt-Rotor, generated by using a high fidelity simulation model implemented in FlightLab environment. The validation of the obtained model was very satisfying, confirming the validity of the proposed approach.

Keywords: flapping dynamics, flight dynamics, system identification, tilt-rotor modeling and simulation

Procedia PDF Downloads 169
481 Damping Optimal Design of Sandwich Beams Partially Covered with Damping Patches

Authors: Guerich Mohamed, Assaf Samir

Abstract:

The application of viscoelastic materials in the form of constrained layers in mechanical structures is an efficient and cost-effective technique for solving noise and vibration problems. This technique requires a design tool to select the best location, type, and thickness of the damping treatment. This paper presents a finite element model for the vibration of beams partially or fully covered with a constrained viscoelastic damping material. The model is based on Bernoulli-Euler theory for the faces and Timoshenko beam theory for the core. It uses four variables: the through-thickness constant deflection, the axial displacements of the faces, and the bending rotation of the beam. The sandwich beam finite element is compatible with the conventional C1 finite element for homogenous beams. To validate the proposed model, several free vibration analyses of fully or partially covered beams, with different locations of the damping patches and different percent coverage, are studied. The results show that the proposed approach can be used as an effective tool to study the influence of the location and treatment size on the natural frequencies and the associated modal loss factors. Then, a parametric study regarding the variation in the damping characteristics of partially covered beams has been conducted. In these studies, the effect of core shear modulus value, the effect of patch size variation, the thickness of constraining layer, and the core and the locations of the patches are considered. In partial coverage, the spatial distribution of additive damping by using viscoelastic material is as important as the thickness and material properties of the viscoelastic layer and the constraining layer. Indeed, to limit added mass and to attain maximum damping, the damping patches should be placed at optimum locations. These locations are often selected using the modal strain energy indicator. Following this approach, the damping patches are applied over regions of the base structure with the highest modal strain energy to target specific modes of vibration. In the present study, a more efficient indicator is proposed, which consists of placing the damping patches over regions of high energy dissipation through the viscoelastic layer of the fully covered sandwich beam. The presented approach is used in an optimization method to select the best location for the damping patches as well as the material thicknesses and material properties of the layers that will yield optimal damping with the minimum area of coverage.

Keywords: finite element model, damping treatment, viscoelastic materials, sandwich beam

Procedia PDF Downloads 118
480 Recognition of a Thinly Bedded Distal Turbidite: A Case Study from a Proterozoic Delta System, Chaossa Formation, Simla Group, Western Lesser Himalaya, India

Authors: Priyanka Mazumdar, Ananya Mukhopadhyay

Abstract:

A lot of progress has been achieved in the research of turbidites during the last decades. However, their relationship to delta systems still deserves further attention. This paper addresses example of fine grained turbidite from a pro-deltaic deposit of a Proterozoic mixed energy delta system exposed along Chaossa-Baliana river section of the Chaossa Formation of the Simla Basin. Lithostratigraphic analysis of the Chaossa Formation reveals three major facies associations (prodelta deposit-FA1, delta slope deposit-FA2 and delta front deposit-FA3) based on lithofacies types, petrography and sedimentary structures. Detailed process-based facies and paleoenvironmental analysis of the study area have led to identification of more than150 m thick coarsening-upwards deltaic successions composed of fine grained turbidites overlain by delta slope deposits. Erosional features are locally common at the base of turbidite beds and still more widespread at the top. The complete sequence has eight sub-divisions that are here termed T1 to T8. The basal subdivision (T1) comprises a massive graded unit with a sharp, scoured base, internal parallel-lamination and cross-lamination. The overlying sequence shows textural and compositional grading through alternating silt and mud laminae (T2). T2 is overlying by T3 which is characterized by climbing ripple and cross lamination. Parallel laminae are the predominant facies attributes of T4 which caps the T3 unit. T5 has a loaded scour base and is mainly characterized laminated silt. The topmost three divisions, graded mud (T6), ungraded mud (T7) and laminated mud (T8). The proposed sequence is analogous to the Bouma (1962) structural scheme for sandy turbidites. Repetition of partial sequences represents deposition from different stages of evolution of a large, muddy, turbidity flow. Detailed facies analysis of the study area reveals that the sediments of the turbidites developed during normal regression at the stage of stable or marginally rising sea level. Thin-bedded turbidites were deposited predominantly by turbidity currents in the relatively shallower part of the Simla basin. The fine-grained turbidites are developed by resedimentation of delta-front sands and slumping of upper pro-delta muds.

Keywords: turbidites, prodelta, proterozoic, Simla Basin, Bouma sequence

Procedia PDF Downloads 241
479 Structural Equation Modeling Approach: Modeling the Impact of Social Marketing Programs on Combating Female Genital Mutilation in the Sudanese Society

Authors: Nada Abdelsadig Moahamed Saied

Abstract:

Female Genital Mutilation (FGM) and other similar traditional cultural practices pose a significant problem for Sudanese society. Such actions are severe and seriously detrimental to people's health since they are based on false social perceptions. To address these problems, numerous institutions and organizations were compelled to act rapidly. Female circumcision, or FGM, is one of the riskiest practices. It is referred to as the excision of the genitalia. Any surgeries involving the total or partial removal of the external female genitalia for non-medical reasons fall under this category. The results of FGM can vary depending on the kind and degree of the operation. These can be categorized as short-term, mid-term, or long-term issues. Infections, including the Human, blood, discomfort, and difficulty urinating are the immediate effects. FGM is defined by the World Health Organization (WHO) as practices that purposefully damage or modify female genital organs for non-medical purposes. It often takes place between the ages of one and fifteen. The girl's right to decide on important choices affecting her sexual and reproductive health is violated because the act is usually performed without her consent and frequently against her will. UNICEF, the United Nations International Children's Emergency Fund, aggressively combats the issue of FGM in Sudan. Numerous programs were started by NGOs to stop the practice. To our knowledge, no scientific study has been conducted to evaluate the effects of such social marketing techniques on simulating and comprehending society’s feelings surrounding FGM. This study proposes the development of a structural equation model aiming to determine the impact of awareness programs on people’s intentions to adopt the behavior of abandoning FGM based on theoretical models of behavior change. The model incorporates all the relevant factors that contribute to FGM and possible strategic actions to tackle this problem. The theoretical backdrop for FGM is presented in the next section, which also explains the practice's history, justifications, and potential treatments. The methodology section that follows describes the structural equation model. The proposed model, which compiles all the pertinent elements into a single image, is presented in the fourth part. Finally, conclusions are reached, and suggestions for further research are made.

