Search results for: facial electromyography
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 355

Search results for: facial electromyography

325 Curvelet Features with Mouth and Face Edge Ratios for Facial Expression Identification

Authors: S. Kherchaoui, A. Houacine

Abstract:

This paper presents a facial expression recognition system. It performs identification and classification of the seven basic expressions; happy, surprise, fear, disgust, sadness, anger, and neutral states. It consists of three main parts. The first one is the detection of a face and the corresponding facial features to extract the most expressive portion of the face, followed by a normalization of the region of interest. Then calculus of curvelet coefficients is performed with dimensionality reduction through principal component analysis. The resulting coefficients are combined with two ratios; mouth ratio and face edge ratio to constitute the whole feature vector. The third step is the classification of the emotional state using the SVM method in the feature space.

Keywords: facial expression identification, curvelet coefficient, support vector machine (SVM), recognition system

Procedia PDF Downloads 210
324 Peripheral Facial Nerve Palsy after Lip Augmentation

Authors: Sana Ilyas, Kishalaya Mukherjee, Suresh Shetty

Abstract:

Lip Augmentation has become more common in recent years. Patients do not expect to experience facial palsy after having lip augmentation. This poster will present the findings of such a presentation and will discuss the possible pathophysiology and management. (This poster has been published as a paper in the dental update, June 2022) Aim: The aim of the study was to explore the link between facial nerve palsy and lip fillers, to explore the literature surrounding facial nerve palsy, and to discuss the case of a patient who presented with facial nerve palsy with seemingly unknown cause. Methodology: There was a thorough assessment of the current literature surrounding the topic. This included published papers in journals through PubMed database searches and printed books on the topic. A case presentation was discussed in detail of a patient presenting with peripheral facial nerve palsy and associating it with lip augmentation that she had a day prior. Results and Conclusion: Even though the pathophysiology may not be clear for this presentation, it is important to highlight uncommon presentations or complications that may occur after treatment. This can help with understanding and managing similar cases, should they arise.It is also important to differentiate cause and association in order to make an accurate diagnosis. This may be difficult if there is little scientific literature. Therefore, further research can help to improve the understanding of the pathophysiology of similar presentations. This poster has been published as a paper in dental update, June 2022, and therefore shares a similar conclusiom.

Keywords: facial palsy, lip augmentation, causation and correlation, dental cosmetics

Procedia PDF Downloads 118
323 DBN-Based Face Recognition System Using Light Field

Authors: Bing Gu

Abstract:

Abstract—Most of Conventional facial recognition systems are based on image features, such as LBP, SIFT. Recently some DBN-based 2D facial recognition systems have been proposed. However, we find there are few DBN-based 3D facial recognition system and relative researches. 3D facial images include all the individual biometric information. We can use these information to build more accurate features, So we present our DBN-based face recognition system using Light Field. We can see Light Field as another presentation of 3D image, and Light Field Camera show us a way to receive a Light Field. We use the commercially available Light Field Camera to act as the collector of our face recognition system, and the system receive a state-of-art performance as convenient as conventional 2D face recognition system.

Keywords: DBN, face recognition, light field, Lytro

Procedia PDF Downloads 431
322 Tick Induced Facial Nerve Paresis: A Narrative Review

Authors: Jemma Porrett

Abstract:

Background: We present a literature review examining the research surrounding tick paralysis resulting in facial nerve palsy. A case of an intra-aural paralysis tick bite resulting in unilateral facial nerve palsy is also discussed. Methods: A novel case of otoacariasis with associated ipsilateral facial nerve involvement is presented. Additionally, we conducted a review of the literature, and we searched the MEDLINE and EMBASE databases for relevant literature published between 1915 and 2020. Utilising the following keywords; 'Ixodes', 'Facial paralysis', 'Tick bite', and 'Australia', 18 articles were deemed relevant to this study. Results: Eighteen articles included in the review comprised a total of 48 patients. Patients' ages ranged from one year to 84 years of age. Ten studies estimated the possible duration between a tick bite and facial nerve palsy, averaging 8.9 days. Forty-one patients presented with a single tick within the external auditory canal, three had a single tick located on the temple or forehead region, three had post-auricular ticks, and one patient had a remarkable 44 ticks removed from the face, scalp, neck, back, and limbs. A complete ipsilateral facial nerve palsy was present in 45 patients, notably, in 16 patients, this occurred following tick removal. House-Brackmann classification was utilised in 7 patients; four patients with grade 4, one patient with grade three, and two patients with grade 2 facial nerve palsy. Thirty-eight patients had complete recovery of facial palsy. Thirteen studies were analysed for time to recovery, with an average time of 19 days. Six patients had partial recovery at the time of follow-up. One article reported improvement in facial nerve palsy at 24 hours, but no further follow-up was reported. One patient was lost to follow up, and one article failed to mention any resolution of facial nerve palsy. One patient died from respiratory arrest following generalized paralysis. Conclusions: Tick paralysis is a severe but preventable disease. Careful examination of the face, scalp, and external auditory canal should be conducted in patients presenting with otalgia and facial nerve palsy, particularly in tropical areas, to exclude the possibility of tick infestation.

