Search results for: forces for inventions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1286

Search results for: forces for inventions

1196 Analyzing and Determining the Ideal Response Force for Combatting Terrorist Groups

Authors: Erhan Turgut, Salih Ergün, Abdülkadir Öz

Abstract:

Terror is a modern war strategy which uses violence as a means of communication in order to achieve political objectives. In today’s security environment narrowing the propaganda field of terrorist organization is the primary goal for the security forces. In this sense, providing and maintaining public support is the most necessary ability for security units. Rather than enemy and threat-oriented approach, homeland security oriented approach is essential to ensure public support. In this study, terror assumed as a homeland security issue and assigning the law enforcement forces with military status is analyzed.

Keywords: terrorism, counter-terrorism, military status law-enforcement, terrorist groups

Procedia PDF Downloads 430
1195 Two Kinds of Self-Oscillating Circuits Mechanically Demonstrated

Authors: Shiang-Hwua Yu, Po-Hsun Wu

Abstract:

This study introduces two types of self-oscillating circuits that are frequently found in power electronics applications. Special effort is made to relate the circuits to the analogous mechanical systems of some important scientific inventions: Galileo’s pendulum clock and Coulomb’s friction model. A little touch of related history and philosophy of science will hopefully encourage curiosity, advance the understanding of self-oscillating systems and satisfy the aspiration of some students for scientific literacy. Finally, the two self-oscillating circuits are applied to design a simple class-D audio amplifier.

Keywords: self-oscillation, sigma-delta modulator, pendulum clock, Coulomb friction, class-D amplifier

Procedia PDF Downloads 327
1194 On Driving Forces of Cultural Globalization and its Retroaction: Under the Guidance of Skopos Theory

Authors: Zhai Yujia

Abstract:

None of the scholars and researchers has ever stepped into this field, though there are quite a few papers worked on various topics relevant to cultural and economic globalization separately. Economic globalization is earlier than cultural globalization. Since the invention of currency, people have had the sense of making money for the purpose of living, supporting their families, or other personal reasons. Their strong desire for earning a living is one of the incentives to propel the trade, tourism and other related economic activities that provide the service within the homeland at first and expand into the whole world later, as the global markets grow and mature. The need for operation impels international communication or interaction. To achieve this, it is vital to realize or recognize other cultures to some degree, concluding language, customs, social etiquette and history of different nations. All this drives the cultural globalization process. In contrast, it is clear that the development of cultural globalization does accelerate the process of economic globalization in return. Under the guidance of Skopos theory (first proposed by Hans Vermeer, and its core principle is that the translation process is determined by the purpose), this paper aims to demonstrate that cultural globalization is not a process in isolation by analyzing its driving forces and retroaction thoroughly with an approach of overview. It intertwines with economic globalization. The two push each other to proper gradually during their development, serving as the indispensable parts of the globalization process.

Keywords: cultural globalization, driving forces, retroaction, Skopos theory

Procedia PDF Downloads 131
1193 Impact of Terrorism as an Asymmetrical Threat on the State's Conventional Security Forces

Authors: Igor Pejic

Abstract:

The main focus of this research will be on analyzing correlative links between terrorism as an asymmetrical threat and the consequences it leaves on conventional security forces. The methodology behind the research will include qualitative research methods focusing on comparative analysis of books, scientific papers, documents and other sources, in order to deduce, explore and formulate the results of the research. With the coming of the 21st century and the rising multi-polar, new world threats quickly emerged. The realistic approach in international relations deems that relations among nations are in a constant state of anarchy since there are no definitive rules and the distribution of power varies widely. International relations are further characterized by egoistic and self-orientated human nature, anarchy or absence of a higher government, security and lack of morality. The asymmetry of power is also reflected on countries' security capabilities and its abilities to project power. With the coming of the new millennia and the rising multi-polar world order, the asymmetry of power can be also added as an important trait of the global society which consequently brought new threats. Among various others, terrorism is probably the most well-known, well-based and well-spread asymmetric threat. In today's global political arena, terrorism is used by state and non-state actors to fulfill their political agendas. Terrorism is used as an all-inclusive tool for regime change, subversion or a revolution. Although the nature of terrorist groups is somewhat inconsistent, terrorism as a security and social phenomenon has a one constant which is reflected in its political dimension. The state's security apparatus, which was embodied in the form of conventional armed forces, is now becoming fragile, unable to tackle new threats and to a certain extent outdated. Conventional security forces were designed to defend or engage an exterior threat which is more or less symmetric and visible. On the other hand, terrorism as an asymmetrical threat is a part of hybrid, special or asymmetric warfare in which specialized units, institutions or facilities represent the primary pillars of security. In today's global society, terrorism is probably the most acute problem which can paralyze entire countries and their political systems. This problem, however, cannot be engaged on an open field of battle, but rather it requires a different approach in which conventional armed forces cannot be used traditionally and their role must be adjusted. The research will try to shed light on the phenomena of modern day terrorism and to prove its correlation with the state conventional armed forces. States are obliged to adjust their security apparatus to the new realism of global society and terrorism as an asymmetrical threat which is a side-product of the unbalanced world.

