Search results for: flood warning spillways
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 701

Search results for: flood warning spillways

701 Utilising Indigenous Knowledge to Design Dykes in Malawi

Authors: Martin Kleynhans, Margot Soler, Gavin Quibell

Abstract:

Malawi is one of the world’s poorest nations and consequently, the design of flood risk management infrastructure comes with a different set of challenges. There is a lack of good quality hydromet data, both in spatial terms and in the quality thereof and the challenge in the design of flood risk management infrastructure is compounded by the fact that maintenance is almost completely non-existent and that solutions have to be simple to be effective. Solutions should not require any further resources to remain functional after completion, and they should be resilient. They also have to be cost effective. The Lower Shire Valley of Malawi suffers from frequent flood events. Various flood risk management interventions have been designed across the valley during the course of the Shire River Basin Management Project – Phase I, and due to the data poor environment, indigenous knowledge was relied upon to a great extent for hydrological and hydraulic model calibration and verification. However, indigenous knowledge comes with the caveat that it is ‘fuzzy’ and that it can be manipulated for political reasons. The experience in the Lower Shire valley suggests that indigenous knowledge is unlikely to invent a problem where none exists, but that flood depths and extents may be exaggerated to secure prioritization of the intervention. Indigenous knowledge relies on the memory of a community and cannot foresee events that exceed past experience, that could occur differently to those that have occurred in the past, or where flood management interventions change the flow regime. This complicates communication of planned interventions to local inhabitants. Indigenous knowledge is, for the most part, intuitive, but flooding can sometimes be counter intuitive, and the rural poor may have a lower trust of technology. Due to a near complete lack of maintenance of infrastructure, infrastructure has to be designed with no moving parts and no requirement for energy inputs. This precludes pumps, valves, flap gates and sophisticated warning systems. Designs of dykes during this project included ‘flood warning spillways’, that double up as pedestrian and animal crossing points, which provide warning of impending dangerous water levels behind dykes to residents before water levels that could cause a possible dyke failure are reached. Locally available materials and erosion protection using vegetation were used wherever possible to keep costs down.

Keywords: design of dykes in low-income countries, flood warning spillways, indigenous knowledge, Malawi

Procedia PDF Downloads 279
700 Decision Support System for a Pilot Flash Flood Early Warning System in Central Chile

Authors: D. Pinto, L. Castro, M. L. Cruzat, S. Barros, J. Gironás, C. Oberli, M. Torres, C. Escauriaza, A. Cipriano

Abstract:

Flash floods, together with landslides, are a common natural threat for people living in mountainous regions and foothills. One way to deal with this constant menace is the use of Early Warning Systems, which have become a very important mitigation strategy for natural disasters. In this work, we present our proposal for a pilot Flash Flood Early Warning System for Santiago, Chile, the first stage of a more ambitious project that in a future stage shall also include early warning of landslides. To give a context for our approach, we first analyze three existing Flash Flood Early Warning Systems, focusing on their general architectures. We then present our proposed system, with main focus on the decision support system, a system that integrates empirical models and fuzzy expert systems to achieve reliable risk estimations.

Keywords: decision support systems, early warning systems, flash flood, natural hazard

Procedia PDF Downloads 373
699 Failure to React Positively to Flood Early Warning Systems: Lessons Learned by Flood Victims from Flash Flood Disasters: the Malaysia Experience

Authors: Mohamad Sukeri Khalid, Che Su Mustaffa, Mohd Najib Marzuki, Mohd Fo’ad Sakdan, Sapora Sipon, Mohd Taib Ariffin, Shazwani Shafiai

Abstract:

This paper describes the issues relating to the role of the flash flood early warning system provided by the Malaysian Government to the communities in Malaysia, specifically during the flash flood disaster in the Cameron Highlands, Malaysia. Normally, flash flood disasters can occur as a result of heavy rainfall in an area, and that water may possibly cause flooding via streams or narrow channels. For this study, the flash flood disaster in the Cameron Highlands occurred on 23 October 2013, and as a result the Sungai Bertam overflowed after the release of water from the Sultan Abu Bakar Dam. This release of water from the dam caused flash flooding which led to damage to properties and also the death of residents and livestock in the area. Therefore, the effort of this study is to identify the perceptions of the flash flood victims on the role of the flash flood early warning system. For the purposes of this study, data collection was gathered from those flood victims who were willing to participate in this study through face-to-face interviews. This approach helped the researcher to glean in-depth information about their feeling and perceptions on the role of the flash flood early warning system offered by the government. The data were analysed descriptively and the findings show that the respondents of 22 flood victims believe strongly that the flash flood early warning system was confusing and dysfunctional, and communities had failed to response positively to it. Therefore, most of the communities were not well prepared for the releasing of water from the dam that caused property damage and 3 people were killed in Cameron Highland flash flood disaster.

Keywords: communities affected, disaster management, early warning system, flash flood disaster

Procedia PDF Downloads 704
698 Dams Operation Management Criteria during Floods: Case Study of Dez Dam in Southwest Iran

Authors: Ali Heidari

Abstract:

This paper presents the principles for improving flood mitigation operation in multipurpose dams and maximizing reservoir performance during flood occurrence with a focus on the real-time operation of gated spillways. The criteria of operation include the safety of dams during flood management, minimizing the downstream flood risk by decreasing the flood hazard and fulfilling water supply and other purposes of the dam operation in mid and long terms horizons. The parameters deemed to be important include flood inflow, outlet capacity restrictions, downstream flood inundation damages, economic revenue of dam operation, and environmental and sedimentation restrictions. A simulation model was used to determine the real-time release of the Dez dam located in the Dez rivers in southwest Iran, considering the gate regulation curves for the gated spillway. The results of the simulation model show that there is a possibility to improve the current procedures used in the real-time operation of the dams, particularly using gate regulation curves and early flood forecasting system results. The Dez dam operation data shows that in one of the best flood control records, % 17 of the total active volume and flood control pool of the reservoir have not been used in decreasing the downstream flood hazard despite the availability of a flood forecasting system.