Keywords: facial nerve palsy, tick bite, intra-aural, Australia

Procedia PDF Downloads 78
321 The Effects of Affective Dimension of Face on Facial Attractiveness

Authors: Kyung-Ja Cho, Sun Jin Park

Abstract:

This study examined what effective dimension affects facial attractiveness. Two orthogonal dimensions, sharp-soft and babyish-mature, were used to rate the levels of facial attractiveness in 20’s women. This research also investigated the sex difference on the effect of effective dimension of face on attractiveness. The test subjects composed of 15 males and 18 females. They looked 330 photos of women in 20s. Then they rated the levels of the effective dimensions of faces with sharp-soft and babyish-mature, and the attraction with charmless-charming. The respond forms were Likert scales, the answer was scored from 1 to 9. As a result of multiple regression analysis, the subject reported the milder and younger appearance as more attractive. Both male and female subjects showed the same evaluation. This result means that two effective dimensions have the effect on estimating attractiveness.

Keywords: affective dimension of faces, facial attractiveness, sharp-soft, babyish-mature

Procedia PDF Downloads 305
320 Comparison of Linear Discriminant Analysis and Support Vector Machine Classifications for Electromyography Signals Acquired at Five Positions of Elbow Joint

Authors: Amna Khan, Zareena Kausar, Saad Malik

Abstract:

Bio Mechatronics has extended applications in the field of rehabilitation. It has been contributing since World War II in improving the applicability of prosthesis and assistive devices in real life scenarios. In this paper, classification accuracies have been compared for two classifiers against five positions of elbow. Electromyography (EMG) signals analysis have been acquired directly from skeletal muscles of human forearm for each of the three defined positions and at modified extreme positions of elbow flexion and extension using 8 electrode Myo armband sensor. Features were extracted from filtered EMG signals for each position. Performance of two classifiers, support vector machine (SVM) and linear discriminant analysis (LDA) has been compared by analyzing the classification accuracies. SVM illustrated classification accuracies between 90-96%, in contrast to 84-87% depicted by LDA for five defined positions of elbow keeping the number of samples and selected feature the same for both SVM and LDA.

Keywords: classification accuracies, electromyography, linear discriminant analysis (LDA), Myo armband sensor, support vector machine (SVM)

Procedia PDF Downloads 327
319 Dynamic Gabor Filter Facial Features-Based Recognition of Emotion in Video Sequences

Authors: T. Hari Prasath, P. Ithaya Rani

Abstract:

In the world of visual technology, recognizing emotions from the face images is a challenging task. Several related methods have not utilized the dynamic facial features effectively for high performance. This paper proposes a method for emotions recognition using dynamic facial features with high performance. Initially, local features are captured by Gabor filter with different scale and orientations in each frame for finding the position and scale of face part from different backgrounds. The Gabor features are sent to the ensemble classifier for detecting Gabor facial features. The region of dynamic features is captured from the Gabor facial features in the consecutive frames which represent the dynamic variations of facial appearances. In each region of dynamic features is normalized using Z-score normalization method which is further encoded into binary pattern features with the help of threshold values. The binary features are passed to Multi-class AdaBoost classifier algorithm with the well-trained database contain happiness, sadness, surprise, fear, anger, disgust, and neutral expressions to classify the discriminative dynamic features for emotions recognition. The developed method is deployed on the Ryerson Multimedia Research Lab and Cohn-Kanade databases and they show significant performance improvement owing to their dynamic features when compared with the existing methods.

