Search results for: flat%20feet
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 510

Search results for: flat%20feet

450 Comparative Evaluation of EBT3 Film Dosimetry Using Flat Bad Scanner, Densitometer and Spectrophotometer Methods and Its Applications in Radiotherapy

Authors: K. Khaerunnisa, D. Ryangga, S. A. Pawiro

Abstract:

Over the past few decades, film dosimetry has become a tool which is used in various radiotherapy modalities, either for clinical quality assurance (QA) or dose verification. The response of the film to irradiation is usually expressed in optical density (OD) or net optical density (netOD). While the film's response to radiation is not linear, then the use of film as a dosimeter must go through a calibration process. This study aimed to compare the function of the calibration curve of various measurement methods with various densitometer, using a flat bad scanner, point densitometer and spectrophotometer. For every response function, a radichromic film calibration curve is generated from each method by performing accuracy, precision and sensitivity analysis. netOD is obtained by measuring changes in the optical density (OD) of the film before irradiation and after irradiation when using a film scanner if it uses ImageJ to extract the pixel value of the film on the red channel of three channels (RGB), calculate the change in OD before and after irradiation when using a point densitometer, and calculate changes in absorbance before and after irradiation when using a spectrophotometer. the results showed that the three calibration methods gave readings with a netOD precision of doses below 3% for the uncertainty value of 1σ (one sigma). while the sensitivity of all three methods has the same trend in responding to film readings against radiation, it has a different magnitude of sensitivity. while the accuracy of the three methods provides readings below 3% for doses above 100 cGy and 200 cGy, but for doses below 100 cGy found above 3% when using point densitometers and spectrophotometers. when all three methods are used for clinical implementation, the results of the study show accuracy and precision below 2% for the use of scanners and spectrophotometers and above 3% for precision and accuracy when using point densitometers.

Keywords: Callibration Methods, Film Dosimetry EBT3, Flat Bad Scanner, Densitomete, Spectrophotometer

Procedia PDF Downloads 101
449 Parameters Influencing the Output Precision of a Lens-Lens Beam Generator Solar Concentrator

Authors: M. Tawfik, X. Tonnellier, C. Sansom

Abstract:

The Lens-Lens Beam Generator (LLBG) is a Fresnel-based optical concentrating technique which provides flexibility in selecting the solar receiver location compared to conventional techniques through generating a powerful concentrated collimated solar beam. In order to achieve that, two successive lenses are used and followed by a flat mirror. Hence the generated beam emerging from the LLBG has a high power flux which impinges on the target receiver, it is important to determine the precision of the system output. In this present work, mathematical investigation of different parameters affecting the precision of the output beam is carried out. These parameters include: Deflection in sun-facing lens and its holding arm, delay in updating the solar tracking system, and the flat mirror surface flatness. Moreover, relationships that describe the power lost due to the effect of each parameter are derived in this study.

Keywords: Fresnel lens, LLBG, solar concentrator, solar tracking

Procedia PDF Downloads 187
448 Analysis of the Performance of a Solar Water Heating System with Flat Collector

Authors: Georgi Vendramin, Aurea Lúcia, Yamamoto, Carlos Itsuo, Camargo Nogueira, Carlos Eduardo, Lenz, Anderson Miguel, Souza Melegari, Samuel N.

Abstract:

The thermal performance of a solar water heating with 1.00 m2 flat plate collectors in Cascavel-PR, is which presented in this article, paper presents the solution to leverage the marketing of solar heating systems through detailed constituent materials of the solar collector studies, these abundant materials in construction, such as expanded polyethylene, PVC, aluminum and glass tubes, mixing them with new materials to minimize loss of efficiency while decreasing its cost. The system was tested during months and the collector obtained maximum recorded temperature of outlet fluid of 55 °C, while the maximum temperature of the water at the bottom of the hot water tank was 35 °C. The average daily energy collected was 19 6 MJ/d; the energy supplied by the solar plate was 16.2 MJ/d; the loss in the feed pipe was 3.2 MJ/d; the solar fraction was 32.2%, the efficiency of the collector was 45.6% and the efficiency of the system was 37.8%.

Keywords: recycling materials, energy efficiency, solar collector, solar water heating system

Procedia PDF Downloads 562
447 Strip Size Optimization for Spiral Type Actuator Coil Used in Electromagnetic Flat Sheet Forming Experiment

Authors: M. A. Aleem, M. S. Awan

Abstract:

Flat spiral coil for electromagnetic forming system has been modelled in FEMM 4.2 software. Copper strip was chosen as the material for designing the actuator coil. Relationship between height to width ratio (S-factor) of the copper strip and coil’s performance has been studied. Magnetic field intensities, eddy currents, and Lorentz force were calculated for the coils that were designed using six different 'S-factor' values (0.65, 0.75, 1.05, 1.25, 1.54 and 1.75), keeping the cross-sectional area of strip the same. Results obtained through simulation suggest that actuator coil with S-factor ~ 1 shows optimum forming performance as it exerts maximum Lorentz force (84 kN) on work piece. The same coils were fabricated and used for electromagnetic sheet forming experiments. Aluminum 6061 sheets of thickness 1.5 mm have been formed using different voltage levels of capacitor bank. Smooth forming profiles were obtained with dome heights 28, 35 and 40 mm in work piece at 800, 1150 and 1250 V respectively.

