Search results for: flying altitude
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 308

Search results for: flying altitude

98 The Role of Entrepreneurial Orientation in Strengthening Goat Farm Competitiveness in Banjarnegara District, Indonesia

Authors: Mochamad Sugiarto, Yusmi Nw

Abstract:

Goat farming became an important alternative in eradicating poverty in Banjarnegara District. The success of goat farming in delivering products through efficient business management will improve business competitiveness. Entrepreneurship based farming has been able to survive in an ever-changing and increasingly complex global economy. Entrepreneurial farmers characterized by the ability to provide products of goats by applying the principles of efficient business. To achieve, this requires an understanding and a positive outlook related to entrepreneurship involving the values of courage to take risks, creativity and innovation as well as management's ability to find and read the opportunities. Entrepreneurial orientation owned by farmers is an important spirit of farmers to make decision for developing the goat farming. Entrepreneurial orientation is the view of farmers against the values of confidence, result-oriented, future-oriented, and creativity/innovation in goat farming. This study aims to (1) identify the entrepreneurial orientation of goat farmers in Banjarnegara District (2) analyze business competitiveness (cost efficiency) of goat farming in the Banjarnegara District and (3) analyze the relationship between the entrepreneurial perception and cost efficiency of goat farming in the Banjarnegara District. 178 respondents (goat farmers) were taken using stratified random sampling based on altitude. Banjarnegara district with heterogeneous topography grouped into areas of high ( > 1500m), moderate (500m-1000m) and low ( < 500m). The goat farmers in Banjarnegara District has a moderate entrepreneurial orientation. The manage their goat farming efficiently by having R/C = 2.58. Strengthening the entrepreneurial orientation will significantly increase the cost efficiency, which has an impact on strengthening the competitiveness of goat farming in Banjarnegara District.

Keywords: entrepreneurial orientation, cost efficiency, farm competitiveness, goat farming

Procedia PDF Downloads 278
97 Deficit Drip Irrigation in Organic Cultivation of Aromatic Plant

Authors: Vasileios A. Giouvanis, Christos D. Papanikolaou, Dimitrios S. Dimakas, Maria A. Sakellariou-Makrantonaki

Abstract:

In countries with limited water resources, where the irrigation demands are higher than the 70% of the total water use, the demand for fresh water increases while the quality of this natural resource is downgraded. The aromatic and pharmaceutical plants hold a high position in the culture of the most civilizations through the centuries. The ‘Mountain Tea,’ species of the Greek flora, is part of a series of aromatic plants and herbs that are famous for their pharmaceutical properties as well as their byproducts and their essential oils. The aim of this research was to study the effects of full and deficit irrigation on the growing and productive characteristics of organically cultivated ‘Mountain Tea’ (Sideritis raeseri). The research took place at the University of Thessaly farm in Velestino, Magnesia - Central Greece, during the year 2017, which was the third growing season. The experiment consisted of three treatments in three replications. The experimental design was a fully randomized complete block. Surface drip irrigation was used to irrigate the experimental plots. In the first treatment, the 75% (deficit irrigation) of the daily water needs was applied. In the second treatment, the 100% (full irrigation) of the daily water needs was applied. The third treatment was not irrigated (rainfed). The crop water needs were calculated according to the daily measured evapotranspiration (ETc) using the Penman-Monteith method (FAO 56). The plants’ height, fresh and dry biomass production were measured. The results showed that only the irrigated ‘Mountain Tea’ can be cultivated at low altitude areas with satisfactory results. Moreover, there are no statistically significant differences (P < 0.05) at the growing and productive characteristics between full and deficit irrigation treatments, which proves that by deficit irrigation, an important amount of irrigation water can be saved.

Keywords: mountain tea, surface drip irrigation, deficit irrigation, water saving

Procedia PDF Downloads 134
96 Case Study of the Impact of Sport Tourism Event on Local Residents in Cameroon: The African Cup of Nations

Authors: Zita Fomukong Andam

Abstract:

The decision on where to host sport events does not depend on the national politicians or specific international sport event bodies but also involves the residents of the hosting country. Sport tourism is one of the fast growing industries in the world. Cameroonians consider sport as a point of unity and growth within the country. It has a huge variety of sporting activities like swimming, canoe racing, tug of war and most especially soccer well known as football. The football national team made an impact in 1990 at the FIFA world cup. They also won the African Nations Cup five times. Being the winner of the 2017 African Cup of Nations, they are to host the 2019 African cup of Nations. The purpose of this research is to analyse the impacts of sport tourism event in Cameroon and specifically examine how this event influences the residents. A deep research discourse conducted with randomly selected 300 inbound residents and 200 Cameroonian residents living abroad. Survey questionnaires, interviews and direct observations were carried out as a method of collecting data. The results showed that sport events brings a lot of prestige and honor to the country; generate revenues to the country’s economy and particularly to the local businesses. On the other hand, the results showed that the local residents lose their intimacy, privacy, and their daily life routine is affected. In addition to this, they face negative social inequalities and environmental impacts. Understanding these results the national government and international bodies might be able to contribute to future studies and propose efficient measures to maximize the positive benefits and minimize the negative benefits.

Keywords: sport Tourism, economic impact, resident altitude, african Cup of nations

Procedia PDF Downloads 143
95 Phase Optimized Ternary Alloy Material for Gas Turbines

Authors: Mayandi Ramanathan

Abstract:

Gas turbine blades see the most aggressive thermal stress conditions within the engine, due to Turbine Entry Temperatures in the range of 1500 to 1600°C, but in synchronization with other functional components, they must readily deliver efficient performance, whilst incurring minimal overhaul and repair costs during its service life up to 5 million flying miles. The blades rotate at very high rotation rates and remove significant amount of thermal power from the gas stream. At high temperatures the major component failure mechanism is creep. During its service over time under high temperatures and loads, the blade will deform, lengthen and rupture. High strength and stiffness in the longitudinal direction up to elevated service temperatures are certainly the most needed properties of turbine blades. The proposed advanced Ti alloy material needs a process that provides strategic orientation of metallic ordering, uniformity in composition and high metallic strength. 25% Ta/(Al+Ta) ratio ensures TaAl3 phase formation, where as 51% Al/(Al+Ti) ratio ensures formation of α-Ti3Al and γ-TiAl mixed phases fand the three phase combination ensures minimal Al excess (~1.4% Al excess), unlike Ti-47Al-2Cr-2Nb which has significant excess Al (~5% Al excess) that could affect the service life of turbine blades. This presentation will involve the summary of additive manufacturing and heat treatment process conditions to fabricate turbine blade with Ti-43Al matrix alloyed with optimized amount of refractory Ta metal. Summary of thermo-mechanical test results such as high temperature tensile strength, creep strain rate, thermal expansion coefficient and fracture toughness will be presented. Improvement in service temperature of the turbine blades and corrosion resistance dependence on coercivity of the alloy material will be reported. Phase compositions will be quantified, and a summary of its correlation with creep strain rate will be presented.