Keywords: dam operation, flood control criteria, Dez dam, Iran

Procedia PDF Downloads 225
697 Feasibility Study on Developing and Enhancing of Flood Forecasting and Warning Systems in Thailand

Authors: Sitarrine Thongpussawal, Dasarath Jayasuriya, Thanaroj Woraratprasert, Sakawtree Prajamwong

Abstract:

Thailand grapples with recurrent floods causing substantial repercussions on its economy, society, and environment. In 2021, the economic toll of these floods amounted to an estimated 53,282 million baht, primarily impacting the agricultural sector. The existing flood monitoring system in Thailand suffers from inaccuracies and insufficient information, resulting in delayed warnings and ineffective communication to the public. The Office of the National Water Resources (OWNR) is tasked with developing and integrating data and information systems for efficient water resources management, yet faces challenges in monitoring accuracy, forecasting, and timely warnings. This study endeavors to evaluate the viability of enhancing Thailand's Flood Forecasting and Warning (FFW) systems. Additionally, it aims to formulate a comprehensive work package grounded in international best practices to enhance the country's FFW systems. Employing qualitative research methodologies, the study conducted in-depth interviews and focus groups with pertinent agencies. Data analysis involved techniques like note-taking and document analysis. The study substantiates the feasibility of developing and enhancing FFW systems in Thailand. Implementation of international best practices can augment the precision of flood forecasting and warning systems, empowering local agencies and residents in high-risk areas to prepare proactively, thereby minimizing the adverse impact of floods on lives and property. This research underscores that Thailand can feasibly advance its FFW systems by adopting international best practices, enhancing accuracy, and improving preparedness. Consequently, the study enriches the theoretical understanding of flood forecasting and warning systems and furnishes valuable recommendations for their enhancement in Thailand.

Keywords: flooding, forecasting, warning, monitoring, communication, Thailand

Procedia PDF Downloads 61
696 Genetic Algorithm Methods for Determination Over Flow Coefficient of Medium Throat Length Morning Glory Spillway Equipped Crest Vortex Breakers

Authors: Roozbeh Aghamajidi

Abstract:

Shaft spillways are circling spillways used generally for emptying unexpected floods on earth and concrete dams. There are different types of shaft spillways: Stepped and Smooth spillways. Stepped spillways pass more flow discharges through themselves in comparison to smooth spillways. Therefore, awareness of flow behavior of these spillways helps using them better and more efficiently. Moreover, using vortex breaker has great effect on passing flow through shaft spillway. In order to use more efficiently, the risk of flow pressure decreases to less than fluid vapor pressure, called cavitations, should be prevented as far as possible. At this research, it has been tried to study different behavior of spillway with different vortex shapes on spillway crest on flow. From the viewpoint of the effects of flow regime changes on spillway, changes of step dimensions, and the change of type of discharge will be studied effectively. Therefore, two spillway models with three different vortex breakers and three arrangements have been used to assess the hydraulic characteristics of flow. With regard to the inlet discharge to spillway, the parameters of pressure and flow velocity on spillway surface have been measured at several points and after each run. Using these kinds of information leads us to create better design criteria of spillway profile. To achieve these purposes, optimization has important role and genetic algorithm are utilized to study the emptying discharge. As a result, it turned out that the best type of spillway with maximum discharge coefficient is smooth spillway with ogee shapes as vortex breaker and 3 number as arrangement. Besides it has been concluded that the genetic algorithm can be used to optimize the results.

Keywords: shaft spillway, vortex breaker, flow, genetic algorithm

Procedia PDF Downloads 371
695 Evaluation of Flood Events in Respect of Disaster Management in Turkey

Authors: Naci Büyükkaracığan, Hasan Uzun

Abstract:

Flood is the event which damage to the surrounding lands, residential places, infrastructure and vibrant, because of the streams overflow events from its bed for several reasons. Flood is a natural formation which develops due to its region's climatic conditions, technical and topographical characteristics. However, factors causing floods with global warming caused by human activity are events such as uncontrolled urbanization. Floods in Turkey are natural disasters which cause huge economic losses after the earthquake. At the same time, the flood disaster is one of the most observed hydrometeorological disasters, compared to 30%, in Turkey. Every year, there are around 200 flood-flood disasters and the disaster as a result of financial losses of $ 100 million per year are reported to occur in public institutions. The amount allocated for carrying out investment-project activities for reducing and controlling of flood damage control are around US $ 30 million per year. The existence of a linear increase in the number of flood disasters is noteworthy due to various reasons in the last 50 years of observation. In this study, first of all, big events of the flood in Turkey and their reasons were examined. And then, the information about the work to be done in order to prevent flooding by government was given with examples. Meteorological early warning systems, flood risk maps and regulation of urban development studies are described for this purpose. As a result, recommendations regarding in the event of the occurrence of floods disaster management were issues raised.

Keywords: flood, disaster, disaster management, Türkiye

Procedia PDF Downloads 329
694 Participatory Approach of Flood Disaster Risk Reduction

Authors: Laxman Budhathoki, Lal Bahadur Shrestha, K. C. Laxman

Abstract:

Hundreds of people are being lost their life by flood disaster in Nepal every year. Community-based disaster management committee has formed to formulate the disaster management plan including the component of EWS like EWS tower, rain gauge station, flood gauge station, culverts, boats, ropes, life jackets, a communication mechanism, emergency shelter, Spur, dykes, dam, evacuation route, emergency dry food management etc. Now EWS become a successful tool to decrease the human casualty from 13 to 0 every year in Rapti River of Chitwan District.