Keywords: FEM modelling, electromagnetic forming, spiral coil, Lorentz force

Procedia PDF Downloads 260
446 Nice Stadium: Design of a Flat Single Layer ETFE Roof

Authors: A. Escoffier, A. Albrecht, F. Consigny

Abstract:

In order to host the Football Euro in 2016, many French cities have launched architectural competitions in recent years to improve the quality of their stadiums. The winning project in Nice was designed by Wilmotte architects together with Elioth structural engineers. It has a capacity of 35,000 seats. Its roof structure consists of a complex 3D shape timber and steel lattice and is covered by 25,000m² of ETFE, 10,500m² of PES-PVC fabric and 8,500m² of photovoltaic panels. This paper focuses on the ETFE part of the cover. The stadium is one of the first constructions to use flat single layer ETFE on such a big area. Due to its relatively recent appearance in France, ETFE structures are not yet covered by any regulations and the existing codes for fabric structures cannot be strictly applied. Rather, they are considered as cladding systems and therefore have to be approved by an “Appréciation Technique d’Expérimentation” (ATEx), during which experimental tests have to be performed. We explain the method that we developed to justify the ETFE, which eventually led to bi-axial tests to clarify the allowable stress in the film.

Keywords: biaxial test, creep, ETFE, single layer, stadium roof

Procedia PDF Downloads 221
445 A Robust System for Foot Arch Type Classification from Static Foot Pressure Distribution Data Using Linear Discriminant Analysis

Authors: R. Periyasamy, Deepak Joshi, Sneh Anand

Abstract:

Foot posture assessment is important to evaluate foot type, causing gait and postural defects in all age groups. Although different methods are used for classification of foot arch type in clinical/research examination, there is no clear approach for selecting the most appropriate measurement system. Therefore, the aim of this study was to develop a system for evaluation of foot type as clinical decision-making aids for diagnosis of flat and normal arch based on the Arch Index (AI) and foot pressure distribution parameter - Power Ratio (PR) data. The accuracy of the system was evaluated for 27 subjects with age ranging from 24 to 65 years. Foot area measurements (hind foot, mid foot, and forefoot) were acquired simultaneously from foot pressure intensity image using portable PedoPowerGraph system and analysis of the image in frequency domain to obtain foot pressure distribution parameter - PR data. From our results, we obtain 100% classification accuracy of normal and flat foot by using the linear discriminant analysis method. We observe there is no misclassification of foot types because of incorporating foot pressure distribution data instead of only arch index (AI). We found that the mid-foot pressure distribution ratio data and arch index (AI) value are well correlated to foot arch type based on visual analysis. Therefore, this paper suggests that the proposed system is accurate and easy to determine foot arch type from arch index (AI), as well as incorporating mid-foot pressure distribution ratio data instead of physical area of contact. Hence, such computational tool based system can help the clinicians for assessment of foot structure and cross-check their diagnosis of flat foot from mid-foot pressure distribution.

Keywords: arch index, computational tool, static foot pressure intensity image, foot pressure distribution, linear discriminant analysis

Procedia PDF Downloads 475
444 Linear and Nonlinear Resonance of Flat Bottom Hole in an Aluminum Plate

Authors: Biaou Jean-Baptiste Kouchoro, Anissa Meziane, Philippe Micheau, Mathieu Renier, Nicolas Quaegebeur

Abstract:

Numerous experimental and numerical studies have shown the interest of the local defects resonance (LDR) for the Non-Destructive Testing of metallic and composite plates. Indeed, guided ultrasonic waves such as Lamb waves, which are increasingly used for the inspection of these flat structures, enable the generation of local resonance phenomena by their interaction with a damaged area, allowing the detection of defects. When subjected to a large amplitude motion, a nonlinear behavior can predominate in the damaged area. This work presents a 2D Finite Element Model of the local resonance of a 12 mm long and 5 mm deep Flat Bottom Hole (FBH) in a 6 mm thick aluminum plate under the excitation induced by an incident A0 Lamb mode. The analysis of the transient response of the FBH enables the precise determination of its resonance frequencies and the associate modal deformations. Then, a linear parametric study varying the geometrical properties of the FBH highlights the sensitivity of the resonance frequency with respect to the plate thickness. It is demonstrated that the resonance effect disappears when the ratio of thicknesses between the FBH and the plate is below 0.1. Finally, the nonlinear behavior of the FBH is considered and studied introducing geometrical (taken into account the nonlinear component of the strain tensor) nonlinearities that occur at large vibration amplitudes. Experimental analysis allows observation of the resonance effects and nonlinear response of the FBH. The differences between these experimental results and the numerical results will be commented on. The results of this study are promising and allow to consider more realistic defects such as delamination in composite materials.

Keywords: guided waves, non-destructive testing, dynamic field testing, non-linear ultrasound/vibration

Procedia PDF Downloads 107
443 Potential of Palm Oil Mill Effluent in Algae Cultivation for Biodiesel Production

Authors: Nur Azreena Idris, Soh Kheang Loh, Harrison Lau Lik Nang, Yuen May Choo, Eminour Muzalina Mustafa, Vijaysri Vello, Cheng Yau Tan, Siew Moi Phang

Abstract:

It is estimated that about 0.65-0.67 m3 of palm oil mill effluent (POME) is generated when one tonne of fresh fruit bunches is processed. Owning to the high content of nutrients in POME, it has high potential as a medium for microalgae growth. This study attempted determining the growth rate, biomass productivity and biochemical composition of microalgae (Chlorella sp.) grown in different POME concentrations i.e. 6.25%, 12.5%, 25% and 50% at outdoor conditions using a 200-mL capacity high rate algae pond (HRAP) and 2 closed photobioreactors (PBRs) i.e. annular and flat panel. The strain, Chlorella sp. grown on 12.5% of POME in flat panel PBR exhibited the highest specific growth rate of 0.32/day and biomass productivity (27.1 mg/L/day) followed by those in HRAP and annular PBR. It further showed that a good growth of Chlorella sp. in 12.5% of POME could sufficiently reduce the nutrients of POME such as phosphate (PO4), nitrate (NO3), nitrite (NO2) and chemical oxygen demand (COD). The extracted algal oil from POME culture showed that the saturated fatty acids decreased while polyunsaturated fatty acids increased compared to those cultured in standard culture medium (Bold’s Basal medium). The biochemical compositions of the algae grown in flat panel PBR were the highest with lipid, protein and carbohydrate productivity of 17.91 mg/L/day, 34.65 mg/L/day and 21.44 mg/L/day, respectively. The microalgae cultivation in diluted POME had not only shown potential as biodiesel feedstock based on the fatty acids profile but also the ability to reduce pollutants e.g. PO4, NO3, NO2 and COD in biological wastewater treatment.