Keywords: asymmetrical warfare, conventional forces, security, terrorism

Procedia PDF Downloads 235
1192 Numerical Modeling to Validate Theoretical Models of Toppling Failure in Rock Slopes

Authors: Hooman Dabirmanesh, Attila M. Zsaki

Abstract:

Traditionally, rock slope stability is carried out using limit equilibrium analysis when investigating toppling failure. In these equilibrium methods, internal forces exerted between columns are not clearly defined, and to the authors’ best knowledge, there is no consensus in literature with respect to the results of analysis. A discrete element method-based numerical model was developed and applied to simulate the behavior of rock layers subjected to toppling failure. Based on this calibrated numerical model, a study of the location and distribution of internal forces that result in equilibrium was carried out. The sum of side forces was applied at a point on a block which properly represents the force to determine the inter-column force distribution. In terms of the side force distribution coefficient, the result was compared to those obtained from laboratory centrifuge tests. The results of the simulation show the suitable criteria to select the correct position for the internal exerted force between rock layers. In addition, the numerical method demonstrates how a theoretical method could be reliable by considering the interaction between the rock layers.

Keywords: contact bond, discrete element, force distribution, limit equilibrium, tensile stress

Procedia PDF Downloads 120
1191 Understanding Chromosome Movement in Starfish Oocytes

Authors: Bryony Davies

Abstract:

Many cell and tissue culture practices ignore the effects of gravity on cell biology, and little is known about how cell components may move in response to gravitational forces. Starfish oocytes provide an excellent model for interrogating the movement of cell components due to their unusually large size, ease of handling, and high transparency. Chromosomes from starfish oocytes can be visualised by microinjection of the histone-H2B-mCherry plasmid into the oocytes. The movement of the chromosomes can then be tracked by live-cell fluorescence microscopy. The results from experiments using these methods suggest that there is a replicable downward movement of centrally located chromosomes at a median velocity of 0.39 μm/min. Chromosomes nearer the nuclear boundary showed more restricted movement. Chromosome density and shape could also be altered by microinjection of restriction enzymes, primarily Alu1, before imaging. This was found to alter the speed of chromosome movement, with chromosomes from Alu1-injected nuclei showing a median downward velocity of 0.60 μm/min. Overall, these results suggest that there is a non-negligible movement of chromosomes in response to gravitational forces and that this movement can be altered by enzyme activity. Future directions based on these results could interrogate if this observed downward movement extends to other cell components and to other cell types. Additionally, it may be important to understand whether gravitational orientation and vertical positioning of cell components alter cell behaviour. The findings here may have implications for current cell culture practices, which do not replicate cell orientations or external forces experienced in vivo. It is possible that a failure to account for gravitational forces in 2D cell culture alters experimental results and the accuracy of conclusions drawn from them. Understanding possible behavioural changes in cells due to the effects of gravity would therefore be beneficial.

Keywords: starfish, oocytes, live-cell imaging, microinjection, chromosome dynamics

Procedia PDF Downloads 71
1190 Finite Element Modelling of Mechanical Connector in Steel Helical Piles

Authors: Ramon Omar Rosales-Espinoza

Abstract:

Pile-to-pile mechanical connections are used if the depth of the soil layers with sufficient bearing strength exceeds the original (“leading”) pile length, with the additional pile segment being termed “extension” pile. Mechanical connectors permit a safe transmission of forces from leading to extension pile while meeting strength and serviceability requirements. Common types of connectors consist of an assembly of sleeve-type external couplers, bolts, pins, and other mechanical interlock devices that ensure the transmission of compressive, tensile, torsional and bending stresses between leading and extension pile segments. While welded connections allow for a relatively simple structural design, mechanical connections are advantageous over welded connections because they lead to shorter installation times and significant cost reductions since specialized workmanship and inspection activities are not required. However, common practices followed to design mechanical connectors neglect important aspects of the assembly response, such as stress concentration around pin/bolt holes, torsional stresses from the installation process, and interaction between the forces at the installation (torsion), service (compression/tension-bending), and removal stages (torsion). This translates into potentially unsatisfactory designs in terms of the ultimate and service limit states, exhibiting either reduced strength or excessive deformations. In this study, the experimental response under compressive forces of a type of mechanical connector is presented, in terms of strength, deformation and failure modes. The tests revealed that the type of connector used can safely transmit forces from pile to pile. Using the results from the compressive tests, an analysis model was developed using the finite element (FE) method to study the interaction of forces under installation and service stages of a typical mechanical connector. The response of the analysis model is used to identify potential areas for design optimization, including size, gap between leading and extension piles, number of pin/bolts, hole sizes, and material properties. The results show the design of mechanical connectors should take into account the interaction of forces present at every stage of their life cycle, and that the torsional stresses occurring during installation are critical for the safety of the assembly.