Keywords: disaster risk reduction, early warning system, flood, participatory approach

Procedia PDF Downloads 354
693 Reducing Flood Risk through Value Capture and Risk Communication: A Case Study in Cocody-Abidjan

Authors: Dedjo Yao Simon, Takahiro Saito, Norikazu Inuzuka, Ikuo Sugiyama

Abstract:

Abidjan city (Republic of Ivory Coast) is an emerging megacity and an urban coastal area where the number of floods reported is on a rapid increase due to climate change and unplanned urbanization. However, comprehensive disaster mitigation plans, policies, and financial resources are still lacking as the population ignores the extent and location of the flood zones; making them unprepared to mitigate the damages. Considering the existing condition, this paper aims to discuss an approach for flood risk reduction in Cocody Commune through value capture strategy and flood risk communication. Using geospatial techniques and hydrological simulation, we start our study by delineating flood zones and depths under several return periods in the study area. Then, through a questionnaire a field survey is conducted in order to validate the flood maps, to estimate the flood risk and to collect some sample of the opinion of residents on how the flood risk information disclosure could affect the values of property located inside and outside the flood zones. The results indicate that the study area is highly vulnerable to 5-year floods and more, which can cause serious harm to human lives and to properties as demonstrated by the extent of the 5-year flood of 2014. Also, it is revealed there is a high probability that the values of property located within flood zones could decline, and the values of surrounding property in the safe area could increase when risk information disclosure commences. However in order to raise public awareness of flood disaster and to prevent future housing promotion in high-risk prospective areas, flood risk information should be disseminated through the establishment of an early warning system. In order to reduce the effect of risk information disclosure and to protect the values of property within the high-risk zone, we propose that property tax increments in flood free zones should be captured and be utilized for infrastructure development and to maintain the early warning system that will benefit people living in flood prone areas. Through this case study, it is shown that combination of value capture strategy and risk communication could be an effective tool to educate citizen and to invest in flood risk reduction in emerging countries.

Keywords: Cocody-Abidjan, flood, geospatial techniques, risk communication, value capture

Procedia PDF Downloads 273
692 Floods Hazards and Emergency Respond in Negara Brunei Darussalam

Authors: Hj Mohd Sidek bin Hj Mohd Yusof

Abstract:

More than 1.5 billion people around the world are adversely affected by floods. Floods account for about a third of all natural catastrophes, cause more than half of all fatalities and are responsible for a third of overall economic loss around the world. Giving advanced warning of impending disasters can reduce or even avoid the number of deaths, social and economic hardships that are so commonly reported after the event. Integrated catchment management recognizes that it is not practical or viable to provide structural measures that will keep floodwater away from the community and their property. Non-structural measures are therefore required to assist the community to cope when flooding occurs which exceeds the capacity of the structural measures. Non-structural measures may need to be used to influence the way land is used or buildings are constructed, or they may be used to improve the community’s preparedness and response to flooding. The development and implementation of non-structural measures may be guided and encouraged by policy and legislation, or through voluntary action by the community based on knowledge gained from public education programs. There is a range of non-structural measures that can be used for flood hazard mitigation which can be the use measures includes policies and rules applied by government to regulate the kinds of activities that are carried out in various flood-prone areas, including minimum floor levels and the type of development approved. Voluntary actions taken by the authorities and by the community living and working on the flood plain to lessen flooding effects on themselves and their properties including monitoring land use changes, monitoring and investigating the effects of bush / forest clearing in the catchment and providing relevant flood related information to the community. Response modification measures may include: flood warning system, flood education, community awareness and readiness, evacuation arrangements and recovery plan. A Civil Defense Emergency Management needs to be established for Brunei Darussalam in order to plan, co-ordinate and undertake flood emergency management. This responsibility may be taken by the Ministry of Home Affairs, Brunei Darussalam who is already responsible for Fire Fighting and Rescue services. Several pieces of legislation and planning instruments are in place to assist flood management, particularly: flood warning system, flood education Community awareness and readiness, evacuation arrangements and recovery plan.

Keywords: RTB, radio television brunei, DDMC, district disaster management center, FIR, flood incidence report, PWD, public works department

Procedia PDF Downloads 256
691 Flood Hazard Impact Based on Simulation Model of Potential Flood Inundation in Lamong River, Gresik Regency

Authors: Yunita Ratih Wijayanti, Dwi Rahmawati, Turniningtyas Ayu Rahmawati

Abstract:

Gresik is one of the districts in East Java Province, Indonesia. Gresik Regency has three major rivers, namely Bengawan Solo River, Brantas River, and Lamong River. Lamong River is a tributary of Bengawan Solo River. Flood disasters that occur in Gresik Regency are often caused by the overflow of the Lamong River. The losses caused by the flood were very large and certainly detrimental to the affected people. Therefore, to be able to minimize the impact caused by the flood, it is necessary to take preventive action. However, before taking preventive action, it is necessary to have information regarding potential inundation areas and water levels at various points. For this reason, a flood simulation model is needed. In this study, the simulation was carried out using the Geographic Information System (GIS) method with the help of Global Mapper software. The approach used in this simulation is to use a topographical approach with Digital Elevation Models (DEMs) data. DEMs data have been widely used for various researches to analyze hydrology. The results obtained from this flood simulation are the distribution of flood inundation and water level. The location of the inundation serves to determine the extent of the flooding that occurs by referring to the 50-100 year flood plan, while the water level serves to provide early warning information. Both will be very useful to find out how much loss will be caused in the future due to flooding in Gresik Regency so that the Gresik Regency Regional Disaster Management Agency can take precautions before the flood disaster strikes.