Keywords: wastewater treatment, photobioreactors, biomass productivity, specific growth rate

Procedia PDF Downloads 229
442 The Associations of Pes Planus Plantaris (Flat Foot) to the Postural Stability of Basketball Student-Athletes Through the Ground Reaction Force Vector (vGRF)

Authors: Def Primal, Sasanty Kusumaningtyas, Ermita I. Ibrahim

Abstract:

Purpose: The main objective of this study is to determine the pes planus plantaris (flat foot) condition can contribute to the disturbance of postural stability in basketball athletes in static and dynamic activities. Methods: This cross-sectional quantitative analytical retrospective study on 47 subjects of basketball student-athletes identified the foot arch index by extensive footprint area and AMTI (Advanced Mechanical Technology Inc.) Force flat-form (force plate) determined their postural stability. Subjects were conducted in three activities (static, dynamic vertical jump, and dynamic loading response) for ground reaction force (GRF) resultant vectors towards the vertical plane of body mass (W). Results Analytical results obtained that 80.9% of subjects had pes planus plantaris. It shows no significant differences in pes planus plantaris incidence in both sexes subject (p>0.005); however, there are differences in athlete’s exercise period aspect. Athlete students who have practiced strictly for more than four years’ experience over 50% of pes planus plantaris; furthermore, a long period of exercise was believed to stimulate pes planus. The average value of GRF vectors of pes planus plantaris subjects on three different basketball movements shows a significant correlation to postural stability. Conclusions Pes planus plantaris affected almost basketball athletes regarding the length and intensity of exercise performed. The condition significantly contributes to postural stability disturbance on a static condition, dynamic vertical jump, and dynamic vertical jump loading response.

Keywords: pes planus plantaris, flatfoot, ground reaction force, static and dynamic stability

Procedia PDF Downloads 115
441 Physical and Mechanical Performance of Mortars with Ashes from Straw and Bagasse Sugarcane

Authors: Débora C. G. Oliveira, Julio D. Salles, Bruna A. Moriy, João A. Rossignolo, Holmer Savastano Jr.

Abstract:

The objective of this study was to identify the optimal level of partial replacement of Portland cement by the ashes originating from burning straw and bagasse from sugar cane (ASB). Order to this end, were made five series of flat plates and cylindrical bodies: control and others with the partial replacement in 20, 30, 40, and 50% of ASB in relation to the mass of the Ordinary Portland cement, and conducted a mechanical testing of simple axial compression (cylindrical bodies) and the four-point bending (flat plates) and determined water absorption (WA), bulk density (BD) and apparent void volume (AVV) on both types of specimens. Based on the data obtained, it may be noted that the control treatment containing only Portland cement, obtained the best results. However, the cylindrical bodies with 20% ashes showed better results compared to the other treatments. And in the formulations plates, the treatment which showed the best results was 30% cement replacement by ashes.

Keywords: modulus of rupture, simple axial compression, waste, bagasse sugarcane

Procedia PDF Downloads 395
440 Study of Flow-Induced Noise Control Effects on Flat Plate through Biomimetic Mucus Injection

Authors: Chen Niu, Xuesong Zhang, Dejiang Shang, Yongwei Liu

Abstract:

Fishes can secrete high molecular weight fluid on their body skin to enable their rapid movement in the water. In this work, we employ a hybrid method that combines Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) to investigate the effects of different mucus viscosities and injection velocities on fluctuation pressure in the boundary layer and flow-induced structural vibration noise of a flat plate model. To accurately capture the transient flow distribution on the plate surface, we use Large Eddy Simulation (LES) while the mucus inlet is positioned at a sufficient distance from the model to ensure effective coverage. Mucus injection is modeled using the Volume of Fluid (VOF) method for multiphase flow calculations. The results demonstrate that mucus control of pulsating pressure effectively reduces flow-induced structural vibration noise, providing an approach for controlling flow-induced noise in underwater vehicles.

Keywords: mucus, flow control, noise control, flow-induced noise

Procedia PDF Downloads 96
439 Remote Observation of Environmental Parameters on the Surface of the Maricunga Salt Flat, Atacama Region, Chile

Authors: Lican Guzmán, José Manuel Lattus, Mariana Cervetto, Mauricio Calderón

Abstract:

Today the estimation of effects produced by climate change in high Andean wetland environments is confronted by big challenges. This study provides a way to an analysis by remote sensing how some Ambiental aspects have evolved on the Maricunga salt flat in the last 30 years, divided into the summer and winter seasons, and if global warming is conditioning these changes. The first step to achieve this goal was the recompilation of geological, hydrological, and morphometric antecedents to ensure an adequate contextualization of its environmental parameters. After this, software processing and analysis of Landsat 5,7 and 8 satellite imagery was required to get the vegetation, water, surface temperature, and soil moisture indexes (NDVI, NDWI, LST, and SMI) in order to see how their spatial-temporal conditions have evolved in the area of study during recent decades. Results show a tendency of regular increase in surface temperature and disponibility of water during both seasons but with slight drought periods during summer. Soil moisture factor behaves as a constant during the dry season and with a tendency to increase during wintertime. Vegetation analysis shows an areal and quality increase of its surface sustained through time that is consistent with the increase of water supply and temperature in the basin mentioned before. Roughly, the effects of climate change can be described as positive for the Maricunga salt flat; however, the lack of exact correlation in dates of the imagery available to remote sensing analysis could be a factor for misleading in the interpretation of results.