Keywords: social marketing, policy-making, behavioral change, female genital mutilation, culture

Procedia PDF Downloads 53
478 Embodied Communication - Examining Multimodal Actions in a Digital Primary School Project

Authors: Anne Öman

Abstract:

Today in Sweden and in other countries, a variety of digital artefacts, such as laptops, tablets, interactive whiteboards, are being used at all school levels. From an educational perspective, digital artefacts challenge traditional teaching because they provide a range of modes for expression and communication and are not limited to the traditional medium of paper. Digital technologies offer new opportunities for representations and physical interactions with objects, which put forward the role of the body in interaction and learning. From a multimodal perspective the emphasis is on the use of multiple semiotic resources for meaning- making and the study presented here has examined the differential use of semiotic resources by pupils interacting in a digitally designed task in a primary school context. The instances analyzed in this paper come from a case study where the learning task was to create an advertising film in a film-software. The study in focus involves the analysis of a single case with the emphasis on the examination of the classroom setting. The research design used in this paper was based on a micro ethnographic perspective and the empirical material was collected through video recordings of small-group work in order to explore pupils’ communication within the group activity. The designed task described here allowed students to build, share, collaborate upon and publish the redesigned products. The analysis illustrates the variety of communicative modes such as body position, gestures, visualizations, speech and the interaction between these modes and the representations made by the pupils. The findings pointed out the importance of embodied communication during the small- group processes from a learning perspective as well as a pedagogical understanding of pupils’ representations, which were similar from a cultural literacy perspective. These findings open up for discussions with further implications for the school practice concerning the small- group processes as well as the redesigned products. Wider, the findings could point out how multimodal interactions shape the learning experience in the meaning-making processes taking into account that language in a globalized society is more than reading and writing skills.

Keywords: communicative learning, interactive learning environments, pedagogical issues, primary school education

Procedia PDF Downloads 392
477 Application of Geosynthetics for the Recovery of Located Road on Geological Failure

Authors: Rideci Farias, Haroldo Paranhos

Abstract:

The present work deals with the use of drainage geo-composite as a deep drainage and geogrid element to reinforce the base of the body of the landfill destined to the road pavement on geological faults in the stretch of the TO-342 Highway, between the cities of Miracema and Miranorte, in the State of Tocantins / TO, Brazil, which for many years was the main link between TO-010 and BR-153, after the city of Palmas, also in the state of Tocantins / TO, Brazil. For this application, geotechnical and geological studies were carried out by means of SPT percussion drilling, drilling and rotary drilling, to understand the problem, identifying the type of faults, filling material and the definition of the water table. According to the geological and geotechnical studies carried out, the area where the route was defined, passes through a zone of longitudinal fault to the runway, with strong breaking / fracturing, with presence of voids, intense alteration and with advanced argilization of the rock and with the filling up parts of the faults by organic and compressible soils leachate from other horizons. This geology presents as a geotechnical aggravating agent a medium of high hydraulic load and very low resistance to penetration. For more than 20 years, the region presented constant excessive deformations in the upper layers of the pavement, which after routine services of regularization, reconformation, re-compaction of the layers and application of the asphalt coating. The faults were quickly propagated to the surface of the asphalt pavement, generating a longitudinal shear, forming steps (unevenness), close to 40 cm, causing numerous accidents and discomfort to the drivers, since the geometric positioning was in a horizontal curve. Several projects were presented to the region's highway department to solve the problem. Due to the need for partial closure of the runway, the short time for execution, the use of geosynthetics was proposed and the most adequate solution for the problem was taken into account the movement of existing geological faults and the position of the water level in relation to several Layers of pavement and failure. In order to avoid any flow of water in the body of the landfill and in the filling material of the faults, a drainage curtain solution was used, carried out at 4.0 meters depth, with drainage geo-composite and as reinforcement element and inhibitor of the possible A geogrid of 200 kN / m of resistance was inserted at the base of the reconstituted landfill. Recent evaluations, after 13 years of application of the solution, show the efficiency of the technique used, supported by the geotechnical studies carried out in the area.

Keywords: geosynthetics, geocomposite, geogrid, road, recovery, geological failure

Procedia PDF Downloads 144
476 Incorporation of Noncanonical Amino Acids into Hard-to-Express Antibody Fragments: Expression and Characterization

Authors: Hana Hanaee-Ahvaz, Monika Cserjan-Puschmann, Christopher Tauer, Gerald Striedner

Abstract:

Incorporation of noncanonical amino acids (ncAA) into proteins has become an interesting topic as proteins featured with ncAAs offer a wide range of different applications. Nowadays, technologies and systems exist that allow for the site-specific introduction of ncAAs in vivo, but the efficient production of proteins modified this way is still a big challenge. This is especially true for 'hard-to-express' proteins where low yields are encountered even with the native sequence. In this study, site-specific incorporation of azido-ethoxy-carbonyl-Lysin (azk) into an anti-tumor-necrosis-factor-α-Fab (FTN2) was investigated. According to well-established parameters, possible site positions for ncAA incorporation were determined, and corresponding FTN2 genes were constructed. Each of the modified FTN2 variants has one amber codon for azk incorporated either in its heavy or light chain. The expression level for all variants produced was determined by ELISA, and all azk variants could be produced with a satisfactory yield in the range of 50-70% of the original FTN2 variant. In terms of expression yield, neither the azk incorporation position nor the subunit modified (heavy or light chain) had a significant effect. We confirmed correct protein processing and azk incorporation by mass spectrometry analysis, and antigen-antibody interaction was determined by surface plasmon resonance analysis. The next step is to characterize the effect of azk incorporation on protein stability and aggregation tendency via differential scanning calorimetry and light scattering, respectively. In summary, the incorporation of ncAA into our Fab candidate FTN2 worked better than expected. The quantities produced allowed a detailed characterization of the variants in terms of their properties, and we can now turn our attention to potential applications. By using click chemistry, we can equip the Fabs with additional functionalities and make them suitable for a wide range of applications. We will now use this option in a first approach and develop an assay that will allow us to follow the degradation of the recombinant target protein in vivo. Special focus will be laid on the proteolytic activity in the periplasm and how it is influenced by cultivation/induction conditions.

Keywords: degradation, FTN2, hard-to-express protein, non-canonical amino acids

Procedia PDF Downloads 198
475 Impact of Instrument Transformer Secondary Connections on Performance of Protection System: Experiences from Indian POWERGRID

Authors: Pankaj Kumar Jha, Mahendra Singh Hada, Brijendra Singh, Sandeep Yadav

Abstract:

Protective relays are commonly connected to the secondary windings of instrument transformers, i.e., current transformers (CTs) and/or capacitive voltage transformers (CVTs). The purpose of CT and CVT is to provide galvanic isolation from high voltages and reduce primary currents and voltages to a nominal quantity recognized by the protective relays. Selecting the correct instrument transformers for an application is imperative: failing to do so may compromise the relay’s performance, as the output of the instrument transformer may no longer be an accurately scaled representation of the primary quantity. Having an accurately rated instrument transformer is of no use if these devices are not properly connected. The performance of the protective relay is reliant on its programmed settings and on the current and voltage inputs from the instrument transformers secondary. This paper will help in understanding the fundamental concepts of the connections of Instrument Transformers to the protection relays and the effect of incorrect connection on the performance of protective relays. Multiple case studies of protection system mal-operations due to incorrect connections of instrument transformers will be discussed in detail in this paper. Apart from the connection issue of instrument transformers to protective relays, this paper will also discuss the effect of multiple earthing of CTs and CVTs secondary on the performance of the protection system. Case studies presented in this paper will help the readers to analyse the problem through real-world challenges in complex power system networks. This paper will also help the protection engineer in better analysis of disturbance records. CT and CVT connection errors can lead to undesired operations of protection systems. However, many of these operations can be avoided by adhering to industry standards and implementing tried-and-true field testing and commissioning practices. Understanding the effect of missing neutral of CVT, multiple earthing of CVT secondary, and multiple grounding of CT star points on the performance of the protection system through real-world case studies will help the protection engineer in better commissioning the protection system and maintenance of the protection system.