Keywords: detecting face, Gabor filter, multi-class AdaBoost classifier, Z-score normalization

Procedia PDF Downloads 246
318 Impact of Kinesio Taping on Masseter Muscle: An Electromyographic Study

Authors: Joanna E. Owczarek, Izabela Zielinska

Abstract:

The incidence of temporomandibular disorders is 50% up to 80%. Kinesio taping (KT) is treatment method for musculoskeletal disorders. The aim of our study was to assess the impact of KT on masseter muscles’ tone evaluated by electromyography. 30 adults (aged 22±2.1) were examined. The tone of masseters before and after 4 days KT application on sternocleidomastoideus muscle was measured during resting mandibular position and clenching. Noraxon DTS device was used. Masseter muscles’ tone during clenching after KT application was relevently lower in comparison to its tone before the KT.

Keywords: electromyography, kinesio taping, masseter muscle, TMD

Procedia PDF Downloads 175
317 In vivo Mechanical Characterization of Facial Skin Combining Digital Image Correlation and Finite Element

Authors: Huixin Wei, Shibin Wang, Linan Li, Lei Zhou, Xinhao Tu

Abstract:

Facial skin is a biomedical material with complex mechanical properties of anisotropy, viscoelasticity, and hyperelasticity. The mechanical properties of facial skin are crucial for a number of applications including facial plastic surgery, animation, dermatology, cosmetic industry, and impact biomechanics. Skin is a complex multi-layered material which can be broadly divided into three main layers, the epidermis, the dermis, and the hypodermis. Collagen fibers account for 75% of the dry weight of dermal tissue, and it is these fibers which are responsible for the mechanical properties of skin. Many research on the anisotropic mechanical properties are mainly concentrated on in vitro, but there is a great difference between in vivo and in vitro for mechanical properties of the skin. In this study, we presented a method to measure the mechanical properties of facial skin in vivo. Digital image correlation (DIC) and indentation tests were used to obtain the experiment data, including the deformation of facial surface and indentation force-displacement curve. Then, the experiment was simulated using a finite element (FE) model. Application of Computed Tomography (CT) and reconstruction techniques obtained the real tissue geometry. A three-dimensional FE model of facial skin, including a bi-layer system, was obtained. As the epidermis is relatively thin, the epidermis and dermis were regarded as one layer and below it was hypodermis in this study. The upper layer was modeled as a Gasser-Ogden-Holzapfel (GOH) model to describe hyperelastic and anisotropic behaviors of the dermis. The under layer was modeled as a linear elastic model. In conclusion, the material properties of two-layer were determined by minimizing the error between the FE data and experimental data.

Keywords: facial skin, indentation test, finite element, digital image correlation, computed tomography

Procedia PDF Downloads 89
316 Analysis and Detection of Facial Expressions in Autism Spectrum Disorder People Using Machine Learning

Authors: Muhammad Maisam Abbas, Salman Tariq, Usama Riaz, Muhammad Tanveer, Humaira Abdul Ghafoor

Abstract:

Autism Spectrum Disorder (ASD) refers to a developmental disorder that impairs an individual's communication and interaction ability. Individuals feel difficult to read facial expressions while communicating or interacting. Facial Expression Recognition (FER) is a unique method of classifying basic human expressions, i.e., happiness, fear, surprise, sadness, disgust, neutral, and anger through static and dynamic sources. This paper conducts a comprehensive comparison and proposed optimal method for a continued research project—a system that can assist people who have Autism Spectrum Disorder (ASD) in recognizing facial expressions. Comparison has been conducted on three supervised learning algorithms EigenFace, FisherFace, and LBPH. The JAFFE, CK+, and TFEID (I&II) datasets have been used to train and test the algorithms. The results were then evaluated based on variance, standard deviation, and accuracy. The experiments showed that FisherFace has the highest accuracy for all datasets and is considered the best algorithm to be implemented in our system.

Keywords: autism spectrum disorder, ASD, EigenFace, facial expression recognition, FisherFace, local binary pattern histogram, LBPH

Procedia PDF Downloads 144
315 Data Collection Techniques for Robotics to Identify the Facial Expressions of Traumatic Brain Injured Patients

Authors: Chaudhary Muhammad Aqdus Ilyas, Matthias Rehm, Kamal Nasrollahi, Thomas B. Moeslund

Abstract:

This paper presents the investigation of data collection procedures, associated with robots when placed with traumatic brain injured (TBI) patients for rehabilitation purposes through facial expression and mood analysis. Rehabilitation after TBI is very crucial due to nature of injury and variation in recovery time. It is advantageous to analyze these emotional signals in a contactless manner, due to the non-supportive behavior of patients, limited muscle movements and increase in negative emotional expressions. This work aims at the development of framework where robots can recognize TBI emotions through facial expressions to perform rehabilitation tasks by physical, cognitive or interactive activities. The result of these studies shows that with customized data collection strategies, proposed framework identify facial and emotional expressions more accurately that can be utilized in enhancing recovery treatment and social interaction in robotic context.