Keywords: global warming, geology, SIG, Atacama Desert, Salar de Maricunga, environmental geology, NDVI, SMI, LST, NDWI, Landsat

Procedia PDF Downloads 55
438 A Study on the Small Biped Soft Robot with Two Insect-Like Nails

Authors: Mami Nishida

Abstract:

This paper presented a study on the development and control of a small biped soft robot using shape memory alloys (SMAs). Author proposed a flexible flat plate (FFP) actuators consisting of a thin polyethylene plate and SMAs. This actuator has a nail like an insect. This robot moves from the front to back and from left to right using two nails. The walking robot has two degrees of freedom and is controlled by switching the ON-OFF current signals to the SMA based FFPs. The resulting small biped soft robot weighs a mere 4.7 g (with a height of 67 mm). The small robot realizes biped walking by transferring the elastic potential energy (generated by deflections of the SMA based FFPs) to kinematic energy. Experimental results demonstrated the viability and utility of the small biped soft robot with the proposed SMA-based FFPs and the control strategy to achieve walking behavior.

Keywords: biped soft robot with nails, flexible flat plate (FFP) actuators, ON-OFF control strategy, shape memory alloys (SMA)

Procedia PDF Downloads 477
437 Thermohydraulic Performance of Double Flow Solar Air Heater with Corrugated Absorber

Authors: S. P. Sharma, Som Nath Saha

Abstract:

This paper deals with the analytical investigation of thermal and thermohydraulic performance of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater has been presented, and a computer program in C++ language is developed to estimate the outlet temperature of air for the evaluation of thermal and thermohydraulic efficiency by solving the governing equations numerically using relevant correlations for heat transfer coefficients. The results obtained from the mathematical model is compared with the available experimental results and it is found to be reasonably good. The results show that the double flow solar air heaters have higher efficiency than conventional solar air heater, although the double flow corrugated absorber is superior to that of flat plate double flow solar air heater. It is also observed that the thermal efficiency increases with increase in mass flow rate; however, thermohydraulic efficiency increases with increase in mass flow rate up to a certain limit, attains the maximum value, then thereafter decreases sharply.

Keywords: corrugated absorber, double flow, solar air heater, thermos-hydraulic efficiency

Procedia PDF Downloads 287
436 Correlation between Flexible Flatfoot and Lumbosacral Angle

Authors: Moustafa Elwan, Sohier Shehata, Fatma Sedek, Manar Hussine

Abstract:

One of the most risky factors that lead to a foot injury during physical activities are both high and low arched feet. Normally the medial longitudinal arch of the foot develops in the first 10 years of life, so flexible flat foot has an inversely relationship with age in the first decade, all over the world, the prevalence of flat foot is increasing. In approximately 15% of foot deformities cases, the deformity does not disappear and remains throughout adulthood, 90% of the clinical cases are complaining from foot problems are due to flatfoot. Flatfoot creates subtalar over pronation, which creates tibial and femoral medial rotation, and that is accompanied with increases of pelvic tilting anteriorly, which may influence the lumbar vertebrae alignment by increasing muscle tension and rotation. Objective: To study the impact of the flexible flatfoot on lumbosacral angle (angle of Ferguson). Methods: This experiment included 40 volunteers (14 females &26 males) gathered from the Faculty of Physical Therapy, Modern University of Technology and Information, Cairo, Egypt, for each participant, four angles were measured in the foot( talar first metatarsal angle, lateral talocalcaneal angle, , Calcaneal first metatarsal angle, calcaneal inclination angle) and one angle in the lumbar region (lumbosacral angle). Measurement of these angles was conducted by using Surgimap Spine software (version 2.2.9.6). Results: The results demonstrated that there was no significant correlation betweenFerguson angle and lateral talocalcaneal (r=0.164, p=0.313). Also, there was no significant correlation between Ferguson angle and talo first metatarsal “Meary’s angle" (r=0.007, p=0.968). Moreover, there was no significant correlation between Ferguson angle and calcaneal-first metatarsal angle (r=0.083, p=0.612). Also, there was no significant correlation between Ferguson angle and calcaneal inclination angle (r= 0.032, p= 0.846). Conclusion: It can be concluded that there is no significant correlation between the flexible flat foot and lumbosacral angle So, more study should be conducted in large sample and different ages and conditions of foot problems.

Keywords: calcaneal first metatarsal, calcaneal inclination, flatfoot, ferguson’s angle, lateral talocalcaneal angle, lumbosacral angle, and talar first metatarsal angle

Procedia PDF Downloads 101
435 Temperature Rises Characteristics of Distinct Double-Sided Flat Permanent Magnet Linear Generator for Free Piston Engines for Hybrid Vehicles

Authors: Ismail Rahama Adam Hamid

Abstract:

This paper presents the development of a thermal model for a flat, double-sided linear generator designed for use in free-piston engines. The study conducted in this paper examines the influence of temperature on the performance of the permeant magnet linear generator, an integral and pivotal component within the system. This research places particular emphasis on the Neodymium Iron Boron (NdFeB) permanent magnet, which serves as a source of magnetic field for the linear generator. In this study, an internal combustion engine that tends to produce heat is connected to a generator. Considering the temperatures rise from both the combustion process and the thermal contributions of current-carrying conductors and frictional forces. Utilizing Computational Fluid Dynamics (CFD) method, a thermal model of the (NdFeB) magnet within the linear generator is constructed and analyzed. Furthermore, the temperature field is examined to ensure that the linear generator operates under stable conditions without the risk of demagnetization.