Keywords: gas turbine, aerospace, specific strength, creep, high temperature materials, alloys, phase optimization

Procedia PDF Downloads 151
94 Environmental Effect on Yield and Quality of French Bean Genotypes Grown in Poly-Net House of India

Authors: Ramandeep Kaur, Tarsem Singh Dhillon, Rajinder Kumar Dhall, Ruma Devi

Abstract:

French bean (Phaseolous vulgaris L.) is an economically potential legume vegetable grown at high altitude (>1000 ft.). More recently, its cultivation in Northern Indian plans is gaining popularity but there is severe reduction in its yield and quality due to low temperature during extreme winter conditions of December-January in open field conditions. Therefore, present study was undertaken to evaluate 29 indeterminate French bean genotypes for various yield and quality traits in poly-net house with the objective to identify best performing genotypes during winter conditions. The significant variation was observed among all the genotypes for all the studied traits. The green pod yield was significantly higher in genotype Lakshmi (992.33 g/plant) followed by Star-I (955.50 g/plant) and FBK-4 (911.17 g/plant). However, the genotypes FBK-10 (105.50 days) and Lakshmi (106.83 days) took least number of days to first harvest and were significantly better than all other genotypes (109.00-136.83 days). The maximum numbers of 10 pickings were recorded in genotype Lakshmi whereas maximum harvesting span as also observed in Lakshmi (60.50 days) which was significantly higher than all other genotypes (31.17-56.50 days). Regarding quality traits, maximum dry matter was observed in FBK-13 (13.87%), protein content in FBK-1 (9.67%), sugar content in FBK-5 (9.60%) and minimum fiber content in FBK-12 (0.69%). It is hereby concluded that high productivity and better quality of French bean (genotypes: Lakshmi, Star-I, FBK-4) was produced in poly-net house conditions of Punjab, India and these pods fetches premium price in the market as there is no availability of green pods at that time in high altitudes. Hence, there is a great scope of cultivation of indeterminate French bean under poly-net house conditions in Punjab.

Keywords: earliness, pod, protected environment, quality, yield

Procedia PDF Downloads 80
93 Mathematical Analysis of Variation in Inlet Shock Wave Angle on Specific Impulse of Scramjet Engine

Authors: Shrikant Ghadage

Abstract:

Study of shock waves generated in the Scramjet engine is typically restricted to pressure, temperature, density, entropy and Mach number variation across the shock wave. The present work discusses the impact of inlet shock wave angles on the specific impulse of the Scramjet engine. A mathematical analysis has done for the isentropic hypersonic flow of air flowing through a Scramjet with hydrogen fuel at an altitude of 30 km. Analysis has been done in order to get optimum shock wave angle to achieve maximum impulse. Since external drag has excluded from the analysis, the losses due to friction are not considered for the present analysis. When Mach number of the airflow at the entry of the nozzle reaches unity, then that flow is choked. This condition puts limitations on increasing the inlet shock wave angle. As inlet shock wave angle increases, speed of the flow entering into the nozzle decreases, which results in an increase in the specific impulse of the engine. When the speed of the flow at the entry of the nozzle reduces below sonic speed, then there is no further increase in the specific impulse of the engine. Here the Conclusion is the thrust and specific impulse of a scramjet engine, which increases gradually with an increase in inlet shock wave angle up to the condition when airflow speed reaches sonic velocity at the exit of the combustor. In addition to that, variation in drag force at the inlet of the scramjet and variation in hypersonic flow conditions at every stage of the scramjet also studied in order to understand variation on flow characteristics with respect to flow deflection angle. Essentially, it helps in designing inlet profile for the Scramjet engine to achieve optimum specific impulse.

Keywords: hypersonic flow, scramjet, shock waves, specific impulse, mathematical analysis

Procedia PDF Downloads 135
92 An Active Subsurface Geological Structure Pattern of Mud Volcano Phenomenon as an Environmental Impact of Petroleum Withdrawal in Sidoarjo, East Java, Indonesia

Authors: M. M. S. Prahastomi, M. Muhajir Saputra, Axel Derian

Abstract:

Lapindo mud (LUSI ) phenomenon which occurred in Sidoarjo 2006 is a national scale of the geological phenomenon. This mudflow forms a mud volcano that spreads by time is in the need of serious treatment. Some further research has been conducted either by the application method of geodesy, geophysics, and subsurface geology, but still remains a mystery to this phenomenon. Sidoarjo Physiographic regions are included in the Kendeng zone flanked by Rembang zones in northern and Solo zones in southern. In this region revealed Kabuh formation, Jombang formation, and alluvium. In general, in the northern part of the area is composed of sedimentary rocks Sidoarjo klastika, epiklastic, pyroclastics, and older alluvium of the Early Pleistocene to Resen. The study was conducted with the literature study of the stratigraphy and regional geology as well as secondary data from observations coupled gravity method (Anomaly Bouger). The aim of the study is to reveal the subsurface geology structure pattern and the changes in mass flow. Gravity anomaly data were obtained from the calculation of the value of gravity and altitude, then processed into gravity anomaly contours which reflect changes in density of each group observed gravity. The gravity data could indicate a bottom surface which deformation occur the stronger or more intense to the south. Deformation in the form of gravity impairment was associated with a decrease in future density which is indicated by the presence of gas, water and gas bursts. Sectional analysis of changes in the measured value of gravity at different times indicates a change in the value of gravity caused by the presence of subsurface subsidence. While the gravity anomaly section describes the fault zone causes the zone to be unstable.

Keywords: mud volcano, Lumpur Sidoarjo, Bouger anomaly, Indonesia

Procedia PDF Downloads 437
91 The Culex Pipiens Niche: Assessment with Climatic and Physiographic Variables via a Geographic Information System

Authors: Maria C. Proença, Maria T. Rebelo, Marília Antunes, Maria J. Alves, Hugo Osório, Sofia Cunha, João Casaca

Abstract:

Using a geographic information system (GIS), the relations between a georeferenced data set of Culex pipiens sl. mosquitoes collected in Portugal mainland during seven years (2006-2012) and meteorological and physiographic parameters such as: air relative humidity, air temperature (minima, maxima and mean daily temperatures), daily total rainfall, altitude, land use/land cover and proximity to water bodies are evaluated. Focus is on the mosquito females; the characterization of its habitat is the key for the planning of chirurgical non-aggressive prophylactic countermeasures to avoid ambient degradation. The GIS allow for the spatial determination of the zones were the mosquito mean captures has been above average; using the meteorological values at these coordinates, the limits of each parameter are identified/computed. The meteorological parameters measured at the net of weather stations all over the country are averaged by month and interpolated to produce raster maps that can be segmented according to the thresholds obtained for each parameter. The intersection of the maps obtained for each month show the evolution of the area favorable to the species through the mosquito season, which is from May to October at these latitudes. In parallel, mean and above average captures were related to the physiographic parameters. Three levels of risk could be identified for each parameter, using above average captures as an index. The results were applied to the suitability meteorological maps of each month. The Culex pipiens critical niche is delimited, reflecting the critical areas and the level of risk for transmission of the pathogens to which they are competent vectors (West Nile virus, iridoviruses, rheoviruses and parvoviruses).