Keywords: bus reactor, current transformer, capacitive voltage transformer, distance protection, differential protection, directional earth fault, disturbance report, instrument transformer, ICT, REF protection, shunt reactor, voltage selection relay, VT fuse failure

Procedia PDF Downloads 48
474 Modeling and Simulation of Multiphase Evaporation in High Torque Low Speed Diesel Engine

Authors: Ali Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi

Abstract:

Diesel engines are most efficient and reliable in terms of efficiency, reliability, and adaptability. Most of the research and development up till now have been directed towards High Speed Diesel Engine, for Commercial use. In these engines, objective is to optimize maximum acceleration by reducing exhaust emission to meet international standards. In high torque low speed engines, the requirement is altogether different. These types of engines are mostly used in Maritime Industry, Agriculture Industry, Static Engines Compressors Engines, etc. On the contrary, high torque low speed engines are neglected quite often and are eminent for low efficiency and high soot emissions. One of the most effective ways to overcome these issues is by efficient combustion in an engine cylinder. Fuel spray dynamics play a vital role in defining mixture formation, fuel consumption, combustion efficiency and soot emissions. Therefore, a comprehensive understanding of the fuel spray characteristics and atomization process in high torque low speed diesel engine is of great importance. Evaporation in the combustion chamber has a rigorous effect on the efficiency of the engine. In this paper, multiphase evaporation of fuel is modeled for high torque low speed engine using the CFD (computational fluid dynamics) codes. Two distinct phases of evaporation are modeled using modeling soft wares. The basic model equations are derived from the energy conservation equation and Naiver-Stokes equation. O’Rourke model is used to model the evaporation phases. The results obtained showed a generous effect on the efficiency of the engine. Evaporation rate of fuel droplet is increased with the increase in vapor pressure. An appreciable reduction in size of droplet is achieved by adding the convective heat effects in the combustion chamber. By and large, an overall increase in efficiency is observed by modeling distinct evaporation phases. This increase in efficiency is due to the fact that droplet size is reduced and vapor pressure is increased in the engine cylinder.

Keywords: diesel fuel, CFD, evaporation, multiphase

Procedia PDF Downloads 311
473 Weakly Non-Linear Stability Analysis of Newtonian Liquids and Nanoliquids in Shallow, Square and Tall High-Porosity Enclosures

Authors: Pradeep G. Siddheshwar, K. M. Lakshmi

Abstract:

The present study deals with weakly non-linear stability analysis of Rayleigh-Benard-Brinkman convection in nanoliquid-saturated porous enclosures. The modified-Buongiorno-Brinkman model (MBBM) is used for the conservation of linear momentum in a nanoliquid-saturated-porous medium under the assumption of Boussinesq approximation. Thermal equilibrium is imposed between the base liquid and the nanoparticles. The thermophysical properties of nanoliquid are modeled using phenomenological laws and mixture theory. The fifth-order Lorenz model is derived for the problem and is then reduced to the first-order Ginzburg-Landau equation (GLE) using the multi-scale method. The analytical solution of the GLE for the amplitude is then used to quantify the heat transport in closed form, in terms of the Nusselt number. It is found that addition of dilute concentration of nanoparticles significantly enhances the heat transport and the dominant reason for the same is the high thermal conductivity of the nanoliquid in comparison to that of the base liquid. This aspect of nanoliquids helps in speedy removal of heat. The porous medium serves the purpose of retainment of energy in the system due to its low thermal conductivity. The present model helps in making a unified study for obtaining the results for base liquid, nanoliquid, base liquid-saturated porous medium and nanoliquid-saturated porous medium. Three different types of enclosures are considered for the study by taking different values of aspect ratio, and it is observed that heat transport in tall porous enclosure is maximum while that of shallow is the least. Detailed discussion is also made on estimating heat transport for different volume fractions of nanoparticles. Results of single-phase model are shown to be a limiting case of the present study. The study is made for three boundary combinations, viz., free-free, rigid-rigid and rigid-free.

Keywords: Boungiorno model, Ginzburg-Landau equation, Lorenz equations, porous medium

Procedia PDF Downloads 297
472 Dependence of the Photoelectric Exponent on the Source Spectrum of the CT

Authors: Rezvan Ravanfar Haghighi, V. C. Vani, Suresh Perumal, Sabyasachi Chatterjee, Pratik Kumar

Abstract:

X-ray attenuation coefficient [µ(E)] of any substance, for energy (E), is a sum of the contributions from the Compton scattering [ μCom(E)] and photoelectric effect [µPh(E)]. In terms of the, electron density (ρe) and the effective atomic number (Zeff) we have µCom(E) is proportional to [(ρe)fKN(E)] while µPh(E) is proportional to [(ρeZeffx)/Ey] with fKN(E) being the Klein-Nishina formula, with x and y being the exponents for photoelectric effect. By taking the sample's HU at two different excitation voltages (V=V1, V2) of the CT machine, we can solve for X=ρe, Y=ρeZeffx from these two independent equations, as is attempted in DECT inversion. Since µCom(E) and µPh(E) are both energy dependent, the coefficients of inversion are also dependent on (a) the source spectrum S(E,V) and (b) the detector efficiency D(E) of the CT machine. In the present paper we tabulate these coefficients of inversion for different practical manifestations of S(E,V) and D(E). The HU(V) values from the CT follow: <µ(V)>=<µw(V)>[1+HU(V)/1000] where the subscript 'w' refers to water and the averaging process <….> accounts for the source spectrum S(E,V) and the detector efficiency D(E). Linearity of μ(E) with respect to X and Y implies that (a) <µ(V)> is a linear combination of X and Y and (b) for inversion, X and Y can be written as linear combinations of two independent observations <µ(V1)>, <µ(V2)> with V1≠V2. These coefficients of inversion would naturally depend upon S(E, V) and D(E). We numerically investigate this dependence for some practical cases, by taking V = 100 , 140 kVp, as are used for cardiological investigations. The S(E,V) are generated by using the Boone-Seibert source spectrum, being superposed on aluminium filters of different thickness lAl with 7mm≤lAl≤12mm and the D(E) is considered to be that of a typical Si[Li] solid state and GdOS scintilator detector. In the values of X and Y, found by using the calculated inversion coefficients, errors are below 2% for data with solutions of glycerol, sucrose and glucose. For low Zeff materials like propionic acid, Zeffx is overestimated by 20% with X being within1%. For high Zeffx materials like KOH the value of Zeffx is underestimated by 22% while the error in X is + 15%. These imply that the source may have additional filtering than the aluminium filter specified by the manufacturer. Also it is found that the difference in the values of the inversion coefficients for the two types of detectors is negligible. The type of the detector does not affect on the DECT inversion algorithm to find the unknown chemical characteristic of the scanned materials. The effect of the source should be considered as an important factor to calculate the coefficients of inversion.