Keywords: free piston engine, permanent magnet, linear generator, demagnetization, simulation

Procedia PDF Downloads 11
434 Numerical Analysis of Heat Transfer Characteristics of an Orthogonal and Obliquely Impinging Air Jet on a Flat Plate

Authors: Abdulrahman Alenezi

Abstract:

This research paper investigates the surface heat transfer characteristics using computational fluid dynamics for orthogonal and inclined impinging jet. A jet Reynolds number (Rₑ) of 10,000, jet-to- plate spacing (H/D) of two and eight and two angles of impingement (α) of 45° and 90° (orthogonal) were employed in this study. An unconfined jet impinges steadily a constant temperature flat surface using air as working fluid. The numerical investigation is validated with an experimental study. This numerical study employs grid dependency investigation and four different types of turbulence models including the transition SSD to accurately predict the second local maximum in Nusselt number. A full analysis of the effect of both turbulence models and mesh size is reported. Numerical values showed excellent agreement with the experimental data for the case of orthogonal impingement. For the case of H/D =6 and α=45° a maximum percentage error of approximately 8.8% occurs of local Nusselt number at stagnation point. Experimental and numerical correlations are presented for four different cases

Keywords: turbulence model, inclined jet impingement, single jet impingement, heat transfer, stagnation point

Procedia PDF Downloads 368
433 Multi-Criterial Analysis: Potential Regions and Height of Wind Turbines, Rio de Janeiro, Brazil

Authors: Claudio L. M. Souza, Milton Erthal, Aldo Shimoya, Elias R. Goncalves, Igor C. Rangel, Allysson R. T. Tavares, Elias G. Figueira

Abstract:

The process of choosing a region for the implementation of wind farms involves factors such as the wind regime, economic viability, land value, topography, and accessibility. This work presents results obtained by multi-criteria decision analysis, and it establishes a hierarchy, regarding the installation of wind farms, among geopolicy regions in the state of ‘Rio de Janeiro’, Brazil: ‘Regiao Norte-RN’, ‘Regiao dos Lagos-RL’ and ‘Regiao Serrana-RS’. The wind regime map indicates only these three possible regions with an average annual wind speed of above of 6.0 m/s. The method applied was the Analytical Hierarchy Process-AHP, designed to prioritize and rank the three regions based on four criteria as follows: 1) potential of the site and average wind speeds of above 6.0 ms-¹, 2) average land value, 3) distribution and interconnection to electric network with the highest number of electricity stations, and 4) accessibility with proximity and quality of highways and flat topography. The values of energy generation were calculated for wind turbines 50, 75, and 100 meters high, considering the production of site (GWh/Km²) and annual production (GWh). The weight of each criterion was attributed by six engineers and by analysis of Road Map, the Map of the Electric System, the Map of Wind Regime and the Annual Land Value Report. The results indicated that in 'RS', the demand was estimated at 2,000 GWh, so a wind farm can operate efficiently in 50 m turbines. This region is mainly mountainous with difficult access and lower land value. With respect to ‘RL’, the wind turbines have to be installed at a height of 75 m high to reach a demand of 6,300 GWh. This region is very flat, with easy access, and low land value. Finally, the ‘NR’ was evaluated as very flat and with expensive lands. In this case, wind turbines with 100 m can reach an annual production of 19,000 GWh. In this Region, the coast area was classified as of greater logistic, productivity and economic potential.

Keywords: AHP, renewable energy, wind energy

Procedia PDF Downloads 111
432 Optimal Designof Brush Roll for Semiconductor Wafer Using CFD Analysis

Authors: Byeong-Sam Kim, Kyoungwoo Park

Abstract:

This research analyzes structure of flat panel display (FPD) such as LCD as quantitative through CFD analysis and modeling change to minimize the badness rate and rate of production decrease by damage of large scale plater at wafer heating chamber at semi-conductor manufacturing process. This glass panel and wafer device with atmospheric pressure or chemical vapor deposition equipment for transporting and transferring wafers, robot hands carry these longer and wider wafers can also be easily handled. As a contact handling system composed of several problems in increased potential for fracture or warping. A non-contact handling system is required to solve this problem. The panel and wafer warping makes it difficult to carry out conventional contact to analysis. We propose a new non-contact transportation system with combining air suction and blowout. The numerical analysis and experimental is, therefore, should be performed to obtain compared to results achieved with non-contact solutions. This wafer panel noncontact handler shows its strength in maintaining high cleanliness levels for semiconductor production processes.

Keywords: flat panel display, non contact transportation, heat treatment process, CFD analysis

Procedia PDF Downloads 382
431 Combine Resection of Talocalcaneal Tarsal Coalition and Calcaneal Lengthening Osteotomy. Short-to-Intermediate Term Results

Authors: Naum Simanovsky, Vladimir Goldman, Michael Zaidman

Abstract:

Background: The optimal algorithm for the management of symptomatic tarsal coalition is still under discussion in pediatric literature. It's debatable what surgical steps are essential to achieve the best outcome. Method: The investigators retrospectively reviewed the records of twelve patients with symptomatic tarsal coalition that were treated operatively between 2017 and 2019. Only painful flat feet were operated. Two patients were excluded from the study due to lack of sufficient follow-up. Ten of eleven feet were treated with the combination of calcaneal lengthening osteotomy (CLO) and resection of coalition (RC). Only one foot was operated with CLO alone. In half of our patients, Achilles lengthening was performed. For two children, medial plication was added. Short leg cast was applied to all children for 6-8 weeks, and soft shoe insoles for medial arch support were prescribed after. Demographic, clinical, and radiographic records were reviewed. The outcome was evaluated using American Orthopedic Foot and Ankle Society (AOFAS) Ankle Hindfoot Score. Results: There were seven boys and three girls. The mean age at the time of surgery was 13.9 (range 12 to 17) years, and the mean follow-up was 18 (range 8 to 34) months. The early complications included one superficial wound infection and dehiscence. Late complication includes two children with residual forefoot supination. None of our patients required additional operations during the follow-up period. All feet achieved complete deformity correction or dramatic improvement. In the last follow-up, seven feet were painless, and four children had some mild pain after intensive activities. All feet achieved excellent and good scoring on AOFAS. Conclusions: Many patients with talocalcaneal coalition also have rigid or stiff, painful, flat feet. For these patients, the resection of coalition with concomitant CLO can be safely recommended.

Keywords: Tarsal coalition, calcaneal lengthening osteotomy., flat foot, coalition resection

Procedia PDF Downloads 33
430 Topography Effects on Wind Turbines Wake Flow

Authors: H. Daaou Nedjari, O. Guerri, M. Saighi

Abstract:

A numerical study was conducted to optimize the positioning of wind turbines over complex terrains. Thus, a two-dimensional disk model was used to calculate the flow velocity deficit in wind farms for both flat and complex configurations. The wind turbine wake was assessed using the hybrid methods that combine CFD (Computational Fluid Dynamics) with the actuator disc model. The wind turbine rotor has been defined with a thrust force, coupled with the Navier-Stokes equations that were resolved by an open source computational code (Code_Saturne V3.0 developed by EDF) The simulations were conducted in atmospheric boundary layer condition considering a two-dimensional region located at the north of Algeria at 36.74°N longitude, 02.97°E latitude. The topography elevation values were collected according to a longitudinal direction of 1km downwind. The wind turbine sited over topography was simulated for different elevation variations. The main of this study is to determine the topography effect on the behavior of wind farm wake flow. For this, the wake model applied in complex terrain needs to selects the singularity effects of topography on the vertical wind flow without rotor disc first. This step allows to determine the existence of mixing scales and friction forces zone near the ground. So, according to the ground relief the wind flow waS disturbed by turbulence and a significant speed variation. Thus, the singularities of the velocity field were thoroughly collected and thrust coefficient Ct was calculated using the specific speed. In addition, to evaluate the land effect on the wake shape, the flow field was also simulated considering different rotor hub heights. Indeed, the distance between the ground and the hub height of turbine (Hhub) was tested in a flat terrain for different locations as Hhub=1.125D, Hhub = 1.5D and Hhub=2D (D is rotor diameter) considering a roughness value of z0=0.01m. This study has demonstrated that topographical farm induce a significant effect on wind turbines wakes, compared to that on flat terrain.

Keywords: CFD, wind turbine wake, k-epsilon model, turbulence, complex topography

Procedia PDF Downloads 537
429 Performance of Different Spray Nozzles in the Application of Defoliant on Cotton Plants (Gossypium hirsutum L.)

Authors: Mohamud Ali Ibrahim, Ali Bayat, Ali Bolat

Abstract:

Defoliant spraying is an important link in the mechanized cotton harvest because adequate and uniform spraying can improve defoliation quality and reduce cotton trash content. In defoliant application, application volume and spraying technology are extremely important. In this study, the effectiveness of defoliant application to cotton plant that has come to harvest with two different application volumes and three different types of nozzles with a standard field crop sprayer was determined. Experiments were carried in two phases as field area trials and laboratory analysis. Application rates were 250 l/ha and 400 L/ha, and spraying nozzles were (1) Standard flat fan nozzle (TP8006), (2) Air induction nozzle (AI 11002-VS), and (3) Dual Pattern nozzle (AI307003VP). A tracer (BSF) and defoliant were applied to mature cotton with approximately 60% open bolls and samplings for BSF deposition and spray coverage on the cotton plant were done at two plant height (upper layer, lower layer) of plant. Before and after spraying, bolls open and leaves rate on cotton plants were calculated, and filter papers were used to detect BSF deposition, and water sensitive papers (WSP) were used to measure the coverage rate of spraying methods used. Spectrofluorophotometer was used to detect the amount of tracer deposition on targets, and an image process computer programme was used to measure coverage rate on WSP. In analysis, conclusions showed that air induction nozzle (AI 11002-VS) achieved better results than the dual pattern and standard flat fan nozzles in terms of higher depositions, coverages, and leaf defoliations, and boll opening rates. AI nozzles operating at 250 L/ha application rate provide the highest deposition and coverage rate on applications of the defoliant; in addition, BSF as an indicator of the defoliant used reached on leaf beneath in merely this spray nozzle. After defoliation boll opening rate was 85% on the 7th and 12th days after spraying and falling rate of leaves was 76% at application rate of 250 L/ha with air induction (AI1102) nozzle.