Keywords: Culex pipiens, ecological niche, risk assessment, risk management

Procedia PDF Downloads 512
90 Smart Oxygen Deprivation Mask: An Improved Design with Biometric Feedback

Authors: Kevin V. Bui, Richard A. Claytor, Elizabeth M. Priolo, Weihui Li

Abstract:

Oxygen deprivation masks operate through the use of restricting valves as a means to reduce respiratory flow where flow is inversely proportional to the resistance applied. This produces the same effect as higher altitudes where lower pressure leads to reduced respiratory flow. Both increased resistance with restricting valves and reduce the pressure of higher altitudes make breathing difficultier and force breathing muscles (diaphragm and intercostal muscles) working harder. The process exercises these muscles, improves their strength and results in overall better breathing efficiency. Currently, these oxygen deprivation masks are purely mechanical devices without any electronic sensor to monitor the breathing condition, thus not be able to provide feedback on the breathing effort nor to evaluate the lung function. That is part of the reason that these masks are mainly used for high-level athletes to mimic training in higher altitude conditions, not suitable for patients or customers. The design aims to improve the current method of oxygen deprivation mask to include a larger scope of patients and customers while providing quantitative biometric data that the current design lacks. This will be accomplished by integrating sensors into the mask’s breathing valves along with data acquisition and Bluetooth modules for signal processing and transmission. Early stages of the sensor mask will measure breathing rate as a function of changing the air pressure in the mask, with later iterations providing feedback on flow rate. Data regarding breathing rate will be prudent in determining whether training or therapy is improving breathing function and quantify this improvement.

Keywords: oxygen deprivation mask, lung function, spirometer, Bluetooth

Procedia PDF Downloads 197
89 Experimental Analysis for the Inlet of the Brazilian Aerospace Vehicle 14-X B

Authors: João F. A. Martos, Felipe J. Costa, Sergio N. P. Laiton, Bruno C. Lima, Israel S. Rêgo, Paulo P. G. Toro

Abstract:

Nowadays, the scramjet is a topic that has attracted the attention of several scientific communities (USA, Australia, Germany, France, Japan, India, China, Russia), that are investing in this in this type of propulsion system due its interest to facilitate access to space and reach hypersonic speed, who have invested in this type of propulsion due to the interest in facilitating access to space. The Brazilian hypersonic scramjet aerospace vehicle 14-X B is a technological demonstrator of a hypersonic airbreathing propulsion system based on the supersonic combustion (scramjet) intended to be tested in flight into the Earth's atmosphere at 30 km altitude and Mach number 7. The 14-X B has been designed at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics of the Institute for Advanced Studies (IEAv) in Brazil. The IEAv Hypersonic Shock Tunnel, named T3, is a ground-test facility able to reproduce the flight conditions as the Mach number as well as pressure and temperature in the test section close to those encountered during the test flight of the vehicle 14-X B into design conditions. A 1-m long stainless steel 14-X B model was experimentally investigated at T3 Hypersonic Shock Tunnel, for freestream Mach number 7. Static pressure measurements along the lower surface of the 14-X B model, along with high-speed schlieren photographs taken from the 5.5° leading edge and the 14.5° deflection compression ramp, provided experimental data that were compared to the analytical-theoretical solutions and the computational fluid dynamics (CFD) simulations. The results show a good qualitative agreement, and in consequence demonstrating the importance of these methods in the project of the 14-X B hypersonic aerospace vehicle.

Keywords: 14-X, CFD, hypersonic, hypersonic shock tunnel, scramjet

Procedia PDF Downloads 332
88 Control of a Quadcopter Using Genetic Algorithm Methods

Authors: Mostafa Mjahed

Abstract:

This paper concerns the control of a nonlinear system using two different methods, reference model and genetic algorithm. The quadcopter is a nonlinear unstable system, which is a part of aerial robots. It is constituted by four rotors placed at the end of a cross. The center of this cross is occupied by the control circuit. Its motions are governed by six degrees of freedom: three rotations around 3 axes (roll, pitch and yaw) and the three spatial translations. The control of such system is complex, because of nonlinearity of its dynamic representation and the number of parameters, which it involves. Numerous studies have been developed to model and stabilize such systems. The classical PID and LQ correction methods are widely used. If the latter represent the advantage to be simple because they are linear, they reveal the drawback to require the presence of a linear model to synthesize. It also implies the complexity of the established laws of command because the latter must be widened on all the domain of flight of these quadcopter. Note that, if the classical design methods are widely used to control aeronautical systems, the Artificial Intelligence methods as genetic algorithms technique receives little attention. In this paper, we suggest comparing two PID design methods. Firstly, the parameters of the PID are calculated according to the reference model. In a second phase, these parameters are established using genetic algorithms. By reference model, we mean that the corrected system behaves according to a reference system, imposed by some specifications: settling time, zero overshoot etc. Inspired from the natural evolution of Darwin's theory advocating the survival of the best, John Holland developed this evolutionary algorithm. Genetic algorithm (GA) possesses three basic operators: selection, crossover and mutation. We start iterations with an initial population. Each member of this population is evaluated through a fitness function. Our purpose is to correct the behavior of the quadcopter around three axes (roll, pitch and yaw) with 3 PD controllers. For the altitude, we adopt a PID controller.

Keywords: quadcopter, genetic algorithm, PID, fitness, model, control, nonlinear system

Procedia PDF Downloads 394
87 A 3-Dimensional Memory-Based Model for Planning Working Postures Reaching Specific Area with Postural Constraints

Authors: Minho Lee, Donghyun Back, Jaemoon Jung, Woojin Park

Abstract:

The current 3-dimensional (3D) posture prediction models commonly provide only a few optimal postures to achieve a specific objective. The problem with such models is that they are incapable of rapidly providing several optimal posture candidates according to various situations. In order to solve this problem, this paper presents a 3D memory-based posture planning (3D MBPP) model, which is a new digital human model that can analyze the feasible postures in 3D space for reaching tasks that have postural constraints and specific reaching space. The 3D MBPP model can be applied to the types of works that are done with constrained working postures and have specific reaching space. The examples of such works include driving an excavator, driving automobiles, painting buildings, working at an office, pitching/batting, and boxing. For these types of works, a limited amount of space is required to store all of the feasible postures, as the hand reaches boundary can be determined prior to perform the task. This prevents computation time from increasing exponentially, which has been one of the major drawbacks of memory-based posture planning model in 3D space. This paper validates the utility of 3D MBPP model using a practical example of analyzing baseball batting posture. In baseball, batters swing with both feet fixed to the ground. This motion is appropriate for use with the 3D MBPP model since the player must try to hit the ball when the ball is located inside the strike zone (a limited area) in a constrained posture. The results from the analysis showed that the stored and the optimal postures vary depending on the ball’s flying path, the hitting location, the batter’s body size, and the batting objective. These results can be used to establish the optimal postural strategies for achieving the batting objective and performing effective hitting. The 3D MBPP model can also be applied to various domains to determine the optimal postural strategies and improve worker comfort.