Keywords: attenuation coefficient, computed tomography, photoelectric effect, source spectrum

Procedia PDF Downloads 372
471 Can Zirconia Wings of Resin Retained Cantilever Bridges Be Effectively Bonded To Tooth Tissue When Compared With Metal Wings In The Anterior Dentition in vivo? - A Systematic Review.

Authors: Ariyan S. Araghi, Guy C. Jackson, Stephen J. Bonsor

Abstract:

Materials & Methods: A systematic literature search was undertaken using pre-determined inclusion and exclusion criteria. This review followed the Preferred Reporting Items for Systemic Reviews and Meta-Analysis (PRISMA) statement. Several databases were used to search for randomised control trials and longitudinal cohort studies, which were published less than thirty years ago. A total of 54 studies met the predefined inclusion criteria. Four studies reviewed the success, survival, and failure characteristics of zirconia framework resin retained bridges, whilst two reviewed non-precious metal resin retained bridges. Results: The analysis of the studies revealed an overall survival rate of 95.9% for zirconia-based restorations compared to 90.7% for non-precious metal frameworks. Non-precious metal resin retained bridges displayed a higher overall failure rate of 11.9% compared to 4.6% for zirconia-based restorations in the analysed papers. The most frequent complications were wing debonding for the non-precious metal wing group, whereas substructure fracture and veneering ceramic fracture were more prevalent for the zirconia arm of the study. Conclusion: Both types of resin retained bridges provide effective medium to long-term survival. Zirconia-based frameworks will provide marginally increased success and survival and greatly improved aesthetics. However, catastrophic failure is more likely with zirconia-based restorations. Non-precious metal is time tested but performs worse than its zirconia counterpart with regards to longevity; it does not exhibit the same framework fractures as zirconia. Cement choice and attention to the adhesive bonding systems used appear to be paramount to restoration longevity with both restoration subtypes. Furthermore, improved longevity can be seen when air particle abrasion is incorporated into the adhesive protocol. Within the limitations of this study, it has been determined that zirconia-based resin retained bridges can be effectively used in anterior cantilever bridges. Clinical Significance: Zirconia-based resin retained bridges have been demonstrating promising results in terms of improved success and survival characteristics, together with improved aesthetics when compared to non-precious metal winged resin retained bridges. Their popularity is increasing in the age of digital dentistry as many restorations are manufactured using such technology. It is essential that clinicians understand the limitations of each material type and principles of adhesion to ensure restoration longevity.

Keywords: resin retained bridge, fixed partial denture, zirconia bridge, adhesive bridge

Procedia PDF Downloads 59
470 Renewable Natural Gas Production from Biomass and Applications in Industry

Authors: Sarah Alamolhoda, Kevin J. Smith, Xiaotao Bi, Naoko Ellis

Abstract:

For millennials, biomass has been the most important source of fuel used to produce energy. Energy derived from biomass is renewable by re-growth of biomass. Various technologies are used to convert biomass to potential renewable products including combustion, gasification, pyrolysis and fermentation. Gasification is the incomplete combustion of biomass in a controlled environment that results in valuable products such as syngas, biooil and biochar. Syngas is a combustible gas consisting of hydrogen (H₂), carbon monoxide (CO), carbon dioxide (CO₂), and traces of methane (CH₄) and nitrogen (N₂). Cleaned syngas can be used as a turbine fuel to generate electricity, raw material for hydrogen and synthetic natural gas production, or as the anode gas of solid oxide fuel cells. In this work, syngas as a product of woody biomass gasification in British Columbia, Canada, was introduced to two consecutive fixed bed reactors to perform a catalytic water gas shift reaction followed by a catalytic methanation reaction. The water gas shift reaction is a well-established industrial process and used to increase the hydrogen content of the syngas before the methanation process. Catalysts were used in the process since both reactions are reversible exothermic, and thermodynamically preferred at lower temperatures while kinetically favored at elevated temperatures. The water gas shift reactor and the methanation reactor were packed with Cu-based catalyst and Ni-based catalyst, respectively. Simulated syngas with different percentages of CO, H₂, CH₄, and CO₂ were fed to the reactors to investigate the effect of operating conditions in the unit. The water gas shift reaction experiments were done in the temperature of 150 ˚C to 200 ˚C, and the pressure of 550 kPa to 830 kPa. Similarly, methanation experiments were run in the temperature of 300 ˚C to 400 ˚C, and the pressure of 2340 kPa to 3450 kPa. The Methanation reaction reached 98% of CO conversion at 340 ˚C and 3450 kPa, in which more than half of CO was converted to CH₄. Increasing the reaction temperature caused reduction in the CO conversion and increase in the CH₄ selectivity. The process was designed to be renewable and release low greenhouse gas emissions. Syngas is a clean burning fuel, however by going through water gas shift reaction, toxic CO was removed, and hydrogen as a green fuel was produced. Moreover, in the methanation process, the syngas energy was transformed to a fuel with higher energy density (per volume) leading to reduction in the amount of required fuel that flows through the equipment and improvement in the process efficiency. Natural gas is about 3.5 times more efficient (energy/ volume) than hydrogen and easier to store and transport. When modification of existing infrastructure is not practical, the partial conversion of renewable hydrogen to natural gas (with up to 15% hydrogen content), the efficiency would be preserved while greenhouse gas emission footprint is eliminated.

Keywords: renewable natural gas, methane, hydrogen, gasification, syngas, catalysis, fuel

Procedia PDF Downloads 75
469 Three-Dimensional Fluid-Structure-Thermal Coupling Dynamics Simulation Model of a Gas-Filled Fluid-Resistance Damper and Experimental Verification

Authors: Wenxue Xu

Abstract:

Fluid resistance damper is an important damping element to attenuate vehicle vibration. It converts vibration energy into thermal energy dissipation through oil throttling. It is a typical fluid-solid-heat coupling problem. A complete three-dimensional flow-structure-thermal coupling dynamics simulation model of a gas-filled fluid-resistance damper was established. The flow-condition-based interpolation (FCBI) method and direct coupling calculation method, the unit's FCBI-C fluid numerical analysis method and iterative coupling calculation method are used to achieve the damper dynamic response of the piston rod under sinusoidal excitation; the air chamber inflation pressure, spring compression characteristics, constant flow passage cross-sectional area and oil parameters, etc. The system parameters, excitation frequency, and amplitude and other excitation parameters are analyzed and compared in detail for the effects of differential pressure characteristics, velocity characteristics, flow characteristics and dynamic response of valve opening, floating piston response and piston rod output force characteristics. Experiments were carried out on some simulation analysis conditions. The results show that the node-based FCBI (flow-condition-based interpolation) fluid numerical analysis method and direct coupling calculation method can better guarantee the conservation of flow field calculation, and the calculation step is larger, but the memory is also larger; if the chamber inflation pressure is too low, the damper will become cavitation. The inflation pressure will cause the speed characteristic hysteresis to increase, and the sealing requirements are too strict. The spring compression characteristics have a great influence on the damping characteristics of the damper, and reasonable damping characteristic needs to properly design the spring compression characteristics; the larger the cross-sectional area of the constant flow channel, the smaller the maximum output force, but the more stable when the valve plate is opening.