Keywords: piles, FEA, steel, mechanical connector

Procedia PDF Downloads 239
1189 Modeling Bessel Beams and Their Discrete Superpositions from the Generalized Lorenz-Mie Theory to Calculate Optical Forces over Spherical Dielectric Particles

Authors: Leonardo A. Ambrosio, Carlos. H. Silva Santos, Ivan E. L. Rodrigues, Ayumi K. de Campos, Leandro A. Machado

Abstract:

In this work, we propose an algorithm developed under Python language for the modeling of ordinary scalar Bessel beams and their discrete superpositions and subsequent calculation of optical forces exerted over dielectric spherical particles. The mathematical formalism, based on the generalized Lorenz-Mie theory, is implemented in Python for its large number of free mathematical (as SciPy and NumPy), data visualization (Matplotlib and PyJamas) and multiprocessing libraries. We also propose an approach, provided by a synchronized Software as Service (SaaS) in cloud computing, to develop a user interface embedded on a mobile application, thus providing users with the necessary means to easily introduce desired unknowns and parameters and see the graphical outcomes of the simulations right at their mobile devices. Initially proposed as a free Android-based application, such an App enables data post-processing in cloud-based architectures and visualization of results, figures and numerical tables.

Keywords: Bessel Beams and Frozen Waves, Generalized Lorenz-Mie Theory, Numerical Methods, optical forces

Procedia PDF Downloads 352
1188 Violence against Police Officers in Germany

Authors: Anne T. Herr, Clemens Lorei

Abstract:

Employees of organizations with security tasks, such as emergency services, public order services, or police forces, work every day to ensure people's safety. Violence against police is, therefore, a relevant topic both socially and politically. An increase in violence is often discussed without there being any verifiable and generally valid data. So far, scientific research has mainly focused on offender characteristics and crime statistics. These surveys are mostly subjective, retrospective, and neglect the dynamics and interactions in concrete violent situations. Therefore, more recent research methods attempt to capture the issue of violence against emergency forces more comprehensively. However, the operationalization of the constructs and the methodological approach pose particular challenges. This contribution provides an overview of new perspectives on the understanding of violent assaults and identifies current research gaps. In addition, a new research project of the Hessian University of Police and Administration in Germany is presented. In the 'AMBOSafe' study, different theoretical backgrounds for understanding violence against police and emergency services personnel will be combined in order to capture as many different perspectives of violent assaults as possible in a multimodal research approach. In a retrospective as well as in a longitudinal survey, the conditions of escalation dynamics in the assaults are recorded and supplemented by the current and valid prevalence of physical and verbal assaults in a period of four months. In addition, qualitative interviews with those affected will be used to record more detailed descriptions of and the feelings during the assaults, as well as possible causes and connections between the different groups of people. In addition to the reports of the police forces, the motives of the attackers will be collected and supplemented by analyzing the criminal case files. This knowledge can contribute to a more comprehensive understanding of violent assaults against police forces in order to be able to derive scientifically based preventive measures.

Keywords: assaults, crime statistics, escalation dynamics, police

Procedia PDF Downloads 87
1187 Deployment of Attack Helicopters in Conventional Warfare: The Gulf War

Authors: Mehmet Karabekir

Abstract:

Attack helicopters (AHs) are usually deployed in conventional warfare to destroy armored and mechanized forces of enemy. In addition, AHs are able to perform various tasks in the deep, and close operations – intelligence, surveillance, reconnaissance, air assault operations, and search and rescue operations. Apache helicopters were properly employed in the Gulf Wars and contributed the success of campaign by destroying a large number of armored and mechanized vehicles of Iraq Army. The purpose of this article is to discuss the deployment of AHs in conventional warfare in the light of Gulf Wars. First, the employment of AHs in deep and close operations will be addressed regarding the doctrine. Second, the US armed forces AH-64 doctrinal and tactical usage will be argued in the 1st and 2nd Gulf Wars.

Keywords: attack helicopter, conventional warfare, gulf wars

Procedia PDF Downloads 440
1186 A Review on the Hydrodynamic Characteristics of Caisson Breakwater

Authors: T. J. Jemi Jeya, V. Sriram, V. Sundar

Abstract:

Caisson breakwaters are gravity structures resting on the seabed and piercing the free surface sunk in coastal waters to break the energy in the waves and protect the water area behind them by creating tranquil conditions on its lee side for the purpose of berthing of vessels. A number of formula and methodologies have been proposed for calculating the forces on caissons due to waves, most of which being evolved through intensive laboratory and field measurements. The reflection of waves from such breakwaters often generates clapotis, leading to an amplification of waves in its vicinity. This result in increased pressures and forces, forcing researchers to modify its seaside shape as well as placing dissipaters in the form of screens. Apart from the above aspects, this paper also discusses the other important phenomena, like overtopping that dictates the stability of caisson breakwaters.