Keywords: baseball, memory-based, posture prediction, reaching area, 3D digital human models

Procedia PDF Downloads 184
86 Drone Swarm Routing and Scheduling for Off-shore Wind Turbine Blades Inspection

Authors: Mohanad Al-Behadili, Xiang Song, Djamila Ouelhadj, Alex Fraess-Ehrfeld

Abstract:

In off-shore wind farms, turbine blade inspection accessibility under various sea states is very challenging and greatly affects the downtime of wind turbines. Maintenance of any offshore system is not an easy task due to the restricted logistics and accessibility. The multirotor unmanned helicopter is of increasing interest in inspection applications due to its manoeuvrability and payload capacity. These advantages increase when many of them are deployed simultaneously in a swarm. Hence this paper proposes a drone swarm framework for inspecting offshore wind turbine blades and nacelles so as to reduce downtime. One of the big challenges of this task is that when operating a drone swarm, an individual drone may not have enough power to fly and communicate during missions and it has no capability of refueling due to its small size. Once the drone power is drained, there are no signals transmitted and the links become intermittent. Vessels equipped with 5G masts and small power units are utilised as platforms for drones to recharge/swap batteries. The research work aims at designing a smart energy management system, which provides automated vessel and drone routing and recharging plans. To achieve this goal, a novel mathematical optimisation model is developed with the main objective of minimising the number of drones and vessels, which carry the charging stations, and the downtime of the wind turbines. There are a number of constraints to be considered, such as each wind turbine must be inspected once and only once by one drone; each drone can inspect at most one wind turbine after recharging, then fly back to the charging station; collision should be avoided during the drone flying; all wind turbines in the wind farm should be inspected within the given time window. We have developed a real-time Ant Colony Optimisation (ACO) algorithm to generate real-time and near-optimal solutions to the drone swarm routing problem. The schedule will generate efficient and real-time solutions to indicate the inspection tasks, time windows, and the optimal routes of the drones to access the turbines. Experiments are conducted to evaluate the quality of the solutions generated by ACO.

Keywords: drone swarm, routing, scheduling, optimisation model, ant colony optimisation

Procedia PDF Downloads 218
85 Scientific Expedition to Understand the Crucial Issues of Rapid Lake Expansion and Moraine Dam Instability Phenomena to Justify the Lake Lowering Effort of Imja Lake, Khumbu Region of Sagarmatha, Nepal

Authors: R. C. Tiwari, N. P. Bhandary, D. B. Thapa Chhetri, R. Yatabe

Abstract:

The research enlightens the various issues of lake expansion and stability of the moraine dam of Imja lake. The Imja lake considered that the world highest altitude lake (5010m from m.s.l.), located in the Khumbu, Sagarmatha region of Nepal (27.90 N and 86.90 E) was reported as one of the fast growing glacier lakes in the Nepal Himalaya. The research explores a common phenomenon of lake expansion and stability issues of moraine dam to justify the necessity of lake lowering efforts if any in future in other glacier lakes in Nepal Himalaya. For this, we have explored the root causes of rapid lake expansion along with crucial factors responsible for the stability of moraine mass. This research helps to understand the structure of moraine dam and the ice, water and moraine interactions to the strength of moraine dam. The nature of permafrost layer and its effects on moraine dam stability is also studied here. The detail Geo-Technical properties of moraine mass of Imja lake gives a clear picture of the strength of the moraine material and their interactions. The stability analysis of the moraine dam under the consideration of strong ground motion of 7.8Mw 2015 Barpak-Gorkha and its major aftershock 7.3Mw Kodari, Sindhupalchowk-Dolakha border, Nepal earthquakes have also been carried out here to understand the necessity of lake lowering efforts. The lake lowering effort was recently done by Nepal Army by constructing an open channel and lowered 3m. And, it is believed that the entire region is now safe due to continuous draining of lake water by 3m. But, this option does not seem adequate to offer a significant risk reduction to downstream communities in this much amount of volume and depth, lowering as in the 75 million cubic meter water impounded with an average depth of 148.9m.

Keywords: finite element method, glacier, moraine, stability

Procedia PDF Downloads 184
84 Biomass and Carbon Stock Estimates of Woodlands in the Southeastern Escarpment of Ethiopian Rift Valley: An Implication for Climate Change Mitigation

Authors: Sultan Haji Shube

Abstract:

Woodland ecosystems of semiarid rift valley of Ethiopia play a significant role in climate change mitigation by sequestering and storing more carbon. This study was conducted in Gidabo river sub-basins southeastern rift-valley escarpment of Ethiopian. It aims to estimate biomass and carbon stocks of woodlands and its implications for climate change mitigation. A total of 44 sampling plots (900m²each) were systematically laid in the woodland for vegetation and environmental data collection. A composite soil sample was taken from five locations main plot. Both disturbed and undisturbed soil samples were taken at two depths using soil auger and core-ring sampler, respectively. Allometric equation was used to estimate aboveground biomass while root-to-shoot ratio method and Walkley-Black method were used for belowground biomass and SOC, respectively. Result revealed that the totals of the study site was 17.05t/ha, of which 14.21t/ha was belonging for AGB and 2.84t/ha was for BGB. Moreover, 2224.7t/ha total carbon stocks was accumulated with an equivalent carbon dioxide of 8164.65t/ha. This study also revealed that more carbon was accumulated in the soil than the biomass. Both aboveground and belowground carbon stocks were decreased with increase in altitude while SOC stocks were increased. The AGC and BGC stocks were higher in the lower slope classes. SOC stocks were higher in the higher slope classes than in the lower slopes. Higher carbon stock was obtained from woody plants that had a DBH measure of >16cm and situated at plots facing northwest. Overall, study results will add up information about carbon stock potential of the woodland that will serve as a base line scenario for further research, policy makers and land managers.