Keywords: damper, fluid-structure-thermal coupling, heat generation, heat transfer

Procedia PDF Downloads 119
468 Life Cycle Assessment-Based Environmental Assessment of the Production and Maintenance of Wooden Windows

Authors: Pamela Del Rosario, Elisabetta Palumbo, Marzia Traverso

Abstract:

The building sector plays an important role in addressing pressing environmental issues such as climate change and resource scarcity. The energy performance of buildings is considerably affected by the external envelope. In fact, a considerable proportion of the building energy demand is due to energy losses through the windows. Nevertheless, according to literature, to pay attention only to the contribution of windows to the building energy performance, i.e., their influence on energy use during building operation, could result in a partial evaluation. Hence, it is important to consider not only the building energy performance but also the environmental performance of windows, and this not only during the operational stage but along its complete life cycle. Life Cycle Assessment (LCA) according to ISO 14040:2006 and ISO 14044:2006+A1:2018 is one of the most adopted and robust methods to evaluate the environmental performance of products throughout their complete life cycle. This life-cycle based approach avoids the shift of environmental impacts of a life cycle stage to another, allowing to allocate them to the stage in which they originated and to adopt measures that optimize the environmental performance of the product. Moreover, the LCA method is widely implemented in the construction sector to assess whole buildings as well as construction products and materials. LCA is regulated by the European Standards EN 15978:2011, at the building level, and EN 15804:2012+A2:2019, at the level of construction products and materials. In this work, the environmental performance of wooden windows was assessed by implementing the LCA method and adopting primary data. More specifically, the emphasis is given to embedded and operational impacts. Furthermore, correlations are made between these environmental impacts and aspects such as type of wood and window transmittance. In the particular case of the operational impacts, special attention is set on the definition of suitable maintenance scenarios that consider the potential climate influence on the environmental impacts. For this purpose, a literature review was conducted, and expert consultation was carried out. The study underlined the variability of the embedded environmental impacts of wooden windows by considering different wood types and transmittance values. The results also highlighted the need to define appropriate maintenance scenarios for precise assessment results. It was found that both the service life and the window maintenance requirements in terms of treatment and its frequency are highly dependent not only on the wood type and its treatment during the manufacturing process but also on the weather conditions of the place where the window is installed. In particular, it became evident that maintenance-related environmental impacts were the highest for climate regions with the lowest temperatures and the greatest amount of precipitation.

Keywords: embedded impacts, environmental performance, life cycle assessment, LCA, maintenance stage, operational impacts, wooden windows

Procedia PDF Downloads 201
467 Afrikan Natural Medicines: An Innovation-Based Model for Medicines Production, Curriculum Development and Clinical Application

Authors: H. Chabalala, A. Grootboom, M. Tang

Abstract:

The innovative development, production, and clinical utilisation of African natural medicines requires frameworks from systematisation, innovation, registration. Afrika faces challenges when it comes to these sectors. The opposite is the case as is is evident in ancient Asian (Traditional Chinese Medicine and Indian Ayurveda and Siddha) medical systems, which are interfaced into their respective national health and educational systems. Afrikan Natural Medicines (ANMs) are yet to develop systematisation frameworks, i.e. disease characterisation and medicines classification. This paper explores classical medical systems drawn from Afrikan and Chinese experts in natural medicines. An Afrikological research methodology was used to conduct in-depth interviews with 20 key respondents selected through purposeful sampling technique. Data was summarised into systematisation frameworks for classical disease theories, patient categorisation, medicine classification, aetiology and pathogenesis of disease, diagnosis and prognosis techniques and treatment methods. It was discovered that ancient Afrika had systematic medical cosmologies, remnants of which are evident in most Afrikan cultural health practices. Parallels could be drawn from classical medical concepts of antiquity, like Chinese Taoist and Indian tantric health systems. Data revealed that both the ancient and contemporary ANM systems were based on living medical cosmologies. The study showed that African Natural Healing Systems have etiological systems, general pathogenesis knowledge, differential diagnostic techniques, comprehensive prognosis and holistic treatment regimes. Systematisation models were developed out of these frameworks, and this could be used for evaluation of clinical research, medical application including development of curriculum for high-education. It was envisaged that frameworks will pave way towards the development, production and commercialisation of ANMs. This was piloted in inclusive innovation, technology transfer and commercialisation of South African natural medicines, cosmeceuticals, nutraceuticals and health infusions. The central model presented here in will assist in curriculum development and establishment of Afrikan Medicines Hospitals and Pharmaceutical Industries.

Keywords: African Natural Medicines, Indigenous Knowledge Systems, Medical Cosmology, Clinical Application

Procedia PDF Downloads 93
466 Communicative Competence Is About Speaking a Lot: Teacher’s Voice on the Art of Developing Communicative Competence

Authors: Bernice Badal

Abstract:

The South African English curriculum emphasizes the adoption of the Communicative Approach (CA) using Communicative Language Teaching (CLT) methodologies to develop English as a second language (ESL) learners’ communicative competence in contexts such as township schools in South Africa. However, studies indicate that the adoption of the approach largely remains a rhetoric. Poor English language proficiency among learners and poor student performance, which continues from the secondary to the tertiary phase, is widely attributed to a lack of English language proficiency in South Africa. Consequently, this qualitative study, using a mix of classroom observations and interviews, sought to investigate teacher knowledge of Communicative Competence and the methods and strategies ESL teachers used to develop their learners’ communicative competence. The success of learners’ ability to develop communicative competence in contexts such as township schools in South Africa is inseparable from materials, tasks, teacher knowledge and how they implement the approach in the classrooms. Accordingly, teacher knowledge of the theory and practical implications of the CLT approach is imperative for the negotiation of meaning and appropriate use of language in context in resource-impoverished areas like the township. Using a mix of interviews and observations as data sources, this qualitative study examined teachers’ definitions and knowledge of Communicative competence with a focus on how it influenced their classroom practices. The findings revealed that teachers were not familiar with the notion of communicative competence, the communication process, and the underpinnings of CLT. Teachers’ narratives indicated an awareness that there should be interactions and communication in the classroom, but a lack of theoretical understanding of the types of communication necessary scuttled their initiatives. Thus, conceptual deficiency influences teachers’ practices as they engage in classroom activities in a superficial manner or focus on stipulated learner activities prescribed by the CAPS document. This study, therefore, concluded that partial or limited conceptual and coherent understandings with ‘teacher-proof’ stipulations for classroom practice do not inspire teacher efficacy and mastery of prescribed approaches; thus, more efforts should be made by the Department of Basic Education to strengthen the existing Professional Development workshops to support teachers in improving their understandings and application of CLT for the development of Communicative competence in their learners. The findings of the study contribute to the field of teacher knowledge acquisition, teacher beliefs and practices and professional development in the context of second language teaching and learning with a recommendation that frameworks for the development of communicative competence with wider applicability in resource-poor environments be developed to support teacher understanding and application in classrooms.