Keywords: flood hazard, simulation model, potential inundation, global mapper, Gresik Regency

Procedia PDF Downloads 83
690 Development of Map of Gridded Basin Flash Flood Potential Index: GBFFPI Map of QuangNam, QuangNgai, DaNang, Hue Provinces

Authors: Le Xuan Cau

Abstract:

Flash flood is occurred in short time rainfall interval: from 1 hour to 12 hours in small and medium basins. Flash floods typically have two characteristics: large water flow and big flow velocity. Flash flood is occurred at hill valley site (strip of lowland of terrain) in a catchment with large enough distribution area, steep basin slope, and heavy rainfall. The risk of flash floods is determined through Gridded Basin Flash Flood Potential Index (GBFFPI). Flash Flood Potential Index (FFPI) is determined through terrain slope flash flood index, soil erosion flash flood index, land cover flash floods index, land use flash flood index, rainfall flash flood index. Determining GBFFPI, each cell in a map can be considered as outlet of a water accumulation basin. GBFFPI of the cell is determined as basin average value of FFPI of the corresponding water accumulation basin. Based on GIS, a tool is developed to compute GBFFPI using ArcObjects SDK for .NET. The maps of GBFFPI are built in two types: GBFFPI including rainfall flash flood index (real time flash flood warning) or GBFFPI excluding rainfall flash flood index. GBFFPI Tool can be used to determine a high flash flood potential site in a large region as quick as possible. The GBFFPI is improved from conventional FFPI. The advantage of GBFFPI is that GBFFPI is taking into account the basin response (interaction of cells) and determines more true flash flood site (strip of lowland of terrain) while conventional FFPI is taking into account single cell and does not consider the interaction between cells. The GBFFPI Map of QuangNam, QuangNgai, DaNang, Hue is built and exported to Google Earth. The obtained map proves scientific basis of GBFFPI.

Keywords: ArcObjects SDK for NET, basin average value of FFPI, gridded basin flash flood potential index, GBFFPI map

Procedia PDF Downloads 380
689 Flood Early Warning and Management System

Authors: Yogesh Kumar Singh, T. S. Murugesh Prabhu, Upasana Dutta, Girishchandra Yendargaye, Rahul Yadav, Rohini Gopinath Kale, Binay Kumar, Manoj Khare

Abstract:

The Indian subcontinent is severely affected by floods that cause intense irreversible devastation to crops and livelihoods. With increased incidences of floods and their related catastrophes, an Early Warning System for Flood Prediction and an efficient Flood Management System for the river basins of India is a must. Accurately modeled hydrological conditions and a web-based early warning system may significantly reduce economic losses incurred due to floods and enable end users to issue advisories with better lead time. This study describes the design and development of an EWS-FP using advanced computational tools/methods, viz. High-Performance Computing (HPC), Remote Sensing, GIS technologies, and open-source tools for the Mahanadi River Basin of India. The flood prediction is based on a robust 2D hydrodynamic model, which solves shallow water equations using the finite volume method. Considering the complexity of the hydrological modeling and the size of the basins in India, it is always a tug of war between better forecast lead time and optimal resolution at which the simulations are to be run. High-performance computing technology provides a good computational means to overcome this issue for the construction of national-level or basin-level flash flood warning systems having a high resolution at local-level warning analysis with a better lead time. High-performance computers with capacities at the order of teraflops and petaflops prove useful while running simulations on such big areas at optimum resolutions. In this study, a free and open-source, HPC-based 2-D hydrodynamic model, with the capability to simulate rainfall run-off, river routing, and tidal forcing, is used. The model was tested for a part of the Mahanadi River Basin (Mahanadi Delta) with actual and predicted discharge, rainfall, and tide data. The simulation time was reduced from 8 hrs to 3 hrs by increasing CPU nodes from 45 to 135, which shows good scalability and performance enhancement. The simulated flood inundation spread and stage were compared with SAR data and CWC Observed Gauge data, respectively. The system shows good accuracy and better lead time suitable for flood forecasting in near-real-time. To disseminate warning to the end user, a network-enabled solution is developed using open-source software. The system has query-based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. System effectively facilitates the management of post-disaster activities caused due to floods, like displaying spatial maps of the area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of the damage.

Keywords: flood, modeling, HPC, FOSS

Procedia PDF Downloads 89
688 Collaborative Early Warning System: An Integrated Framework for Mitigating Impacts of Natural Hazards in the UAE

Authors: Abdulla Al Hmoudi

Abstract:

The impacts and costs of natural disasters on people, properties and the environment is often severe when they occur on a large scale or when not prepared for. Factors such as impacts of climate change, urban growth, poor planning to mention a few, have continued to significantly increase the frequencies and aggravate the impacts of natural hazards across the world; the United Arab Emirates (UAE) inclusive. The lack of deployment of an early warning system, low risk and hazard knowledge and impact of natural hazard experienced in some communities in the UAE have emphasised the need for more effective early warning systems. This paper focuses on the collaborative approach taken to instituting and implementing an early warning system. Using mixed methods 888 people completed the questionnaire and eight people were interviewed in Abu Dhabi. The results indicate that the collaborative approach to early warning system is UAE is needed, but lacks essential principles of the early warning system and currently underutilised. It is recommended that the collaborative early warning system is applied at every stage of the early warning system with the specific responsibility of each stakeholder and actor.