Keywords: allometric equation, climate change mitigation, soil organic carbon, woodland

Procedia PDF Downloads 56
83 Studies on Space-Based Laser Targeting System for the Removal of Orbital Space Debris

Authors: Krima M. Rohela, Raja Sabarinath Sundaralingam

Abstract:

Humans have been launching rockets since the beginning of the space age in the late 1950s. We have come a long way since then, and the success rate for the launch of rockets has increased considerably. With every successful launch, there is a large amount of junk or debris which is released into the upper layers of the atmosphere. Space debris has been a huge concern for a very long time now. This includes the rocket shells released from the launch and the parts of defunct satellites. Some of this junk will come to fall towards the Earth and burn in the atmosphere. But most of the junk goes into orbit around the Earth, and they remain in orbits for at least 100 years. This can cause a lot of problems to other functioning satellites and may affect the future manned missions to space. The main concern of the space-debris is the increase in space activities, which leads to risks of collisions if not taken care of soon. These collisions may result in what is known as Kessler Syndrome. This debris can be removed by a space-based laser targeting system. Hence, the matter is investigated and discussed. The first step in this involves launching a satellite with a high-power laser device into space, above the debris belt. Then the target material is ablated with a focussed laser beam. This step of the process is highly dependent on the attitude and orientation of the debris with respect to the Earth and the device. The laser beam will cause a jet of vapour and plasma to be expelled from the material. Hence, the force is applied in the opposite direction, and in accordance with Newton’s third law of motion, this will cause the material to move towards the Earth and get pulled down due to gravity, where it will get disintegrated in the upper layers of the atmosphere. The larger pieces of the debris can be directed towards the oceans. This method of removal of the orbital debris will enable safer passage for future human-crewed missions into space.

Keywords: altitude, Kessler syndrome, laser ablation, Newton’s third law of motion, satellites, Space debris

Procedia PDF Downloads 110
82 Assessment of Seeding and Weeding Field Robot Performance

Authors: Victor Bloch, Eerikki Kaila, Reetta Palva

Abstract:

Field robots are an important tool for enhancing efficiency and decreasing the climatic impact of food production. There exists a number of commercial field robots; however, since this technology is still new, the robot advantages and limitations, as well as methods for optimal using of robots, are still unclear. In this study, the performance of a commercial field robot for seeding and weeding was assessed. A research 2-ha sugar beet field with 0.5m row width was used for testing, which included robotic sowing of sugar beet and weeding five times during the first two months of the growing. About three and five percent of the field were used as untreated and chemically weeded control areas, respectively. The plant detection was based on the exact plant location without image processing. The robot was equipped with six seeding and weeding tools, including passive between-rows harrow hoes and active hoes cutting inside rows between the plants, and it moved with a maximal speed of 0.9 km/h. The robot's performance was assessed by image processing. The field images were collected by an action camera with a height of 2 m and a resolution 27M pixels installed on the robot and by a drone with a 16M pixel camera flying at 4 m height. To detect plants and weeds, the YOLO model was trained with transfer learning from two available datasets. A preliminary analysis of the entire field showed that in the areas treated by the robot, the weed average density varied across the field from 6.8 to 9.1 weeds/m² (compared with 0.8 in the chemically treated area and 24.3 in the untreated area), the weed average density inside rows was 2.0-2.9 weeds / m (compared with 0 on the chemically treated area), and the emergence rate was 90-95%. The information about the robot's performance has high importance for the application of robotics for field tasks. With the help of the developed method, the performance can be assessed several times during the growth according to the robotic weeding frequency. When it’s used by farmers, they can know the field condition and efficiency of the robotic treatment all over the field. Farmers and researchers could develop optimal strategies for using the robot, such as seeding and weeding timing, robot settings, and plant and field parameters and geometry. The robot producers can have quantitative information from an actual working environment and improve the robots accordingly.

Keywords: agricultural robot, field robot, plant detection, robot performance

Procedia PDF Downloads 42
81 Impacts of Climate Change on Number of Snowy Days and Snow Season Lengths in Turkey

Authors: Evren Ozgur, Kasim Kocak

Abstract:

As a result of global warming and climate change, air temperature has increased and will continue to increase in the future. Increases in air temperatures have effects on a large number of variables in meteorology. One of the most important effects is the changes in the types of precipitation, especially in mid-latitudes. Because of increasing air temperatures, less snowfall was observed in the eastern parts of Turkey. Snowfall provides most of the water supply in spring and summer months, especially in mountainous regions of Turkey. When the temperature begins to increase in spring season, this snow starts to melt and plays an important role in agricultural purposes, drinking water supply and energy production. On the other hand, defining the snow season is very crucial especially in mountainous areas which have winter tourism opportunities. A reduction in the length of the snow season (LSS) in these regions will result in serious consequences in the long run. In the study, snow season was examined for 10 meteorological stations that are located above the altitude of 1000m. These stations have decreasing trends in the ratio of number of snowy days to total precipitation days considering earlier studies. Daily precipitation records with the observation period of 1971-2011 were used in the study. Then, the observation period was separated into 4 non-overlapping parts in order to identify decadal variations. Changes in the length of the snow season with increasing temperatures were obtained for these stations. The results of LSS were evaluated with the number of snowy days for each station. All stations have decreasing trend in number of snowy days for 1971-2011 period. In addition, seven of the results are statistically significant. Besides, decrease is observed regarding the length of snow season for studied stations. The decrease varies between 6.6 and 47.6 days according to decadal snow season averages of the stations.

Keywords: climate change, global warming, precipitation, snowfall, Turkey

Procedia PDF Downloads 149
80 Evidence of Natural Selection Footprints among Some African Chicken Breeds and Village Ecotypes

Authors: Ahmed Elbeltagy, Francesca Bertolini, Damarius Fleming, Angelica Van Goor, Chris Ashwell, Carl Schmidt, Donald Kugonza, Susan Lamont, Max Rothschild

Abstract:

The major factor in shaping genomic variation of the African indigenous rural chicken is likely natural selection drives the development genetic footprints in the chicken genomes. To investigate such a hypothesis of a selection footprint, a total of 292 birds were randomly sampled from three indigenous ecotypes from East Africa (Uganda, Rwanda) and North Africa (Egypt) and two registered Egyptian breeds (Fayoumi and Dandarawi), and from the synthetic Kuroiler breed. Samples were genotyped using the Affymetrix 600K Axiom® Array. A total of 526,652 SNPs were utilized in the downstream analysis after quality control measures. The intra-population runs of homozygosity (ROH) that were consensuses in > 50% of individuals of an ecotype or > 75% of a breed were studied. To identify inter-population differentiation due to genetic structure, FST was calculated for North- vs. East- African populations in addition to population-pairwise combinations for overlapping windows (500Kb with an overlap of 250Kb). A total of 28,563 ROH were determined and were classified into three length categories. ROH and Fst detected sweeps were identified on several autosomes. Several genes in these regions are likely to be related to adaptation to local environmental stresses that include high altitude, diseases resistance, poor nutrition, oxidative and heat stresses and were linked to gene ontology terms (GO) related to immune response, oxygen consumption and heme binding, carbohydrate metabolism, oxidation-reduction, and behavior. Results indicated a possible effect of natural selection forces on shaping genomic structure for adaptation to local environmental stresses.