Keywords: caisson breakwater, Jarlan type breakwater, screens, circular breakwater

Procedia PDF Downloads 344
1185 Humans’ Physical Strength Capacities on Different Handwheel Diameters and Angles

Authors: Saif K. Al-Qaisi, Jad R. Mansour, Aseel W. Sakka, Yousef Al-Abdallat

Abstract:

Handwheels are common to numerous industries, such as power generation plants, oil refineries, and chemical processing plants. The forces required to manually turn handwheels have been shown to exceed operators’ physical strengths, posing risks for injuries. Therefore, the objectives of this research were twofold: (1) to determine humans’ physical strengths on handwheels of different sizes and angles and (2) to subsequently propose recommended torque limits (RTLs) that accommodate the strengths of even the weaker segment of the population. Thirty male and thirty female participants were recruited from a university student population. Participants were asked to exert their maximum possible forces in a counter-clockwise direction on handwheels of different sizes (35 cm, 45 cm, 60 cm, and 70 cm) and angles (0°-horizontal, 45°-slanted, and 90°-vertical). The participant’s posture was controlled by adjusting the handwheel to be at the elbow level of each participant, requiring the participant to stand erect, and restricting the hand placements to be in the 10-11 o’clock position for the left hand and the 4-5 o’clock position for the right hand. A torque transducer (Futek TDF600) was used to measure the maximum torques generated by the human. Three repetitions were performed for each handwheel condition, and the average was computed. Results showed that, at all handwheel angles, as the handwheel diameter increased, the maximum torques generated also increased, while the underlying forces decreased. In controlling the handwheel diameter, the 0° handwheel was associated with the largest torques and forces, and the 45° handwheel was associated with the lowest torques and forces. Hence, a larger handwheel diameter –as large as 70 cm– in a 0° angle is favored for increasing the torque production capacities of users. Also, it was recognized that, regardless of the handwheel diameter size and angle, the torque demands in the field are much greater than humans’ torque production capabilities. As such, this research proposed RTLs for the different handwheel conditions by using the 25th percentile values of the females’ torque strengths. The proposed recommendations may serve future standard developers in defining torque limits that accommodate humans’ strengths.

Keywords: handwheel angle, handwheel diameter, humans’ torque production strengths, recommended torque limits

Procedia PDF Downloads 87
1184 Numerical Analysis of Cold-Formed Steel Shear Wall Panels Subjected to Cyclic Loading

Authors: H. Meddah, M. Berediaf-Bourahla, B. El-Djouzi, N. Bourahla

Abstract:

Shear walls made of cold formed steel are used as lateral force resisting components in residential and low-rise commercial and industrial constructions. The seismic design analysis of such structures is often complex due to the slenderness of members and their instability prevalence. In this context, a simplified modeling technique across the panel is proposed by using the finite element method. The approach is based on idealizing the whole panel by a nonlinear shear link element which reflects its shear behavior connected to rigid body elements which transmit the forces to the end elements (studs) that resist the tension and the compression. The numerical model of the shear wall panel was subjected to cyclic loads in order to evaluate the seismic performance of the structure in terms of lateral displacement and energy dissipation capacity. In order to validate this model, the numerical results were compared with those from literature tests. This modeling technique is particularly useful for the design of cold formed steel structures where the shear forces in each panel and the axial forces in the studs can be obtained using spectrum analysis.

Keywords: cold-formed steel, cyclic loading, modeling technique, nonlinear analysis, shear wall panel

Procedia PDF Downloads 262
1183 Effect of Capillary Forces on Wet Granular Avalanches

Authors: Ahmed Jarray, Vanessa Magnanimo, Stefan Luding

Abstract:

Granular avalanches are ubiquitous in nature and occur in numerous industrial processes associated with particulate systems. When a small amount of liquid is added to a pile of particles, pendular bridges form and the particles are attracted by capillary forces, creating complex structure and flow behavior. We have performed an extensive series of experiments to investigate the effect of capillary force and particle size on wet granular avalanches, and we established a methodology that ensures the control of the granular flow in a rotating drum. The velocity of the free surface and the angle of repose of the particles in the rotating drum are determined using particle tracking method. The capillary force between the particles is significantly reduced by making the glass beads hydrophobic via chemical silanization. We show that the strength of the capillary forces between two adjacent particles can be deliberately manipulated through surface modification of the glass beads, thus, under the right conditions; we demonstrate that the avalanche dynamics can be controlled. The results show that the avalanche amplitude decreases when increasing the capillary force. We also find that liquid-induced cohesion increases the width of the gliding layer and the dynamic angle of repose, however, it decreases the velocity of the free surface.

Keywords: avalanche dynamics, capillary force, granular material, granular flow

Procedia PDF Downloads 239
1182 Advantages and Disadvantages of Hydroelectric Energy

Authors: Esther Ushike Akashie

Abstract:

No matter who you are, where you are from and irrespective of age and gender, there is a universal need for power and energy. Every year, this need grows even more urgent the more scientific and technological inventions advance. Due to this fact, we find that majority of the research related to energy and power has been focused on finding new and innovative ways to produce power. Furthermore, we observe that because of the environmental state of our world today and the impact of climate change, one of the most explored routes of study has been the use of renewable energies. In this paper, we will be looking at one of the oldest forms of renewable energy, hydroelectric energy. First off, an overview of its history, sources, technical aspects, and applications will be evaluated. After which, we will then proceed to understand the main benefits and drawbacks of this form of renewable energy and offer insights on how it can be better utilized in our world today.