Keywords: cotton defoliant, air induction nozzle, dual pattern nozzle, standard flat fan nozzle, coverage rate, spray deposition, boll opening rate, leaves falling rate

Procedia PDF Downloads 158
428 A CFD Study of the Performance Characteristics of Vented Cylinders as Vortex Generators

Authors: R. Kishan, R. M. Sumant, S. Suhas, Arun Mahalingam

Abstract:

This paper mainly researched on influence of vortex generator on lift coefficient and drag coefficient, when vortex generator is mounted on a flat plate. Vented cylinders were used as vortex generators which intensify vortex shedding in the wake of the vented cylinder as compared to base line circular cylinder which ensures more attached flow and increases lift force of the system. Firstly vented cylinders were analyzed in commercial CFD software which is compared with baseline cylinders for different angles of attack and further variation of lift and drag forces were studied by varying Reynolds number to account for influence of turbulence and boundary layer in the flow. Later vented cylinders were mounted on a flat plate and variation of lift and drag coefficients was studied by varying angles of attack and studying the dependence of Reynolds number and dimensions of vortex generator on the coefficients. Mesh grid sensitivity is studied to check the convergence of the results obtained It was found that usage of vented cylinders as vortex generators increased lift forces with small variation in drag forces by varying angle of attack.

Keywords: CFD analysis, drag coefficient, FVM, lift coefficient, modeling, Reynolds number, simulation, vortex generators, vortex shedding

Procedia PDF Downloads 406
427 Modeling and Analysis of Solar Assisted Adsorption Cooling System Using TRNSYS

Authors: M. Wajahat, M. Shoaib, A. Waheed

Abstract:

As a result of increase in world energy demand as well as the demand for heating, refrigeration and air conditioning, energy engineers are now more inclined towards the renewable energy especially solar based thermal driven refrigeration and air conditioning systems. This research is emphasized on solar assisted adsorption refrigeration system to provide comfort conditions for a building in Islamabad. The adsorption chiller can be driven by low grade heat at low temperature range (50 -80 °C) which is lower than that required for generator in absorption refrigeration system which may be furnished with the help of common flat plate solar collectors (FPC). The aim is to offset the total energy required for building’s heating and cooling demand by using FPC’s thus reducing dependency on primary energy source hence saving energy. TRNSYS is a dynamic modeling and simulation tool which can be utilized to simulate the working of a complete solar based adsorption chiller to meet the desired cooling and heating demand during summer and winter seasons, respectively. Modeling and detailed parametric analysis of the whole system is to be carried out to determine the optimal system configuration keeping in view various design constraints. Main focus of the study is on solar thermal loop of the adsorption chiller to reduce the contribution from the auxiliary devices.

Keywords: flat plate collector, energy saving, solar assisted adsorption chiller, TRNSYS

Procedia PDF Downloads 617
426 Cationic Surfactants Influence on the Fouling Phenomenon Control in Ultrafiltration of Latex Contaminated Water and Wastewater

Authors: Amira Abdelrasoul, Huu Doan, Ali Lohi

Abstract:

The goal of the present study was to minimize the ultrafiltration fouling of latex effluent using Cetyltrimethyl ammonium bromide (CTAB) as a cationic surfactant. Hydrophilic Polysulfone and Ultrafilic flat heterogeneous membranes, with MWCO of 60,000 and 100,000, respectively, as well as hydrophobic Polyvinylidene Difluoride with MWCO of 100,000, were used under a constant flow rate and cross-flow mode in ultrafiltration of latex solution. In addition, a Polycarbonate flat membrane with uniform pore size of 0.05 µm was also used. The effect of CTAB on the latex particle size distribution was investigated at different concentrations, various treatment times, and diverse agitation duration. The effects of CTAB on the zeta potential of latex particles and membrane surfaces were also investigated. The results obtained indicated that the particle size distribution of treated latex effluent showed noticeable shifts in the peaks toward a larger size range due to the aggregation of particles. As a consequence, the mass of fouling contributing to pore blocking and the irreversible fouling were significantly reduced. The optimum results occurred with the addition of CTAB at the critical micelle concentration of 0.36 g/L for 10 minutes with minimal agitation. Higher stirring rate had a negative effect on membrane fouling minimization.

Keywords: cationic surfactant, latex particles, membrane fouling, ultrafiltration, zeta potential

Procedia PDF Downloads 505
425 Influence of Bilateral and Unilateral Flatfoot on Pelvic Alignment

Authors: Mohamed Taher Eldesoky, Enas Elsayed Abutaleb

Abstract:

Background: The changes in foot posture possibly generate changes in the pelvic alignment, although, there is lack of evidence about the effects of bilateral and unilateral flatfoot on possible changes in pelvic alignment. The purpose of this study was to investigate the effect of flatfoot on the sagittal and frontal planes of pelvic postures. Materials and Methods: 56 subjects, aged 18–40 years, were assigned into three groups. 20 healthy subjects, 19 subjects with bilateral flexible second-degree flat foot, and 17 subjects with unilateral flexible second-degree flat foot. 3D assessment of the pelvis using the formetric-II device was used to evaluate pelvic alignment in the frontal and sagittal planes by measuring pelvic inclination and pelvic tilt angles. Results: ANOVA test with LSD test were used for statistical analysis. Both Unilateral and bilateral second degree flatfoot produced significant (P < 0.05) pelvic anteversion in comparison to the healthy subjects (P < 0.05), but the bilateral flatfoot subjects seemed to have more anteversion than the unilateral subjects. Unilateral flatfoot caused a significant (P<0.05) lateral pelvic tilt in the direction of the affected side in comparison to the healthy and bilateral flatfoot subjects. Conclusion: The bilateral and unilateral second degree flatfoot changed pelvic alignment. Both of them led to increases of pelvic anteversion while the unilateral one caused lateral pelvic tilt toward the affected side. Thus, foot posture should be considered when assessing patients with pelvic misalignment and disorders.