Keywords: African Chicken, runs of homozygosity, FST, selection footprints

Procedia PDF Downloads 292
79 The Distribution, Productivity and Conservation of Camphor Tree, Dryobalanops Aromatica in West Coast of Sumatra, Indonesia

Authors: Aswandi Anas Husin, Cut Rizlani Kholibrina

Abstract:

Harvesting camphor resin has been carried out since the beginning of civilization on the west coast of Sumatra. Oil or crystals that containing borneol are harvested from the camphor tree (Dryobalanops aromatica). Non-timber forest products are utilized for the manufacture of fragrances, antiseptics, anti-inflammatory, analgesic as well as effective for the treatment of blocked arteries. Based on exploration on the west coast of Sumatra, these endemic tree species were found remaining growing in groups on small spots in the lowlands to the hills. Some populations are found at an altitude of 700 meters above sea level in Kadabuhan, Jongkong and Sultan Daulat in Subulussalam district, Singkohor and Lake Paris in Aceh Singkil district, and Sirandorung and Manduamas in the north of Barus, Central Tapanuli district. These multi-purpose tree species was also identified as being able to adapt to the Singkil Peat Swamp. The decline in tree population has a direct impact on reducing their productivity. Conventionally, the crystals are harvested by cutting and splitting the stem into wooden blocks. In this way about 1.5-2.5 kg of crystals are obtained with various qualities. Camphor retrieval can also be done by making a notch on a standing tree trunk and collecting liquid resin (ombil) that is removed from the injured resin channel. Twigs and leaves also contain borneol. The aromatic content in this section opens opportunities for the supply of borneol through the distillation process. Vegetative propagation technology is needed to overcome the limitations of available seeds. This breeding strategy for vulnerable species starts with gathering genetic material from various provenances which are then used to support the provision of basic populations, breeding populations, multiplication populations and production populations for extensive development of camphor tree plantations

Keywords: camphor, conservation, natural borneol, productivity, vulnerable species

Procedia PDF Downloads 95
78 Undersea Communications Infrastructure: Risks, Opportunities, and Geopolitical Considerations

Authors: Lori W. Gordon, Karen A. Jones

Abstract:

Today’s high-speed data connectivity depends on a vast global network of infrastructure across space, air, land, and sea, with undersea cable infrastructure (UCI) serving as the primary means for intercontinental and ‘long-haul’ communications. The UCI landscape is changing and includes an increasing variety of state actors, such as the growing economies of Brazil, Russia, India, China, and South Africa. Non-state commercial actors, such as hyper-scale content providers including Google, Facebook, Microsoft, and Amazon, are also seeking to control their data and networks through significant investments in submarine cables. Active investments by both state and non-state actors will invariably influence the growth, geopolitics, and security of this sector. Beyond these hyper-scale content providers, there are new commercial satellite communication providers. These new players include traditional geosynchronous (GEO) satellites that offer broad coverage, high throughput GEO satellites offering high capacity with spot beam technology, low earth orbit (LEO) ‘mega constellations’ – global broadband services. And potential new entrants such as High Altitude Platforms (HAPS) offer low latency connectivity, LEO constellations offer high-speed optical mesh networks, i.e., ‘fiber in the sky.’ This paper focuses on understanding the role of submarine cables within the larger context of the global data commons, spanning space, terrestrial, air, and sea networks, including an analysis of national security policy and geopolitical implications. As network operators and commercial and government stakeholders plan for emerging technologies and architectures, hedging risks for future connectivity will ensure that our data backbone will be secure for years to come.

Keywords: communications, global, infrastructure, technology

Procedia PDF Downloads 53
77 Cooperation of Unmanned Vehicles for Accomplishing Missions

Authors: Ahmet Ozcan, Onder Alparslan, Anil Sezgin, Omer Cetin

Abstract:

The use of unmanned systems for different purposes has become very popular over the past decade. Expectations from these systems have also shown an incredible increase in this parallel. But meeting the demands of the tasks are often not possible with the usage of a single unmanned vehicle in a mission, so it is necessary to use multiple autonomous vehicles with different abilities together in coordination. Therefore the usage of the same type of vehicles together as a swarm is helped especially to satisfy the time constraints of the missions effectively. In other words, it allows sharing the workload by the various numbers of homogenous platforms together. Besides, it is possible to say there are many kinds of problems that require the usage of the different capabilities of the heterogeneous platforms together cooperatively to achieve successful results. In this case, cooperative working brings additional problems beyond the homogeneous clusters. In the scenario presented as an example problem, it is expected that an autonomous ground vehicle, which is lack of its position information, manage to perform point-to-point navigation without losing its way in a previously unknown labyrinth. Furthermore, the ground vehicle is equipped with very limited sensors such as ultrasonic sensors that can detect obstacles. It is very hard to plan or complete the mission for the ground vehicle by self without lost its way in the unknown labyrinth. Thus, in order to assist the ground vehicle, the autonomous air drone is also used to solve the problem cooperatively. The autonomous drone also has limited sensors like downward looking camera and IMU, and it also lacks computing its global position. In this context, it is aimed to solve the problem effectively without taking additional support or input from the outside, just benefiting capabilities of two autonomous vehicles. To manage the point-to-point navigation in a previously unknown labyrinth, the platforms have to work together coordinated. In this paper, cooperative work of heterogeneous unmanned systems is handled in an applied sample scenario, and it is mentioned that how to work together with an autonomous ground vehicle and the autonomous flying platform together in a harmony to take advantage of different platform-specific capabilities. The difficulties of using heterogeneous multiple autonomous platforms in a mission are put forward, and the successful solutions are defined and implemented against the problems like spatially distributed tasks planning, simultaneous coordinated motion, effective communication, and sensor fusion.

Keywords: unmanned systems, heterogeneous autonomous vehicles, coordination, task planning

Procedia PDF Downloads 103
76 Measurement of Ionospheric Plasma Distribution over Myanmar Using Single Frequency Global Positioning System Receiver

Authors: Win Zaw Hein, Khin Sandar Linn, Su Su Yi Mon, Yoshitaka Goto

Abstract:

The Earth ionosphere is located at the altitude of about 70 km to several 100 km from the ground, and it is composed of ions and electrons called plasma. In the ionosphere, these plasma makes delay in GPS (Global Positioning System) signals and reflect in radio waves. The delay along the signal path from the satellite to the receiver is directly proportional to the total electron content (TEC) of plasma, and this delay is the largest error factor in satellite positioning and navigation. Sounding observation from the top and bottom of the ionosphere was popular to investigate such ionospheric plasma for a long time. Recently, continuous monitoring of the TEC using networks of GNSS (Global Navigation Satellite System) observation stations, which are basically built for land survey, has been conducted in several countries. However, in these stations, multi-frequency support receivers are installed to estimate the effect of plasma delay using their frequency dependence and the cost of multi-frequency support receivers are much higher than single frequency support GPS receiver. In this research, single frequency GPS receiver was used instead of expensive multi-frequency GNSS receivers to measure the ionospheric plasma variation such as vertical TEC distribution. In this measurement, single-frequency support ublox GPS receiver was used to probe ionospheric TEC. The location of observation was assigned at Mandalay Technological University in Myanmar. In the method, the ionospheric TEC distribution is represented by polynomial functions for latitude and longitude, and parameters of the functions are determined by least-squares fitting on pseudorange data obtained at a known location under an assumption of thin layer ionosphere. The validity of the method was evaluated by measurements obtained by the Japanese GNSS observation network called GEONET. The performance of measurement results using single-frequency of GPS receiver was compared with the results by dual-frequency measurement.