Keywords: community, early warning system, emergency management, UAE

Procedia PDF Downloads 144
687 Study of Morning-Glory Spillway Structure in Hydraulic Characteristics by CFD Model

Authors: Mostafa Zandi, Ramin Mansouri

Abstract:

Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. Morning-Glory spillway is one of the common spillways for discharging the overflow water behind dams, these kinds of spillways are constructed in dams with small reservoirs. In this research, the hydraulic flow characteristics of a morning-glory spillways are investigated with CFD model. Two dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k- and k-, were chosen to model Reynolds shear stress term. The power law scheme was used for discretization of momentum, k , and  equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k -ε (Standard) has the most consistent results with experimental results. When the jet is getting closer to end of basin, the computational results increase with the numerical results of their differences. The lower profile of the water jet has less sensitivity to the hydraulic jet profile than the hydraulic jet profile. In the pressure test, it was also found that the results show that the numerical values of the pressure in the lower landing number differ greatly in experimental results. The characteristics of the complex flows over a Morning-Glory spillway were studied numerically using a RANS solver. Grid study showed that numerical results of a 57512-node grid had the best agreement with the experimental values. The desired downstream channel length was preferred to be 1.5 meter, and the standard k-ε turbulence model produced the best results in Morning-Glory spillway. The numerical free-surface profiles followed the theoretical equations very well.

Keywords: morning-glory spillway, CFD model, hydraulic characteristics, wall function

Procedia PDF Downloads 77
686 Familiarity with Flood and Engineering Solutions to Control It

Authors: Hamid Fallah

Abstract:

Undoubtedly, flood is known as a natural disaster, and in practice, flood is considered the most terrible natural disaster in the world both in terms of loss of life and financial losses. From 1988 to 1997, about 390,000 people were killed by natural disasters in the world, 58% of which were related to floods, 26% due to earthquakes, and 16% due to storms and other disasters. The total damages in these 10 years were about 700 billion dollars, which were 33, 29, 28% related to floods, storms and earthquakes, respectively. In this regard, the worrisome point has been the increasing trend of flood deaths and damages in the world in recent decades. The increase in population and assets in flood plains, changes in hydro systems and the destructive effects of human activities have been the main reasons for this increase. During rain and snow, some of the water is absorbed by the soil and plants. A percentage evaporates and the rest flows and is called runoff. Floods occur when the soil and plants cannot absorb the rainfall, and as a result, the natural river channel does not have the capacity to pass the generated runoff. On average, almost 30% of precipitation is converted into runoff, which increases with snow melting. Floods that occur differently create an area called flood plain around the river. River floods are often caused by heavy rains, which in some cases are accompanied by snow melt. A flood that flows in a river without warning or with little warning is called a flash flood. The casualties of these rapid floods that occur in small watersheds are generally more than the casualties of large river floods. Coastal areas are also subject to flooding caused by waves caused by strong storms on the surface of the oceans or waves caused by underground earthquakes. Floods not only cause damage to property and endanger the lives of humans and animals, but also leave other effects. Runoff caused by heavy rains causes soil erosion in the upstream and sedimentation problems in the downstream. The habitats of fish and other animals are often destroyed by floods. The high speed of the current increases the damage. Long-term floods stop traffic and prevent drainage and economic use of land. The supports of bridges, river banks, sewage outlets and other structures are damaged, and there is a disruption in shipping and hydropower generation. The economic losses of floods in the world are estimated at tens of billions of dollars annually.

Keywords: flood, hydrological engineering, gis, dam, small hydropower, suitablity

Procedia PDF Downloads 67
685 Early Warning Signals: Role and Status of Risk Management in Small and Medium Enterprises

Authors: Alexander Kelíšek, Denisa Janasová, Veronika Mitašová

Abstract:

Weak signals using is often associated with early warning. It is possible to find a link between early warning, respectively early problems detection and risk management. The idea of early warning is very important in the context of crisis management because of the risk prevention possibility. Weak signals are likened to risk symptoms. Nowadays, their usefulness as a tool of proactive problems solving is emphasized. Based on it, it is possible to use weak signals not only in strategic planning, project management, or early warning system, but also as a subsidiary element in risk management. The main question is how to effectively integrate weak signals into risk management. The main aim of the paper is to point out the possibilities of weak signals using in small and medium enterprises risk management.

Keywords: early warning system, weak signals, risk management, small and medium enterprises (SMEs)

Procedia PDF Downloads 427
684 The Rehabilitation Solutions for the Hydraulic Jump Sweepout: A Case Study from India

Authors: Ali Heidari, Hany Saleem

Abstract:

The tailwater requirements are important criteria in the design of the stilling basins as energy dissipation of the spillways. The adequate tailwater level that ensures the hydraulic jump inside the basin should be fulfilled by the river's natural water level and the apron depth downstream of the chute. The requirements of the hydraulic jump should mainly be checked for the design flood, however, the drawn jump condition should not be critical in the discharges lesser than the design flood. The tailwater requirement is not met in Almatti dam, built in 2005 in India, and the jump sweep out from the basin, resulting in significant scour in the apron and end sill of the basin. This paper discusses different hydraulic solutions as sustainable solutions for the rehabilitation program. The deep apron alternative is proposed for the fewer bays of the spillway as the most cost-effective, sustainable solution. The apron level of 15 gates out of 26 gates should decrease by 5.4 m compared to the existing design to ensure a safe hydraulic jump up to the discharge of 10,000 m3/s i.e. 30% of the updated PMF.