Keywords: hydropower, hydroelectric energy, advantages, disadvantages

Procedia PDF Downloads 111
1181 A CFD Study of the Performance Characteristics of Vented Cylinders as Vortex Generators

Authors: R. Kishan, R. M. Sumant, S. Suhas, Arun Mahalingam

Abstract:

This paper mainly researched on influence of vortex generator on lift coefficient and drag coefficient, when vortex generator is mounted on a flat plate. Vented cylinders were used as vortex generators which intensify vortex shedding in the wake of the vented cylinder as compared to base line circular cylinder which ensures more attached flow and increases lift force of the system. Firstly vented cylinders were analyzed in commercial CFD software which is compared with baseline cylinders for different angles of attack and further variation of lift and drag forces were studied by varying Reynolds number to account for influence of turbulence and boundary layer in the flow. Later vented cylinders were mounted on a flat plate and variation of lift and drag coefficients was studied by varying angles of attack and studying the dependence of Reynolds number and dimensions of vortex generator on the coefficients. Mesh grid sensitivity is studied to check the convergence of the results obtained It was found that usage of vented cylinders as vortex generators increased lift forces with small variation in drag forces by varying angle of attack.

Keywords: CFD analysis, drag coefficient, FVM, lift coefficient, modeling, Reynolds number, simulation, vortex generators, vortex shedding

Procedia PDF Downloads 406
1180 The Simulation and Experimental Investigation to Study the Strain Distribution Pattern during the Closed Die Forging Process

Authors: D. B. Gohil

Abstract:

Closed die forging is a very complex process, and measurement of actual forces for real material is difficult and time consuming. Hence, the modelling technique has taken the advantage of carrying out the experimentation with the proper model material which needs lesser forces and relatively low temperature. The results of experiments on the model material then may be correlated with the actual material by using the theory of similarity. There are several methods available to resolve the complexity involved in the closed die forging process. Finite Element Method (FEM) and Finite Difference Method (FDM) are relatively difficult as compared to the slab method. The slab method is very popular and very widely used by the people working on shop floor because it is relatively easy to apply and reasonably accurate for most of the common forging load requirement computations.

Keywords: experimentation, forging, process modeling, strain distribution

Procedia PDF Downloads 178
1179 Machining Responce of Austempered Ductile Iron with Varying Cutting Speed and Depth of Cut

Authors: Prashant Parhad, Vinayak Dakre, Ajay Likhite, Jatin Bhatt

Abstract:

This work mainly focuses on machinability studies of Austempered Ductile Iron (ADI). The Ductile Iron (DI) was austempered at 250 oC for different durations and the process window for austempering was established by studying the microstructure. The microstructural characterization of the material was done using optical microscopy, SEM and XRD. The samples austempered as per the process window were then subjected to turning using a TiAlN-coated tungsten carbide insert to study the effect of cutting parameters, namely the cutting speed and the depth of cut. The effect was investigated in terms of cutting forces required as well as the surface roughness obtained. The turning was conducted on a CNC turning machine and primary (Fx), radial (Fy) and feed (Fz) cutting forces were quantified with a three-component dynamometer. It was observed that the magnitude of radial force was more than that of primary cutting force for all cutting speed and for various depths of cut studied. It has also been seen that increasing the cutting speed improves the surface quality. The observed machinability behaviour was investigated in light of the microstructure of the material obtained under the given austempering conditions and a structure-property- co-relation was established between the two. For all cutting speed and depth of cut, the best machining response in terms of cutting forces and surface quality was obtained towards the centre of process window.

Keywords: process window, cutting speed, depth of cut, surface roughness

Procedia PDF Downloads 345
1178 Hardware Implementation for the Contact Force Reconstruction in Tactile Sensor Arrays

Authors: María-Luisa Pinto-Salamanca, Wilson-Javier Pérez-Holguín

Abstract:

Reconstruction of contact forces is a fundamental technique for analyzing the properties of a touched object and is essential for regulating the grip force in slip control loops. This is based on the processing of the distribution, intensity, and direction of the forces during the capture of the sensors. Currently, efficient hardware alternatives have been used more frequently in different fields of application, allowing the implementation of computationally complex algorithms, as is the case with tactile signal processing. The use of hardware for smart tactile sensing systems is a research area that promises to improve the processing time and portability requirements of applications such as artificial skin and robotics, among others. The literature review shows that hardware implementations are present today in almost all stages of smart tactile detection systems except in the force reconstruction process, a stage in which they have been less applied. This work presents a hardware implementation of a model-driven reported in the literature for the contact force reconstruction of flat and rigid tactile sensor arrays from normal stress data. From the analysis of a software implementation of such a model, this implementation proposes the parallelization of tasks that facilitate the execution of matrix operations and a two-dimensional optimization function to obtain a vector force by each taxel in the array. This work seeks to take advantage of the parallel hardware characteristics of Field Programmable Gate Arrays, FPGAs, and the possibility of applying appropriate techniques for algorithms parallelization using as a guide the rules of generalization, efficiency, and scalability in the tactile decoding process and considering the low latency, low power consumption, and real-time execution as the main parameters of design. The results show a maximum estimation error of 32% in the tangential forces and 22% in the normal forces with respect to the simulation by the Finite Element Modeling (FEM) technique of Hertzian and non-Hertzian contact events, over sensor arrays of 10×10 taxels of different sizes. The hardware implementation was carried out on an MPSoC XCZU9EG-2FFVB1156 platform of Xilinx® that allows the reconstruction of force vectors following a scalable approach, from the information captured by means of tactile sensor arrays composed of up to 48 × 48 taxels that use various transduction technologies. The proposed implementation demonstrates a reduction in estimation time of x / 180 compared to software implementations. Despite the relatively high values of the estimation errors, the information provided by this implementation on the tangential and normal tractions and the triaxial reconstruction of forces allows to adequately reconstruct the tactile properties of the touched object, which are similar to those obtained in the software implementation and in the two FEM simulations taken as reference. Although errors could be reduced, the proposed implementation is useful for decoding contact forces for portable tactile sensing systems, thus helping to expand electronic skin applications in robotic and biomedical contexts.