Keywords: bilateral flatfoot, unilateral flatfoot, pelvic alignment, foot posture

Procedia PDF Downloads 331
424 Earth Flat Roofs

Authors: Raúl García de la Cruz

Abstract:

In the state of Hidalgo and to the vicinity to the state of Mexico, there is a network of people who also share a valley bordered by hills with agave landscape of cacti and shared a bond of building traditions inherited from pre-Hispanic times and according to their material resources, habits and needs have been adapted in time. Weather has played an important role in the way buildings and roofs are constructed. Throughout the centuries, the population has developed very sophisticated building techniques like the flat roof, made out of a layer of earth; that is usually identified as belonging to architecture of the desert, but it can also be found in other climates, such as semi-arid and even template climates. It is an example of a constructive logic applied efficiently to various cultures proving its thermal isolation. So far it has done a review and analysis of the use of the roof in different areas, from pre-Hispanic architecture to traditional Moroccan architecture , finding great similarities in the elements of the system to be incorporated into the contemporary architecture. The rescue of a lore that dissolves with the changing environment, depends in principle on the links created towards the use of environmental resources as the anchor of the people to retain and preserve a building tradition which has viability deep league with the possibility of obtaining the raw material from the immediate environment. The objective of the research is the documentation of existing earth flat roofs in the state of Hidalgo and Mexico, as evidence of the importance of constructive system and its historical value in the area, considering its environmental, social aspects, also understanding the process of transformation of public housing at the time replaced the traditional techniques for industrial materials on a path towards urbanization. So far it has done a review and analysis of the use of the roof in different areas, from pre-Hispanic architecture to traditional Moroccan architecture, finding great similarities in the elements of the system to be incorporated into the contemporary architecture. The rescue of a lore that dissolves with the changing environment, depends in principle on the links created towards the use of environmental resources as the anchor of the people to retain and preserve a building tradition which has viability deep league with the possibility of obtaining the raw material from the immediate environment.

Keywords: earth roof, low impact building system, sustainable architecture, vernacular architecture

Procedia PDF Downloads 431
423 The Effect of Soil Reinforcement on Pullout Behaviour of Flat Under-Reamer Anchor Pile Placed in Sand

Authors: V. K. Arora, Amit Rastogi

Abstract:

To understand the anchor pile behaviour and to predict the capacity of piles under uplift loading are important concerns in foundation analysis. Experimental model tests have been conducted on single anchor pile embedded in cohesionless soil and subjected to pure uplift loading. A gravel-filled geogrid layer was located around the enlarged pile base. The experimental tests were conducted on straight-shafted vertical steel piles with an outer diameter of 20 mm in a steel soil tank. The tested piles have embedment depth-to-diameter ratios (L/D) of 2, 3, and 4. The sand bed is prepared at three different values of density of 1.67, 1.59, and 1.50gm/cc. Single piles embedded in sandy soil were tested and the results are presented and analysed in this paper. The influences of pile embedment ratio, reinforcement, relative density of soil on the uplift capacity of piles were investigated. The study revealed that the behaviour of single piles under uplift loading depends mainly on both the pile embedment depth-to-diameter ratio and the soil density. It is believed that the experimental results presented in this study would be beneficial to the professional understanding of the soil–pile-uplift interaction problem.

Keywords: flat under-reamer anchor pile, geogrid, pullout reinforcement, soil reinforcement

Procedia PDF Downloads 438
422 A Comparative Analysis of Carbon Footprints of Households in Different Housing Types and Seasons

Authors: Taehyun Kim

Abstract:

As a result of rapid urbanization, energy demands for lighting, heating and cooling of households have been concentrated in metropolitan areas. The energy resources for housing in urban areas are dominantly fossil fuel whose uses contribute to increase cost of living and carbon dioxide (CO2) emission. To achieve environmentally and economically sustainable residential development, it is important to know how energy use and cost of living can be reduced by planning and design. The purpose of this study is to examine which type of building requires less energy for housing. To do so, carbon footprint (CF) quiz survey was employed which estimates the amount of carbon dioxide required to support households’ consumption of energy uses for housing. The housing carbon footprints (HCF) of 500 households of Seoul, Korea in summer and winter were estimated and compared in three major types of housing: single-family (detached), row-house and apartment. In addition, its differences of HCF were estimated between tower and flat type of apartment. The results of T-test and analysis of variance (ANOVA) provide statistical evidence that housing type is related to housing energy use. Average HCF of detached house was higher than other housing types. Between two types of apartment, tower type shows higher HCF than flat type in winter. These findings may provide new perspectives on CF application in sustainable architecture and urban design.

Keywords: analysis of variance, carbon footprint, energy use, housing type

Procedia PDF Downloads 462
421 Thermal Analysis and Experimental Procedure of Integrated Phase Change Material in a Storage Tank

Authors: Chargui Ridha, Agrebi Sameh

Abstract:

The integration of phase change materials (PCM) for the storage of thermal energy during the period of sunshine before being released during the night is a complement of free energy to improve the system formed by a solar collector, tank storage, and a heat exchanger. This paper is dedicated to the design of a thermal storage tank based on a PCM-based heat exchanger. The work is divided into two parts: an experimental part using paraffin as PCM was carried out within the Laboratory of Thermal Processes of Borj Cedria in order to improve the performance of the system formed by the coupling of a flat solar collector and a thermal storage tank and to subsequently determine the influence of PCM on the whole system. This phase is based on the measurement instrumentation, namely, a differential scanning calorimeter (DSC) and the thermal analyzer (hot disk: HOT DISK) in order to determine the physical properties of the paraffin (PCM), which has been chosen. The second phase involves the detailed design of the PCM heat exchanger, which is incorporated into a thermal storage tank and coupled with a solar air collector installed at the Research and Technology Centre of Energy (CRTEn). A numerical part based on the TRANSYS and Fluent software, as well as the finite volume method, was carried out for the storage reservoir systems in order to determine the temperature distribution in each chosen system.

Keywords: phase change materials, storage tank, heat exchanger, flat plate collector

Procedia PDF Downloads 65