Keywords: dam, spillway, stilling basin, Almatti

Procedia PDF Downloads 57
683 Flood Hazard and Risk Mapping to Assess Ice-Jam Flood Mitigation Measures

Authors: Karl-Erich Lindenschmidt, Apurba Das, Joel Trudell, Keanne Russell

Abstract:

In this presentation, we explore options for mitigating ice-jam flooding along the Athabasca River in western Canada. Not only flood hazard, expressed in this case as the probability of flood depths and extents being exceeded, but also flood risk, in which annual expected damages are calculated. Flood risk is calculated, which allows a cost-benefit analysis to be made so that decisions on the best mitigation options are not based solely on flood hazard but also on the costs related to flood damages and the benefits of mitigation. The river ice model is used to simulate extreme ice-jam flood events with which scenarios are run to determine flood exposure and damages in flood-prone areas along the river. We will concentrate on three mitigation options – the placement of a dike, artificial breakage of the ice cover along the river, the installation of an ice-control structure, and the construction of a reservoir. However, any mitigation option is not totally failsafe. For example, dikes can still be overtopped and breached, and ice jams may still occur in areas of the river where ice covers have been artificially broken up. Hence, for all options, it is recommended that zoning of building developments away from greater flood hazard areas be upheld. Flood mitigation can have a negative effect of giving inhabitants a false sense of security that flooding may not happen again, leading to zoning policies being relaxed. (Text adapted from Lindenschmidt [2022] "Ice Destabilization Study - Phase 2", submitted to the Regional Municipality of Wood Buffalo, Alberta, Canada)

Keywords: ice jam, flood hazard, flood risk river ice modelling, flood risk

Procedia PDF Downloads 185
682 Automated Natural Hazard Zonation System with Internet-SMS Warning: Distributed GIS for Sustainable Societies Creating Schema and Interface for Mapping and Communication

Authors: Devanjan Bhattacharya, Jitka Komarkova

Abstract:

The research describes the implementation of a novel and stand-alone system for dynamic hazard warning. The system uses all existing infrastructure already in place like mobile networks, a laptop/PC and the small installation software. The geospatial dataset are the maps of a region which are again frugal. Hence there is no need to invest and it reaches everyone with a mobile. A novel architecture of hazard assessment and warning introduced where major technologies in ICT interfaced to give a unique WebGIS based dynamic real time geohazard warning communication system. A never before architecture introduced for integrating WebGIS with telecommunication technology. Existing technologies interfaced in a novel architectural design to address a neglected domain in a way never done before–through dynamically updatable WebGIS based warning communication. The work publishes new architecture and novelty in addressing hazard warning techniques in sustainable way and user friendly manner. Coupling of hazard zonation and hazard warning procedures into a single system has been shown. Generalized architecture for deciphering a range of geo-hazards has been developed. Hence the developmental work presented here can be summarized as the development of internet-SMS based automated geo-hazard warning communication system; integrating a warning communication system with a hazard evaluation system; interfacing different open-source technologies towards design and development of a warning system; modularization of different technologies towards development of a warning communication system; automated data creation, transformation and dissemination over different interfaces. The architecture of the developed warning system has been functionally automated as well as generalized enough that can be used for any hazard and setup requirement has been kept to a minimum.

Keywords: geospatial, web-based GIS, geohazard, warning system

Procedia PDF Downloads 408
681 Flood Mapping and Inoudation on Weira River Watershed (in the Case of Hadiya Zone, Shashogo Woreda)

Authors: Alilu Getahun Sulito

Abstract:

Exceptional floods are now prevalent in many places in Ethiopia, resulting in a large number of human deaths and property destruction. Lake Boyo watershed, in particular, had also traditionally been vulnerable to flash floods throughout the Boyo watershed. The goal of this research is to create flood and inundation maps for the Boyo Catchment. The integration of Geographic information system(GIS) technology and the hydraulic model (HEC-RAS) were utilized as methods to attain the objective. The peak discharge was determined using Fuller empirical methodology for intervals of 5, 10, 15, and 25 years, and the results were 103.2 m3/s, 158 m3/s, 222 m3/s, and 252 m3/s, respectively. River geometry, boundary conditions, manning's n value of varying land cover, and peak discharge at various return periods were all entered into HEC-RAS, and then an unsteady flow study was performed. The results of the unsteady flow study demonstrate that the water surface elevation in the longitudinal profile rises as the different periods increase. The flood inundation charts clearly show that regions on the right and left sides of the river with the greatest flood coverage were 15.418 km2 and 5.29 km2, respectively, flooded by 10,20,30, and 50 years. High water depths typically occur along the main channel and progressively spread to the floodplains. The latest study also found that flood-prone areas were disproportionately affected on the river's right bank. As a result, combining GIS with hydraulic modelling to create a flood inundation map is a viable solution. The findings of this study can be used to care again for the right bank of a Boyo River catchment near the Boyo Lake kebeles, according to the conclusion. Furthermore, it is critical to promote an early warning system in the kebeles so that people can be evacuated before a flood calamity happens. Keywords: Flood, Weira River, Boyo, GIS, HEC- GEORAS, HEC- RAS, Inundation Mapping

Keywords: Weira River, Boyo, GIS, HEC- GEORAS, HEC- RAS, Inundation Mapping

Procedia PDF Downloads 47
680 Flood Planning Based on Risk Optimization: A Case Study in Phan-Calo River Basin in Vinh Phuc Province, Vietnam

Authors: Nguyen Quang Kim, Nguyen Thu Hien, Nguyen Thien Dung

Abstract:

Flood disasters are increasing worldwide in both frequency and magnitude. Every year in Vietnam, flood causes great damage to people, property, and environmental degradation. The flood risk management policy in Vietnam is currently updated. The planning of flood mitigation strategies is reviewed to make a decision how to reach sustainable flood risk reduction. This paper discusses the basic approach where the measures of flood protection are chosen based on minimizing the present value of expected monetary expenses, total residual risk and costs of flood control measures. This approach will be proposed and demonstrated in a case study for flood risk management in Vinh Phuc province of Vietnam. Research also proposed the framework to find a solution of optimal protection level and optimal measures of the flood. It provides an explicit economic basis for flood risk management plans and interactive effects of options for flood damage reduction. The results of the case study are demonstrated and discussed which would provide the processing of actions helped decision makers to choose flood risk reduction investment options.