Keywords: contact forces reconstruction, forces estimation, tactile sensor array, hardware implementation

Procedia PDF Downloads 152
1177 The Evaluation of Transformational Leadership Characteristics and Behaviors in Air Forces

Authors: Cuma Şimşek

Abstract:

Nowadays our globalized world is in a very rapid and sophisticated change. In the information age, notion of ‘information’ has begun to spread faster than ever also in this age, changes and transformation has gained tremendous momentum with technology boom. This continuous change and transformation, increased the competition between existing organizations and corporations. Besides, the organizations which show resistance to change has been put out of action in this competitive environment. It is not possible to sustain the existence of organizations without adapting to change and transformation by isolating itself from developments. As a consequence of improved communication and dialog possibilities by means of increasing knowledge level, there has been made a change of scene in administrative mentality, style and activation, especially in 21th century. Leaders emerge as the most important factor in this process of perception and success. At the same time it is not enough to adapt the alteration with conventional leadership abilities and behaviors. In parallel with alteration, new types of leadership are coming up. The optimal leadership type for our era and a trending topic "Transformational Leadership" is in great demand now. In this research, current situation of the Air Forces which use high-technology weapons efficiently, operates in an environment full of threats and is analyzed. It is evaluated that in order to be ready for war continuously and adjusting itself to changing terms of warfare atmosphere , Air Forces need ‘transformational leaders’ who are innovative, foreseeing and having a vision so that they can develop new methods and strategies for complex problems. Because it is the Air Force which is responsible for being the deterrent force of its country.

Keywords: transformational, change, air force, leadership

Procedia PDF Downloads 419
1176 Evaluation the Influence of Trunk Bracing in Joint Contact Forces in Subjects with Scoliosis

Authors: Azadeh Jafari, Mohammad Taghi Karimi, Azadeh Nadi

Abstract:

Background: Scoliosis is the lateral curvature of the spine which may influence the abilities of the subjects during standing and walking. Most of the scoliotic subjects use orthosis to reduce the curve and to decrease the risk of curve progression. There was lack of information regarding the effects of orthosis on kinematic and joint contact force. Therefore, this research was done to highlight the effects of orthosis on the aforementioned parameters. Method: 5 scoliotic subjects were recruited in this study, with single curve less than 40 (females with age 13.2 ± 1.7). They were asked to walk with and without orthosis. The kinematic of the joints, force applied on the legs, moments transmitted through the joints and joint contact forces were evaluated in this study. Moreover, the lengths of muscles were determined by use of computer muscle control approach in OpenSim. Results: There was a significant difference between the second peak of vertical ground reaction force while walking with and without orthosis (p-value < 0.05). There was no difference between spatiotemporal gait parameters while walking with and without orthosis (P-value > 0.05). The mean values of joint contact forces (vertical component) increased by the use of orthosis, but the difference was not significant (p-value > 0.05). Conclusion: Although the kinematic of most of the body joints was not influenced by the use of orthosis, the joint contact force may be increased by orthosis. The increase in joint contact force may be due to the performance of orthosis which restricts the motions of pelvic and increases compensatory mechanism used by the subjects to decrease the side effects of the orthosis.

Keywords: scoliosis, joint contact force, kinetic, kinematic

Procedia PDF Downloads 180
1175 How to Applicate Knowledge Management in Security Environment within the Scope of Optimum Balance Model

Authors: Hakan Erol, Altan Elibol, Ömer Eryılmaz, Mehmet Şimşek

Abstract:

Organizations aim to manage information in a most possible effective way for sustainment and development. In doing so, they apply various procedures and methods. The very same situation is valid for each service of Armed Forces. During long-lasting endeavors such as shaping and maintaining security environment, supporting and securing peace, knowledge management is a crucial asset. Optimum Balance Model aims to promote the system from a decisive point to a higher decisive point. In this context, this paper analyses the application of optimum balance model to knowledge management in Armed Forces and tries to find answer to the question how Optimum Balance Model is integrated in knowledge management.