Keywords: communicative competence, CLT, conceptual understanding of reforms, professional development

Procedia PDF Downloads 30
465 Floating Populations, Rooted Networks Tracing the Evolution of Russeifa City in Relation to Marka Refugee Camp

Authors: Dina Dahood Dabash

Abstract:

Refugee camps are habitually defined as receptive sites, transient spaces of exile and nondescript depoliticized places of exception. However, such arguments form partial sides of reality, especially in countries that are geopolitically challenged and rely immensely on international aid. In Jordan, the dynamics brought with the floating population of refugees (Palestinian amongst others) have resulted in spatial after-effects that cannot be easily overlooked. For instance, Palestine refugee camps have turned by time into socioeconomic centers of gravity and cores of spatial evolution. Yet, such a position is not instantaneous. Amongst various reasons, it can be related, according to this paper, to a distinctive institutional climate that has been co-produced by the refugees, host community and the state. This paper aims to investigate the evolution of urban and spatial regulations in Jordan between 1948 and 1995, more specifically, state regulations, community regulations and refugee-self-regulation that all dynamically interacted that period. The paper aims to unpack the relations between refugee camps and their environs to further explore the agency of such floating populations in establishing rooted networks that extended the time and place boundaries. The paper’s argument stems from the fact that the spatial configuration of urban systems is not only an outcome of a historical evolutionary process but is also a result of interactions between the actors. The research operationalizes Marka camp in Jordan as a case study. Marka Camp is one of the six "emergency" camps erected in 1968 to shelter 15,000 Palestine refugees and displaced persons who left the West Bank and Gaza Strip. Nowadays, camp shelters more than 50,000 refugees in the same area of land. The camp is located in Russeifa, a city in Zarqa Governorate in Jordan. Together with Amman and Zarqa, Russeifa is part of a larger metropolitan area that acts as a home to more than half of Jordan’s businesses. The paper aspires to further understand the post-conflict strategies which were historically applied in Jordan and can be employed to handle more recent geopolitical challenges such as the Syrian refugee crisis. Methodological framework: The paper traces the evolution of the refugee-camp regulating norms in Jordan, parallel with the horizontal and vertical evolution of the Marka camp and its surroundings. Consequently, the main methods employed are historical and mental tracing, Interviews, in addition to using available Aerial and archival photos of the Marka camp and its surrounding.

Keywords: forced migration, Palestine refugee camps, spatial agency, urban regulations

Procedia PDF Downloads 157
464 The Effect of Extruded Full-Fat Rapeseed on Productivity and Eggs Quality of Isa Brown Laying Hens

Authors: Vilma Sasyte, Vilma Viliene, Agila Dauksiene, Asta Raceviciute-Stupeliene, Romas Gruzauskas, Saulius Alijosius

Abstract:

The eight-week feeding trial was conducted involving 27-wk-old Isa brown laying hens to study the effect of dry extrusion processing on partial reduction in total glucosinolates content of locally produced rapeseed and on productivity and eggs quality parameters of laying hens. Thirty-six hens were randomly assigned one of three treatments (CONTR, AERS and HERS), each comprising 12, individual caged layers. The main composition of the diets was the same, but extruded soya bean seed were replaced with 2.5% of the extruded rapeseed in the AERS group and 4.5 % in the HERS group. Rapeseed was extruded together with faba beans. Due to extrusion process the glucosinolates content was reduced by 7.83 µmol/g of rapeseed. The results of conducted trial shows, that during all experimental period egg production parameters, such as the average feed intake (6529.17 vs. 6257 g/hen/14 day; P < 0.05) and laying intensity (94.35% vs. 89.29; P < 0.05) were statistically different for HERS and CONTR laying hens respectively. Only the feed conversion ratio to produce 1 kg of eggs, kg in AERS group was by 11 % lower compared to CONTR group (P < 0.05). By analysing the effect of extruded rapeseed on egg mass, the statistical differences between treatments were no determined. The dietary treatments did not affect egg weight, albumen height, haugh units, albumen and yolk pH. However, in the HERS group were get eggs with the more intensive yolk color, higher redness (a) and yellowness (b) values. The inclusion of full-fat extruded rapeseed had no effect on egg shell quality parameters, i.e. shell breaking strength, shell weight with and without coat and shell index, but in the experimental groups were get eggs with the thinner shell (P < 0.05). The internal egg quality analysis showed that with higher content of extruded rapeseed (4.5 %) level in the diet, the total cholesterol in the eggs yolk decreased by 1.92 mg/g in comparison with CONTR group (P < 0.05). Eggs laid by hens fed the diet containing 2.5% and 4.5% had increasing ∑PNRR/∑SRR ratio and decreasing ∑(n-6)/∑(n-3) ratio values of eggs yolk fatty acids than in CONTR group. Eggs of hens fed different amount of extruded rapeseed presented an n-6 : n-3 ratio changed from 5.17 to 4.71. The analysis of the relationship between hypocholesteremia/ hypercholesterolemia fatty acids (H/H), which is based on the functional properties of fatty acids, found that the value of it ratio is significant higher in laying hens fed diets supplemented with 4.5% extruded rapeseed than the CONTR group, demonstrating the positive effects of extruded rapeseed on egg quality. The results of trial confirmed that extruded full fat rapeseed to the 4.5% are suitable to replace soyabean in the compound feed of laying hens.

Keywords: egg quality, extruded full-fat rapeseed, laying hens, productivity

Procedia PDF Downloads 187
463 Acceleration Techniques of DEM Simulation for Dynamics of Particle Damping

Authors: Masato Saeki

Abstract:

Presented herein is a novel algorithms for calculating the damping performance of particle dampers. The particle damper is a passive vibration control technique and has many practical applications due to simple design. It consists of granular materials constrained to move between two ends in the cavity of a primary vibrating system. The damping effect results from the exchange of momentum during the impact of granular materials against the wall of the cavity. This damping has the advantage of being independent of the environment. Therefore, particle damping can be applied in extreme temperature environments, where most conventional dampers would fail. It was shown experimentally in many papers that the efficiency of the particle dampers is high in the case of resonant vibration. In order to use the particle dampers effectively, it is necessary to solve the equations of motion for each particle, considering the granularity. The discrete element method (DEM) has been found to be effective for revealing the dynamics of particle damping. In this method, individual particles are assumed as rigid body and interparticle collisions are modeled by mechanical elements as springs and dashpots. However, the computational cost is significant since the equation of motion for each particle must be solved at each time step. In order to improve the computational efficiency of the DEM, the new algorithms are needed. In this study, new algorithms are proposed for implementing the high performance DEM. On the assumption that behaviors of the granular particles in the each divided area of the damper container are the same, the contact force of the primary system with all particles can be considered to be equal to the product of the divided number of the damper area and the contact force of the primary system with granular materials per divided area. This convenience makes it possible to considerably reduce the calculation time. The validity of this calculation method was investigated and the calculated results were compared with the experimental ones. This paper also presents the results of experimental studies of the performance of particle dampers. It is shown that the particle radius affect the noise level. It is also shown that the particle size and the particle material influence the damper performance.