Keywords: ionosphere, global positioning system, GPS, ionospheric delay, total electron content, TEC

Procedia PDF Downloads 108
75 Occupational Safety and Health in the Wake of Drones

Authors: Hoda Rahmani, Gary Weckman

Abstract:

The body of research examining the integration of drones into various industries is expanding rapidly. Despite progress made in addressing the cybersecurity concerns for commercial drones, knowledge deficits remain in determining potential occupational hazards and risks of drone use to employees’ well-being and health in the workplace. This creates difficulty in identifying key approaches to risk mitigation strategies and thus reflects the need for raising awareness among employers, safety professionals, and policymakers about workplace drone-related accidents. The purpose of this study is to investigate the prevalence of and possible risk factors for drone-related mishaps by comparing the application of drones in construction with manufacturing industries. The chief reason for considering these specific sectors is to ascertain whether there exists any significant difference between indoor and outdoor flights since most construction sites use drones outside and vice versa. Therefore, the current research seeks to examine the causes and patterns of workplace drone-related mishaps and suggest possible ergonomic interventions through data collection. Potential ergonomic practices to mitigate hazards associated with flying drones could include providing operators with professional pieces of training, conducting a risk analysis, and promoting the use of personal protective equipment. For the purpose of data analysis, two data mining techniques, the random forest and association rule mining algorithms, will be performed to find meaningful associations and trends in data as well as influential features that have an impact on the occurrence of drone-related accidents in construction and manufacturing sectors. In addition, Spearman’s correlation and chi-square tests will be used to measure the possible correlation between different variables. Indeed, by recognizing risks and hazards, occupational safety stakeholders will be able to pursue data-driven and evidence-based policy change with the aim of reducing drone mishaps, increasing productivity, creating a safer work environment, and extending human performance in safe and fulfilling ways. This research study was supported by the National Institute for Occupational Safety and Health through the Pilot Research Project Training Program of the University of Cincinnati Education and Research Center Grant #T42OH008432.

Keywords: commercial drones, ergonomic interventions, occupational safety, pattern recognition

Procedia PDF Downloads 177
74 Validation Study of Radial Aircraft Engine Model

Authors: Lukasz Grabowski, Tytus Tulwin, Michal Geca, P. Karpinski

Abstract:

This paper presents the radial aircraft engine model which has been created in AVL Boost software. This model is a one-dimensional physical model of the engine, which enables us to investigate the impact of an ignition system design on engine performance (power, torque, fuel consumption). In addition, this model allows research under variable environmental conditions to reflect varied flight conditions (altitude, humidity, cruising speed). Before the simulation research the identifying parameters and validating of model were studied. In order to verify the feasibility to take off power of gasoline radial aircraft engine model, some validation study was carried out. The first stage of the identification was completed with reference to the technical documentation provided by manufacturer of engine and the experiments on the test stand of the real engine. The second stage involved a comparison of simulation results with the results of the engine stand tests performed on a WSK ’PZL-Kalisz’. The engine was loaded by a propeller in a special test bench. Identifying the model parameters referred to a comparison of the test results to the simulation in terms of: pressure behind the throttles, pressure in the inlet pipe, and time course for pressure in the first inlet pipe, power, and specific fuel consumption. Accordingly, the required coefficients and error of simulation calculation relative to the real-object experiments were determined. Obtained the time course for pressure and its value is compatible with the experimental results. Additionally the engine power and specific fuel consumption tends to be significantly compatible with the bench tests. The mapping error does not exceed 1.5%, which verifies positively the model of combustion and allows us to predict engine performance if the process of combustion will be modified. The next conducted tests verified completely model. The maximum mapping error for the pressure behind the throttles and the inlet pipe pressure is 4 %, which proves the model of the inlet duct in the engine with the charging compressor to be correct.

Keywords: 1D-model, aircraft engine, performance, validation

Procedia PDF Downloads 308
73 Priority Sites for Deforested and Degraded Mountain Restoration Projects in North Korea

Authors: Koo Ja-Choon, Seok Hyun-Deok, Park So-Hee

Abstract:

Even though developed countries have supported aid projects for restoring degraded and deforested mountain, recent North Korean authorities announced that North Korean forest is still very serious. Last 12 years, more than 16 thousand ha of forest were destroyed. Most of previous researches concluded that food and fuel problems should be solved for preventing people from deforesting and degrading forest in North Korea. It means that mountain restoration projects such as A/R(afforestation/reforestation) and REDD(Reducing Emissions from Deforestation and Forest Degradation) project should be implemented with the agroforestry and the forest tending project. Because agroforestry and the forest tending can provide people in the project area with foods and fuels, respectively. Especially, Agroforestry has been operated well with the support of Swiss agency of Development and cooperation since 2003. This paper aims to find the priority sites for mountain restoration project where all types of projects including agroforesty can be implemented simultaneously. We tried to find the primary counties where the areas of these activities were distributed widely and evenly. Recent spatial data of 186 counties representing altitude, gradient and crown density were collected from World Forest Watch. These 3 attributes were used to determine the type of activities; A/R, REDD, Agroforestry and forest tending project. Finally, we calculated the size of 4 activities in 186 counties by using GIS technique. Result shows that Chongjin in Hamgyeongbuk-do, Hoeryong in Hamgyeongbuk-do and Tongchang in Pyeonganbuk-do are on the highest priority of counties. Most of feasible counties whose value of richness and uniformity were greater than the average were located near the eastern coast of North Korea. South Korean government has not supported any aid projects in North Korea since 2010. Recently, South Korea is trying to continue the aid projects for North Korea. Forest project which is not affected by the political situation between North- and South- Korea can be considered as a priority activities. This result can be used when South Korean government determine the priority sites for North Korean mountain restoration project in near future.

Keywords: agroforestry, forest restoration project, GIS, North Korea, priority

Procedia PDF Downloads 298
72 Field Emission Scanning Microscope Image Analysis for Porosity Characterization of Autoclaved Aerated Concrete

Authors: Venuka Kuruwita Arachchige Don, Mohamed Shaheen, Chris Goodier

Abstract:

Aerated autoclaved concrete (AAC) is known for its lightweight, easy handling, high thermal insulation, and extremely porous structure. Investigation of pore behavior in AAC is crucial for characterizing the material, standardizing design and production techniques, enhancing the mechanical, durability, and thermal performance, studying the effectiveness of protective measures, and analyzing the effects of weather conditions. The significant details of pores are complicated to observe with acknowledged accuracy. The High-resolution Field Emission Scanning Electron Microscope (FESEM) image analysis is a promising technique for investigating the pore behavior and density of AAC, which is adopted in this study. Mercury intrusion porosimeter and gas pycnometer were employed to characterize porosity distribution and density parameters. The analysis considered three different densities of AAC blocks and three layers in the altitude direction within each block. A set of understandings was presented to extract and analyze the details of pore shape, pore size, pore connectivity, and pore percentages from FESEM images of AAC. Average pore behavior outcomes per unit area were presented. Comparison of porosity distribution and density parameters revealed significant variations. FESEM imaging offered unparalleled insights into porosity behavior, surpassing the capabilities of other techniques. The analysis conducted from a multi-staged approach provides porosity percentage occupied by various pore categories, total porosity, variation of pore distribution compared to AAC densities and layers, number of two-dimensional and three-dimensional pores, variation of apparent and matrix densities concerning pore behaviors, variation of pore behavior with respect to aluminum content, and relationship among shape, diameter, connectivity, and percentage in each pore classification.