Keywords: drainage plan, flood planning, flood risk, residual risk, risk optimization

Procedia PDF Downloads 242
679 Changes in Religious Belief after Flood Disasters

Authors: Sapora Sipon, Mohd Fo’ad Sakdan, Che Su Mustaffa, Najib Ahmad Marzuki, Mohamad Sukeri Khalid, Mohd Taib Ariffin, Husni Mohd Radzi, Salhah Abdullah

Abstract:

Flood disasters occur throughout the world including Malaysia. The major flood disaster that hit Malaysia in the 2014-2015 episodes proved the psychosocial and mental health consequences such as vivid images of destruction, upheaval, death and loss of lives. Flood, flood survivors reported that flood has changed one looks at their religious belief. The main objective of this paper is to investigate the changes in religious belief after the 2014-2015 Malaysia flood disaster. The total population of 1300 respondents who experienced the 2014-2015 Malaysia flood were surveyed a month after the disaster. The questionnaires were used to measure religiosity and stress. The results provide compelling evidence that religion played an important role in the lives of Malaysia flood disasters’ survivor where more than half of the respondents (>75%) experiencing the strengthening of their religious belief. It was also reported the victims’ strengthening of their religious belief proved to be a powerful factor in reducing stress in the aftermath of the flood.

Keywords: religious belief, flood disaster, humanity, society

Procedia PDF Downloads 407
678 The Study of Flood Resilient House in Ebo-Town

Authors: Alagie Salieu Nankey

Abstract:

Flood-resistant house is the key mechanism to withstand flood hazards in Ebo-Town. It emerged simple yet powerful way of mitigating flooding in the community of Ebo- Town. Even though there are different types of buildings, little is known yet how and why flood affects building severely. In this paper, we examine three different types of flood-resistant buildings that are suitable for Ebo Town. We gather content and contextual features from six (6) respondents and used this data set to identify factors that are significantly associated with the flood-resistant house. Moreover, we built a suitable design concept. We found that amongst all the theories studied in the literature study Slit or Elevated House is the most suitable building design in Ebo-Town and Pile foundation is the most appropriate foundation type in the study area. Amongst contextual features, local materials are the most economical materials for the proposed design. This research proposes a framework that explains the theoretical relationships between flood hazard zones and flood-resistant houses in Ebo Town. Moreover, this research informs the design of sense-making and analytics tools for the resistant house.

Keywords: flood-resistant, slit, flood hazard zone, pile foundation

Procedia PDF Downloads 44
677 Numerical Analysis of the Effect of Height and Rate of Fluid Flow on a Stepped Spillway

Authors: Amir Abbas Kamanbedast, Abbas Saki

Abstract:

Stepped spillways are composed of several steps, which start from around the spillway crest and continue to the downstream heel. Recently, such spillways have been receiving increasing attention due to the significant effect of the associated stairs on the flow’s rate of energy dissipation. Energy dissipation in the stepped spillways across the overflow can be explained by the watercourse contact with the stairs (i.e., large, harsh surfaces). In this context, less energy must be dissipated at the end of the spillway, and, hence, a smaller (less expensive) energy-dissipating structure is required. In this study, a stepped spillway was simulated using the model Fluent 3, and a standard model was used to model the flow disturbance. For this purpose, the energy dissipation from the stepped spillway was investigated in terms of the different numbers of stairs involved. Using k-ε, the disturbances of the numerical method for velocity and of flow depth at the downstream overflow were obtained, and, then, the energy that was dissipated throughout the spillway was calculated. Our results showed that an increase in the number of stairs can considerably increase the amount of energy dissipation for the fixed, upstream energy. In addition, the results of the numerical analyses were provided as isobar and velocity curves so points that were sensitive to cavitation could be determined.

Keywords: stepped spillway, fluent software, turbulence model of k-ε, VOF model

Procedia PDF Downloads 299
676 Study on Disaster Prevention Plan for an Electronic Industry in Thailand

Authors: S. Pullteap, M. Pathomsuriyaporn

Abstract:

In this article, a study of employee’s opinion to the factors that affect to the flood preventive and the corrective action plan in an electronic industry at the Sharp Manufacturing (Thailand) Co., Ltd. has been investigated. The surveys data of 175 workers and supervisors have, however, been selected for data analysis. The results is shown that the employees emphasize about the needs in a subsidy at the time of disaster at high levels of 77.8%, as the plan focusing on flood prevention of the rehabilitation equipment is valued at the intermediate level, which is 79.8%. Demonstration of the hypothesis has found that the different education levels has thus been affected to the needs factor at the flood disaster time. Moreover, most respondents give priority to flood disaster risk management factor. Consequently, we found that the flood prevention plan is valued at high level, especially on information monitoring, which is 93.4% for the supervisor item. The respondents largely assume that the flood will have impacts on the industry, up to 80%, thus to focus on flood management plans is enormous.