Keywords: particle damping, discrete element method (DEM), granular materials, numerical analysis, equivalent noise level

Procedia PDF Downloads 435
462 Evaluation of Main Factors Affecting the Choice of a Freight Forwarder: A Sri Lankan Exporter’s Perspective

Authors: Ishani Maheshika

Abstract:

The intermediary role performed by freight forwarders in exportation has become significant in fulfilling businesses’ supply chain needs in this dynamic world. Since the success of exporter’s business is at present, highly reliant on supply chain optimization, cost efficiency, profitability, consistent service and responsiveness, the decision of selecting the most beneficial freight forwarder has become crucial for exporters. Although there are similar foreign researches, prior researches covering Sri Lankan setting are not in existence. Moreover, results vary with time, nature of industry and business environment factors. Therefore, a study from the perspective of Sri Lankan exporters was identified as a requisite to be researched. In order to identify and prioritize key factors which have affected the exporter’s decision in selecting freight forwarders in Sri Lankan context, Sri Lankan export industry was stratified into 22 sectors based on commodity using stratified sampling technique. One exporter from each sector was then selected using judgmental sampling to have a sample of 22. Factors which were identified through a pilot survey, was organized under 6 main criteria. A questionnaire was basically developed as pairwise comparisons using 9-point semantic differential scale and comparisons were done within main criteria and subcriteria. After a pre-testing, interviews and e-mail questionnaire survey were conducted. Data were analyzed using Analytic Hierarchy Process to determine priority vectors of criteria. Customer service was found to be the most important main criterion for Sri Lankan exporters. It was followed by reliability and operational efficiency respectively. The criterion of the least importance is company background and reputation. Whereas small sized exporters pay more attention to rate, reliability is the major concern among medium and large scale exporters. Irrespective of seniority of the exporter, reliability is given the prominence. Responsiveness is the most important sub criterion among Sri Lankan exporters. Consistency of judgments with respect to main criteria was verified through consistency ratio, which was less than 10%. Being more competitive, freight forwarders should come up with customized marketing strategies based on each target group’s requirements and expectations in offering services to retain existing exporters and attract new exporters.

Keywords: analytic hierarchy process, freight forwarders, main criteria, Sri Lankan exporters, subcriteria

Procedia PDF Downloads 380
461 RNA-Seq Analysis of the Wild Barley (H. spontaneum) Leaf Transcriptome under Salt Stress

Authors: Ahmed Bahieldin, Ahmed Atef, Jamal S. M. Sabir, Nour O. Gadalla, Sherif Edris, Ahmed M. Alzohairy, Nezar A. Radhwan, Mohammed N. Baeshen, Ahmed M. Ramadan, Hala F. Eissa, Sabah M. Hassan, Nabih A. Baeshen, Osama Abuzinadah, Magdy A. Al-Kordy, Fotouh M. El-Domyati, Robert K. Jansen

Abstract:

Wild salt-tolerant barley (Hordeum spontaneum) is the ancestor of cultivated barley (Hordeum vulgare or H. vulgare). Although the cultivated barley genome is well studied, little is known about genome structure and function of its wild ancestor. In the present study, RNA-Seq analysis was performed on young leaves of wild barley treated with salt (500 mM NaCl) at four different time intervals. Transcriptome sequencing yielded 103 to 115 million reads for all replicates of each treatment, corresponding to over 10 billion nucleotides per sample. Of the total reads, between 74.8 and 80.3% could be mapped and 77.4 to 81.7% of the transcripts were found in the H. vulgare unigene database (unigene-mapped). The unmapped wild barley reads for all treatments and replicates were assembled de novo and the resulting contigs were used as a new reference genome. This resultedin94.3 to 95.3%oftheunmapped reads mapping to the new reference. The number of differentially expressed transcripts was 9277, 3861 of which were uni gene-mapped. The annotated unigene- and de novo-mapped transcripts (5100) were utilized to generate expression clusters across time of salt stress treatment. Two-dimensional hierarchical clustering classified differential expression profiles into nine expression clusters, four of which were selected for further analysis. Differentially expressed transcripts were assigned to the main functional categories. The most important groups were ‘response to external stimulus’ and ‘electron-carrier activity’. Highly expressed transcripts are involved in several biological processes, including electron transport and exchanger mechanisms, flavonoid biosynthesis, reactive oxygen species (ROS) scavenging, ethylene production, signaling network and protein refolding. The comparisons demonstrated that mRNA-Seq is an efficient method for the analysis of differentially expressed genes and biological processes under salt stress.

Keywords: electron transport, flavonoid biosynthesis, reactive oxygen species, rnaseq

Procedia PDF Downloads 359
460 Quantification of Lawsone and Adulterants in Commercial Henna Products

Authors: Ruchi B. Semwal, Deepak K. Semwal, Thobile A. N. Nkosi, Alvaro M. Viljoen

Abstract:

The use of Lawsonia inermis L. (Lythraeae), commonly known as henna, has many medicinal benefits and is used as a remedy for the treatment of diarrhoea, cancer, inflammation, headache, jaundice and skin diseases in folk medicine. Although widely used for hair dyeing and temporary tattooing, henna body art has popularized over the last 15 years and changed from being a traditional bridal and festival adornment to an exotic fashion accessory. The naphthoquinone, lawsone, is one of the main constituents of the plant and responsible for its dyeing property. Henna leaves typically contain 1.8–1.9% lawsone, which is used as a marker compound for the quality control of henna products. Adulteration of henna with various toxic chemicals such as p-phenylenediamine, p-methylaminophenol, p-aminobenzene and p-toluenodiamine to produce a variety of colours, is very common and has resulted in serious health problems, including allergic reactions. This study aims to assess the quality of henna products collected from different parts of the world by determining the lawsone content, as well as the concentrations of any adulterants present. Ultra high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to determine the lawsone concentrations in 172 henna products. Separation of the chemical constituents was achieved on an Acquity UPLC BEH C18 column using gradient elution (0.1% formic acid and acetonitrile). The results from UPLC-MS revealed that of 172 henna products, 11 contained 1.0-1.8% lawsone, 110 contained 0.1-0.9% lawsone, whereas 51 samples did not contain detectable levels of lawsone. High performance thin layer chromatography was investigated as a cheaper, more rapid technique for the quality control of henna in relation to the lawsone content. The samples were applied using an automatic TLC Sampler 4 (CAMAG) to pre-coated silica plates, which were subsequently developed with acetic acid, acetone and toluene (0.5: 1.0: 8.5 v/v). A Reprostar 3 digital system allowed the images to be captured. The results obtained corresponded to those from UPLC-MS analysis. Vibrational spectroscopy analysis (MIR or NIR) of the powdered henna, followed by chemometric modelling of the data, indicates that this technique shows promise as an alternative quality control method. Principal component analysis (PCA) was used to investigate the data by observing clustering and identifying outliers. Partial least squares (PLS) multivariate calibration models were constructed for the quantification of lawsone. In conclusion, only a few of the samples analysed contain lawsone in high concentrations, indicating that they are of poor quality. Currently, the presence of adulterants that may have been added to enhance the dyeing properties of the products, is being investigated.