Keywords: autoclaved aerated concrete, density, imaging technique, microstructure, porosity behavior

Procedia PDF Downloads 22
71 Aerodynamic Optimization of Oblique Biplane by Using Supercritical Airfoil

Authors: Asma Abdullah, Awais Khan, Reem Al-Ghumlasi, Pritam Kumari, Yasir Nawaz

Abstract:

Introduction: This study verified the potential applications of two Oblique Wing configurations that were initiated by the Germans Aerodynamicists during the WWII. Due to the end of the war, this project was not completed and in this research is targeting the revival of German Oblique biplane configuration. The research draws upon the use of two Oblique wings mounted on the top and bottom of the fuselage through a single pivot. The wings are capable of sweeping at different angles ranging from 0° at takeoff to 60° at cruising Altitude. The top wing, right half, behaves like a forward swept wing and the left half, behaves like a backward swept wing. Vice Versa applies to the lower wing. This opposite deflection of the top and lower wing cancel out the rotary moment created by each wing and the aircraft remains stable. Problem to better understand or solve: The purpose of this research is to investigate the potential of achieving improved aerodynamic performance and efficiency of flight at a wide range of sweep angles. This will help examine the most accurate value for the sweep angle at which the aircraft will possess both stability and better aerodynamics. Explaining the methods used: The Aircraft configuration is designed using Solidworks after which a series of Aerodynamic prediction are conducted, both in the subsonic and the supersonic flow regime. Computations are carried on Ansys Fluent. The results are then compared to theoretical and flight data of different Supersonic fighter aircraft of the same category (AD-1) and with the Wind tunnel testing model at subsonic speed. Results: At zero sweep angle, the aircraft has an excellent lift coefficient value with almost double that found for fighter jets. In acquiring of supersonic speed the sweep angle is increased to maximum 60 degrees depending on the mission profile. General findings: Oblique biplane can be the future fighter jet aircraft because of its high value performance in terms of aerodynamics, cost, structural design and weight.

Keywords: biplane, oblique wing, sweep angle, supercritical airfoil

Procedia PDF Downloads 250
70 Image-Based UAV Vertical Distance and Velocity Estimation Algorithm during the Vertical Landing Phase Using Low-Resolution Images

Authors: Seyed-Yaser Nabavi-Chashmi, Davood Asadi, Karim Ahmadi, Eren Demir

Abstract:

The landing phase of a UAV is very critical as there are many uncertainties in this phase, which can easily entail a hard landing or even a crash. In this paper, the estimation of relative distance and velocity to the ground, as one of the most important processes during the landing phase, is studied. Using accurate measurement sensors as an alternative approach can be very expensive for sensors like LIDAR, or with a limited operational range, for sensors like ultrasonic sensors. Additionally, absolute positioning systems like GPS or IMU cannot provide distance to the ground independently. The focus of this paper is to determine whether we can measure the relative distance and velocity of UAV and ground in the landing phase using just low-resolution images taken by a monocular camera. The Lucas-Konda feature detection technique is employed to extract the most suitable feature in a series of images taken during the UAV landing. Two different approaches based on Extended Kalman Filters (EKF) have been proposed, and their performance in estimation of the relative distance and velocity are compared. The first approach uses the kinematics of the UAV as the process and the calculated optical flow as the measurement; On the other hand, the second approach uses the feature’s projection on the camera plane (pixel position) as the measurement while employing both the kinematics of the UAV and the dynamics of variation of projected point as the process to estimate both relative distance and relative velocity. To verify the results, a sequence of low-quality images taken by a camera that is moving on a specifically developed testbed has been used to compare the performance of the proposed algorithm. The case studies show that the quality of images results in considerable noise, which reduces the performance of the first approach. On the other hand, using the projected feature position is much less sensitive to the noise and estimates the distance and velocity with relatively high accuracy. This approach also can be used to predict the future projected feature position, which can drastically decrease the computational workload, as an important criterion for real-time applications.

Keywords: altitude estimation, drone, image processing, trajectory planning

Procedia PDF Downloads 86
69 Investigation of the Technological Demonstrator 14x B in Different Angle of Attack in Hypersonic Velocity

Authors: Victor Alves Barros Galvão, Israel Da Silveira Rego, Antonio Carlos Oliveira, Paulo Gilberto De Paula Toro

Abstract:

The Brazilian hypersonic aerospace vehicle 14-X B, VHA 14-X B, is a vehicle integrated with the hypersonic airbreathing propulsion system based on supersonic combustion (scramjet), developing in Aerothermodynamics and hypersonic Prof. Henry T. Nagamatsu Laboratory, to conduct demonstration in atmospheric flight at the speed corresponding to Mach number 7 at an altitude of 30km. In the experimental procedure the hypersonic shock tunnel T3 was used, installed in that laboratory. This device simulates the flow over a model is fixed in the test section and can also simulate different atmospheric conditions. The scramjet technology offers substantial advantages to improve aerospace vehicle performance which flies at a hypersonic speed through the Earth's atmosphere by reducing fuel consumption on board. Basically, the scramjet is an aspirated aircraft engine fully integrated that uses oblique/conic shock waves generated during hypersonic flight, to promote the deceleration and compression of atmospheric air in scramjet inlet. During the hypersonic flight, the vehicle VHA 14-X will suffer atmospheric influences, promoting changes in the vehicle's angles of attack (angle that the mean line of vehicle makes with respect to the direction of the flow). Based on this information, a study is conducted to analyze the influences of changes in the vehicle's angle of attack during the atmospheric flight. Analytical theoretical analysis, simulation computational fluid dynamics and experimental investigation are the methodologies used to design a technological demonstrator prior to the flight in the atmosphere. This paper considers analysis of the thermodynamic properties (pressure, temperature, density, sound velocity) in lower surface of the VHA 14-X B. Also, it considers air as an ideal gas and chemical equilibrium, with and without boundary layer, considering changes in the vehicle's angle of attack (positive and negative in relation to the flow) and bi-dimensional expansion wave theory at the expansion section (Theory of Prandtl-Meyer).

Keywords: angle of attack, experimental hypersonic, hypersonic airbreathing propulsion, Scramjet

Procedia PDF Downloads 380