Keywords: optimum balance model, knowledge management, security environment, supporting peace

Procedia PDF Downloads 367
1174 Future Applications of 4D Printing in Dentistry

Authors: Hosamuddin Hamza

Abstract:

The major concept of 4D printing is self-folding under thermal and humidity changes. This concept relies on understanding how the microstructures of 3D-printed models can undergo spontaneous shape transformation under thermal and moisture changes. The transformation mechanism could be achieved by mixing, in a controllable pattern, a number of materials within the printed model, each with known strain/shrinkage properties. 4D printing has a strong potential to be applied in dentistry as the technology could produce dynamic and adaptable materials to be used as functional objects in the oral environment under the continuously changing thermal and humidity conditions. The motion criteria could override the undesired dimensional changes, thermal instability, polymerization shrinkage and microleakage. 4D printing could produce restorative materials being self-adjusted spontaneously without further intervention from the dentist or patient; that is, the materials could be capable of fixing its failed portions, compensating for some lost tooth structure, while avoiding microleakage or overhangs at the margins. In prosthetic dentistry, 4D printing could provide an option to manage the influence of bone and soft tissue imbalance during mastication (and at rest) with high predictability of the type/direction of forces. It can also produce materials with better fitting and retention characteristics than conventional or 3D-printed materials. Nevertheless, it is important to highlight that 4D-printed objects, having dynamic properties, could provide some cushion as they undergo self-folding compensating for any thermal changes or mechanical forces such as traumatic forces.

Keywords: functional material, self-folding material, 3D printing, 4D printing

Procedia PDF Downloads 445
1173 The Innovative Leadership in Air Forces

Authors: Ahmet Emre Yonder

Abstract:

The concept of present time is inevitably and rapidly changing. That provokes unbalanced, uncertain and elusive platform in the world order. Keeping up with this fluctuation requires a willingness to step beyond the comfort zones and to take a step through unknown. That is the perspectives of organizations in which the shareholders persistently create and then they share their creation. Moreover they are adapted to the unpredictable shifts and they establish vision. These are the meaning of innovation which is a process that converts new ideas to invaluable outcomes and that process can be ensured via innovative leaders. Leaders’ creativity is needed when challenging against countless complicated and unsteady situations in the battlefield. However, little attention has been paid to the importance of being innovative leader apart from innovating new technologies so far. Additionally, in most situation militarist organizations are hesitant to welcome different attitudes and that may discourage new ideas. Furthermore military leaders may complain about the lack of sources in today's world where the sources are very rare. In that point military leaders should change the strategies they apply from conventional views to the innovation of different point of views. But the constant occupation in Air Forces can be counted as a huge obstacle for innovative thinking. An organizational structure is needed to be developed for solutions of the problems which the creative leaders will encounter.This article focuses on how to raise innovative military leaders with innovative thinking skills and the need for a change from conventional to the innovative leadership in Air Forces. It also gives important suggestions to encourage raising innovative military leaders.

Keywords: air force, creativity, leadership, military, innovation

Procedia PDF Downloads 284
1172 The Effect of Pulsator on Washing Performance in a Front-Loading Washer

Authors: Eung Ryeol Seo, Hee Tae Lim, Eunsuk Bang, Soon Cheol Kweon, Jeoung-Kyo Jeoung, Ji-Hoon Choic

Abstract:

The object of this study is to investigate the effect of pulsator on washing performance quantitatively for front-loading washer. The front-loading washer with pulsator shows washing performance improvement of 18% and the particle-based body simulation technique has been applied to figure out the relation between washing performance and mechanical forces exerted on textile during washing process. As a result, the mechanical forces, such as collision force and strain force, acting on the textile have turned out to be about twice numerically. The washing performance improvement due to additional pulsate system has been utilized for customers to save 50% of washing time.

Keywords: front-loading washer, mechanical force, fabric movement, pulsator, time-saving

Procedia PDF Downloads 241
1171 Experimental Studies on the Effect of Rake Angle on Turning Ti-6Al-4V with TiAlN Coated Carbides

Authors: Satyanarayana Kosaraju, Venu Gopal Anne, Sateesh Nagari

Abstract:

In this paper, the effect of cutting speed, feedrate and rake angle in tool geometry on cutting forces and temperature generated on the tool tip in turning were investigated. The data used for the investigation derived from experiments conducted on precision lathe according to the full factorial design to observe the effect of each factor level on the process performance. During the tests, depth of cut were kept constant and each test was conducted with a sharp coated tool insert. Ti-6Al-4V was used as the workpiece material. The effects of cutting parameters and tool geometry on cutting forces and tool tip temperature were analyzed. The main cutting force was observed to have a decreasing trend and temperature found to be increasing trend as the rake angle increased.