Keywords: Lawsonia inermis, paraphenylenediamine, temporary tattooing, lawsone

Procedia PDF Downloads 431
459 Festivals and Weddings in India during Corona Pandemic

Authors: Arul Aram, Vishnu Priya, Monicka Karunanithi

Abstract:

In India, in particular, festivals are the occasions of celebrations. They create beautiful moments to cherish. Mostly, people pay a visit to their native places to celebrate with their loved ones. So are wedding celebrations. The Covid-19 pandemic came upon us unexpectedly, and to fight it, the festivals and weddings are celebrated unusually. Crowded places are deserted. Mass gatherings are avoided, changes and alterations are made in our rituals and celebrations. The warmth usually people have at their heart during any festival and wedding has disappeared. Some aspects of the celebrations become virtual/digital rather than real -- for instance, digital greetings/invitations, digital conduct of ceremonies by priests, YouTube worship, online/digital cash gifts, and digital audience for weddings. Each festival has different rituals which are followed with the divine nature in every family, but the pandemic warranted some compromises on the traditions. Likewise, a marriage is a beautiful bond between two families where a lot of traditional customs are followed. The wedding ceremonies are colorful and celebrations may extend for several days. People in India spend financial resources to prepare and celebrate weddings. The bride's and the groom's homes are fully decorated with colors, balloons and other decorations. The wedding rituals and celebrations vary by religion, region, preference and the resources of the groom, bride and their families. They can range from one day to multiple-days events. But the Covid-19 pandemic situation changes the mindset of people over ceremonies. This lockdown has affected those weddings and industries that support them and make the people postpone or at times advance without fanfare their 'big day.' People now adopt the protocols, guidelines and safety measures to reduce the risk and minimize the fear during celebrations. The study shall look into: how the pandemic shattered the expectations of people celebrating; problems faced economically by people/service providers who are benefited by the celebrations; and identify the alterations made in the rituals or the practices of our culture for the safety of families. The study shall employ questionnaires, interviews and visual ethnography to collect data. The study found that during a complete lockdown, people have not bought new clothes, sweets, or snacks, as they generally do before a pandemic. Almost all of them kept their celebrations low-key, and some did not celebrate at all. Digital media played a role in keeping the celebration alive, as people used it to wish their friends and families virtually. During partial unlock, the situation was under control, and people began to go out and see a few family and friends. They went shopping and bought new clothes and needs, but they did it while following safety precautions. There is also an equal percentage of people who shopped online. Although people continue to remain disappointed, they were less stressed up as life was returning to normal.

Keywords: covid-19, digital, festivals, India, wedding

Procedia PDF Downloads 157
458 Modelling Distress Sale in Agriculture: Evidence from Maharashtra, India

Authors: Disha Bhanot, Vinish Kathuria

Abstract:

This study focusses on the issue of distress sale in horticulture sector in India, which faces unique challenges, given the perishable nature of horticulture crops, seasonal production and paucity of post-harvest produce management links. Distress sale, from a farmer’s perspective may be defined as urgent sale of normal or distressed goods, at deeply discounted prices (way below the cost of production) and it is usually characterized by unfavorable conditions for the seller (farmer). The small and marginal farmers, often involved in subsistence farming, stand to lose substantially if they receive lower prices than expected prices (typically framed in relation to cost of production). Distress sale maximizes price uncertainty of produce leading to substantial income loss; and with increase in input costs of farming, the high variability in harvest price severely affects profit margin of farmers, thereby affecting their survival. The objective of this study is to model the occurrence of distress sale by tomato cultivators in the Indian state of Maharashtra, against the background of differential access to set of factors such as - capital, irrigation facilities, warehousing, storage and processing facilities, and institutional arrangements for procurement etc. Data is being collected using primary survey of over 200 farmers in key tomato growing areas of Maharashtra, asking information on the above factors in addition to seeking information on cost of cultivation, selling price, time gap between harvesting and selling, role of middleman in selling, besides other socio-economic variables. Farmers selling their produce far below the cost of production would indicate an occurrence of distress sale. Occurrence of distress sale would then be modelled as a function of farm, household and institutional characteristics. Heckman-two-stage model would be applied to find the probability/likelihood of a famer falling into distress sale as well as to ascertain how the extent of distress sale varies in presence/absence of various factors. Findings of the study would recommend suitable interventions and promotion of strategies that would help farmers better manage price uncertainties, avoid distress sale and increase profit margins, having direct implications on poverty.

Keywords: distress sale, horticulture, income loss, India, price uncertainity

Procedia PDF Downloads 215
457 Use of Pig as an Animal Model for Assessing the Differential MicroRNA Profiling in Kidney after Aristolochic Acid Intoxication

Authors: Daniela E. Marin, Cornelia Braicu, Gina C. Pistol, Roxana Cojocneanu-Petric, Ioana Berindan Neagoe, Mihail A. Gras, Ionelia Taranu

Abstract:

Aristolochic acid (AA) is a carcinogenic, mutagenic, and nephrotoxic compound commonly found in the Aristolochiaceae family of plants. AA is frequently associated with urothelial carcinoma of the upper urinary tract in human and animals and is considered as being responsible for Balkan Endemic Nephropathy. The pig provides a good animal model because the porcine urological system is very similar to that of humans, both in aspects of physiology and anatomy. MicroRNA (miRNA) are small non-coding RNAs that have an impact on a wide range of biological processes by regulating gene expression at post-transcriptional level. The objective of this study was to analyze the miRNA profiling in the kidneys of AA intoxicated swine. For this purpose, ten TOPIGS-40 crossbred weaned piglets, 4-week-old, male and females with an initial average body weight of 9.83 ± 0.5 kg were studied for 28 days. They were given ad libitum access to water and feed and randomly allotted to one of the following groups: control group (C) or aristolochic acid group (AA). They were fed a maize-soybean-meal-based diet contaminated or not with 0.25mgAA/kg. To profile miRNA in the kidneys of pigs, microarrays and bioinformatics approaches were applied to analyze the miRNA in the kidney of control and AA intoxicated pigs. After normalization, our results have shown that a total of 5 known miRNAs and 4 novel miRNAs had different profiling in the kidney of intoxicated animals versus control ones. Expression of miR-32-5p, miR-497-5p, miR-423-3p, miR-218-5p, miR-128-3p were up-regulated by 0.25mgAA/kg feed, while the expression of miR-9793-5p, miR-9835-3p, miR-9840-3p, miR-4334-5p was down-regulated. The microRNA profiling in kidney of intoxicated animals was associated with modified expression of target genes as: RICTOR, LASP1, SFRP2, DKK2, BMI1, RAF1, IGF1R, MAP2K1, WEE1, HDGF, BCL2, EIF4E etc, involved in cell division cycle, apoptosis, cell differentiation and cell migration, cell signaling, cancer etc. In conclusion, this study provides new data concerning the microRNA profiling in kidney after aristolochic acid intoxications with important implications for human and animal health.

Keywords: aristolochic acid, kidney, microRNA, swine

Procedia PDF Downloads 253