Keywords: flood prevention plan, flood event, electronic industrial plant, disaster, risk management

Procedia PDF Downloads 326
675 Dynamic Change of Floods Disaster Monitoring for River Central Bar by Remote Sensing Time-Series Images

Authors: Zuoji Huang, Jinyan Sun, Chunlin Wang, Haiming Qian, Nan Xu

Abstract:

The spatial extent and area of central river bars can always vary due to the impact of water level, sediment supply and human activities. In 2016, a catastrophic flood disaster caused by sustained and heavy rainfall happened in the middle and lower Yangtze River. The flood led to the most serious economic and social loss since 1954, and strongly affected the central river bar. It is essential to continuously monitor the dynamics change of central bars because it can avoid frequent field measurements in central bars before and after the flood disaster and is helpful for flood warning. This paper focused on the dynamic change of central bars of Phoenix bar and Changsha bar in the Yangtze River in 2016. In this study, GF-1 (GaoFen-1) WFV(wide field view) data was employed owing to its high temporal frequency and high spatial resolution. A simple NDWI (Normalized Difference Water Index) method was utilized for river central bar mapping. Human-checking was then performed to ensure the mapping quality. The relationship between the area of central bars and the measured water level was estimated using four mathematical models. Furthermore, a risk assessment index was proposed to map the spatial pattern of inundation risk of central bars. The results indicate a good ability of the GF-1 WFV imagery with a 16-m spatial resolution to characterize the seasonal variation of central river bars and to capture the impact of a flood disaster on the area of central bars. This paper observed a significant negative but nonlinear relationship between the water level and the area of central bars, and found that the cubic function fits best among four models (R² = 0.9839, P < 0.000001, RMSE = 0.4395). The maximum of the inundated area of central bars appeared during the rainy season on July 8, 2016, and the minimum occurred during the dry season on December 28, 2016, which are consistent with the water level measured by the hydrological station. The results derived from GF-1 data could provide a useful reference for decision-making of real-time disaster early warning and post-disaster reconstruction.

Keywords: central bars, dynamic change, water level, the Yangtze river

Procedia PDF Downloads 242
674 Flood Disaster Prevention and Mitigation in Nigeria Using Geographic Information System

Authors: Dinebari Akpee, Friday Aabe Gaage, Florence Fred Nwaigwu

Abstract:

Natural disasters like flood affect many parts of the world including developing countries like Nigeria. As a result, many human lives are lost, properties damaged and so much money is lost in infrastructure damages. These hazards and losses can be mitigated and reduced by providing reliable spatial information to the generality of the people through about flood risks through flood inundation maps. Flood inundation maps are very crucial for emergency action plans, urban planning, ecological studies and insurance rates. Nigeria experience her worst flood in her entire history this year. Many cities were submerged and completely under water due to torrential rainfall. Poor city planning, lack of effective development control among others contributes to the problem too. Geographic information system (GIS) can be used to visualize the extent of flooding, analyze flood maps to produce flood damaged estimation maps and flood risk maps. In this research, the under listed steps were taken in preparation of flood risk maps for the study area: (1) Digitization of topographic data and preparation of digital elevation model using ArcGIS (2) Flood simulation using hydraulic model and integration and (3) Integration of the first two steps to produce flood risk maps. The results shows that GIS can play crucial role in Flood disaster control and mitigation.

Keywords: flood disaster, risk maps, geographic information system, hazards

Procedia PDF Downloads 227
673 Impact of Global Warming on the Total Flood Duration and Flood Recession Time in the Meghna Basin Using Hydrodynamic Modelling

Authors: Karan Gupta

Abstract:

The floods cause huge loos each year, and their impact gets manifold with the increase of total duration of flood as well as recession time. Moreover, floods have increased in recent years due to climate change in floodplains. In the context of global climate change, the agreement in Paris convention (2015) stated to keep the increase in global average temperature well below 2°C and keep it at the limit of 1.5°C. Thus, this study investigates the impact of increasing temperature on the stage, discharge as well as total flood duration and recession time in the Meghna River basin in Bangladesh. This study considers the 100-year return period flood flows in the Meghna river under the specific warming levels (SWLs) of 1.5°C, 2°C, and 4°C. The results showed that the rate of increase of duration of flood is nearly 50% lesser at ∆T = 1.5°C as compared to ∆T = 2°C, whereas the rate of increase of duration of recession is 75% lower at ∆T = 1.5°C as compared to ∆T = 2°C. Understanding the change of total duration of flood as well as recession time of the flood gives a better insight to effectively plan for flood mitigation measures.

Keywords: flood, climate change, Paris convention, Bangladesh, inundation duration, recession duration

Procedia PDF Downloads 142
672 Collective Intelligence-Based Early Warning Management for Agriculture

Authors: Jarbas Lopes Cardoso Jr., Frederic Andres, Alexandre Guitton, Asanee Kawtrakul, Silvio E. Barbin

Abstract:

The important objective of the CyberBrain Mass Agriculture Alarm Acquisition and Analysis (CBMa4) project is to minimize the impacts of diseases and disasters on rice cultivation. For example, early detection of insects will reduce the volume of insecticides that is applied to the rice fields through the use of CBMa4 platform. In order to reach this goal, two major factors need to be considered: (1) the social network of smart farmers; and (2) the warning data alarm acquisition and analysis component. This paper outlines the process for collecting the warning and improving the decision-making result to the warning. It involves two sub-processes: the warning collection and the understanding enrichment. Human sensors combine basic suitable data processing techniques in order to extract warning related semantic according to collective intelligence. We identify each warning by a semantic content called 'warncons' with multimedia metaphors and metadata related to these metaphors. It is important to describe the metric to measuring the relation among warncons. With this knowledge, a collective intelligence-based decision-making approach determines the action(s) to be launched regarding one or a set of warncons.

Keywords: agricultural engineering, warning systems, social network services, context awareness

Procedia PDF Downloads 382