Keywords: cutting force, tool tip temperature, rake angle, machining

Procedia PDF Downloads 478
1170 Comparative Study of Static and Dynamic Bending Forces during 3-Roller Cone Frustum Bending Process

Authors: Mahesh K. Chudasama, Harit K. Raval

Abstract:

3-roller conical bending process is widely used in the industries for manufacturing of conical sections and shells. It involves static as well dynamic bending stages. Analytical models for prediction of bending force during static as well as dynamic bending stage are available in the literature. In this paper, bending forces required for static bending stage and dynamic bending stages have been compared using the analytical models. It is concluded that force required for dynamic bending is very less as compared to the bending force required during the static bending stage.

Keywords: analytical modeling, cone frustum, dynamic bending, static bending

Procedia PDF Downloads 276
1169 Between Ralph Waldo Emerson and the Dying Infidel

Authors: Michael Keller

Abstract:

Beyond the heterodoxy expressed in his now-famous 1838 address to the Harvard Divinity School, Emerson’s timing was particularly dangerous. Ideologically, New England faced a severe crisis of identity, as traditional categories of class and religion were growing increasingly unstable. Jones Very, influenced by Emerson, crossed the perceived border between acceptable religious zeal and insane enthusiasm. Abner Kneeland, on the other hand, crossed the uncomfortable border between post-Puritan Unitarian rationalism and blasphemous Enlightenment skepticism. More importantly, Kneeland oversaw a more overtly subversive brand of resistance (in the form of freethought periodicals) that not only threatened religious orthodoxy but also threatened to destabilize the class structure of New England. Very and Kneeland provide instructive case studies of how religious ideologies could run afoul of the social contract and the law itself. By looking closely at the social and religious forces that led to Kneeland’s prosecution for blasphemy, Jones Very’s forced committal to McLean Asylum, and Emerson’s escape from these fates, we gain a greater understanding of the shifting cultural landscape of 1830s New England. This paper will examine Emerson’s resistance to the traditional forces of class and ideology in Massachusetts by situating his early work in the context of the ideological battles of his time. More specifically, I will explore how Emerson was able to resist the conservative cultural forces of his time without experiencing the extremity of their wrath.

Keywords: American literature, cultural studies, emerson, religious studies

Procedia PDF Downloads 115
1168 A Qualitative Study into the Success and Challenges in Embedding Evidence-Based Research Methods in Operational Policing Interventions

Authors: Ahmed Kadry, Gwyn Dodd

Abstract:

There has been a growing call globally for police forces to embed evidence-based policing research methods into police interventions in order to better understand and evaluate their impact. This research study highlights the success and challenges that police forces may encounter when trying to embed evidence-based research methods within their organisation. 10 in-depth qualitative interviews were conducted with police officers and staff at Greater Manchester Police (GMP) who were tasked with integrating evidence-based research methods into their operational interventions. The findings of the study indicate that with adequate resources and individual expertise, evidence-based research methods can be applied to operational work, including the testing of initiatives with strict controls in order to fully evaluate the impact of an intervention. However, the findings also indicate that this may only be possible where an operational intervention is heavily resourced with police officers and staff who have a strong understanding of evidence-based policing research methods, attained for example through their own graduate studies. In addition, the findings reveal that ample planning time was needed to trial operational interventions that would require strict parameters for what would be tested and how it would be evaluated. In contrast, interviewees underscored that operational interventions with the need for a speedy implementation were less likely to have evidence-based research methods applied. The study contributes to the wider literature on evidence-based policing by providing considerations for police forces globally wishing to apply evidence-based research methods to more of their operational work in order to understand their impact. The study also provides considerations for academics who work closely with police forces in assisting them to embed evidence-based policing. This includes how academics can provide their expertise to police decision makers wanting to underpin their work through evidence-based research methods, such as providing guidance on how to evaluate the impact of their work with varying research methods that they may otherwise be unaware of.  

Keywords: evidence based policing, evidence-based practice, operational policing, organisational change

Procedia PDF Downloads 104
1167 Study of the Effect of Seismic Behavior of Twin Tunnels Position on Each Other

Authors: M. Azadi, M. Kalhor

Abstract:

Excavation of shallow tunnels such as subways in urban areas plays a significant role as a life line and investigation of the soil behavior against tunnel construction is one of the vital subjects studied in the geotechnical scope. Nowadays, urban tunnels are mostly drilled by T.B.Ms and changing the applied forces to tunnel lining is one of the most risky matters while drilling tunnels by these machines. Variation of soil cementation can change the behavior of these forces in the tunnel lining. Therefore, this article is designed to assess the impact of tunnel excavation in different soils and several amounts of cementation on applied loads to tunnel lining under static and dynamic loads. According to the obtained results, changing the cementation of soil will affect the applied loadings to the tunnel envelope significantly. It can be determined that axial force in tunnel lining decreases considerably when soil cementation increases. Also, bending moment and shear force in tunnel lining decreases as the soil cementation increases and causes bending and shear behavior of the segments to improve. Based on the dynamic analyses, as cohesion factor in soil increases, bending moment, axial and shear forces of segments decrease but lining behavior of the tunnel is the same as static state. The results show that decreasing the overburden applied to lining caused by cementation is different in two static and dynamic states.

Keywords: seismic behavior, twin tunnels, tunnel positions, TBM, optimum distance

Procedia PDF Downloads 260