Keywords: computer vision, convolution neural network- long short term memory network (CNN-LSTM), facial expression and mood recognition, multimodal (RGB-thermal) analysis, rehabilitation, robots, traumatic brain injured patients

Procedia PDF Downloads 117
314 Facial Expression Recognition Using Sparse Gaussian Conditional Random Field

Authors: Mohammadamin Abbasnejad

Abstract:

The analysis of expression and facial Action Units (AUs) detection are very important tasks in fields of computer vision and Human Computer Interaction (HCI) due to the wide range of applications in human life. Many works have been done during the past few years which has their own advantages and disadvantages. In this work, we present a new model based on Gaussian Conditional Random Field. We solve our objective problem using ADMM and we show how well the proposed model works. We train and test our work on two facial expression datasets, CK+, and RU-FACS. Experimental evaluation shows that our proposed approach outperform state of the art expression recognition.

Keywords: Gaussian Conditional Random Field, ADMM, convergence, gradient descent

Procedia PDF Downloads 325
313 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running

Authors: Elnaz Lashgari, Emel Demircan

Abstract:

Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.

Keywords: electromyography, manifold learning, ISOMAP, Laplacian Eigenmaps, locally linear embedding

Procedia PDF Downloads 330
312 When and Why Unhappy People Avoid Enjoyable Experiences

Authors: Hao Shen, Aparna Labroo

Abstract:

Across four studies, we show people in a negative mood avoid anticipated enjoyable experiences because of the subjective difficulty in simulating those experiences, and they misattribute these feelings of difficulty to reduced pleasantness of the anticipated experience. We observe the avoidance of enjoyable experiences only for anticipated experiences that involve smile-like facial-muscular simulation. When the need for facial-muscular simulation is attenuated, or when the anticipated experience relies on facial-muscular simulation to a lesser extent, people in a negative mood no longer avoid enjoyable experiences, but rather seek such experiences because they fit better with their ongoing mood-repair goals.

Keywords: emotion regulation, mood repair, embodiment, anticipated experiences

Procedia PDF Downloads 392
311 The Effect of Footrest Height on Muscle Fatigue and Discomfort in Prolonged Standing Activities

Authors: Zeinab Rasouli Kahaki, Mohammad Ali Sanjari, Reza Khani Jazani, Mahnaz Saremi, Amir Kavousi

Abstract:

Work which requires prolonged standing, especially in a fixed position can cause discomfort and fatigue. The purpose of this study was to compare the effects of height footrest in discomfort and fatigue lower extremities during long-standing activities. This cross-sectional study was carried out on 15 students with a mean (SD) age of 21.5 ± (2.3) and mean height of 163 ± (2.8). Participants attended 3 sessions each lasting one hour. They stood on three different surfaces: ceramic, footrest 10 and 25 cm. Surface electromyography was used to assess muscle fatigue. Body map and visual analog scale were employed to evaluate discomfort ratings of the lower extremities and the back. Data analyses were performed using ANOVA-R. Based on the results of electromyography there was no difference between soleus, anterior tibial and lateral gastrocnemius muscles fatigue and type of surfaces. There was a significant variation between the surfaces (p < 0.05) and different areas of the body discomfort level; so that the ceramic had the highest discomfort rating, while the lowest ratings were related to the footrest. Further investigations are recommended on the properties of the footrest.

Keywords: electromyography, fatigue, gastrocnemius, lower extremities, soleus, tibial

Procedia PDF Downloads 121
310 A Theoretical Study on Pain Assessment through Human Facial Expresion

Authors: Mrinal Kanti Bhowmik, Debanjana Debnath Jr., Debotosh Bhattacharjee

Abstract:

A facial expression is undeniably the human manners. It is a significant channel for human communication and can be applied to extract emotional features accurately. People in pain often show variations in facial expressions that are readily observable to others. A core of actions is likely to occur or to increase in intensity when people are in pain. To illustrate the changes in the facial appearance, a system known as Facial Action Coding System (FACS) is pioneered by Ekman and Friesen for human observers. According to Prkachin and Solomon, a set of such actions carries the bulk of information about pain. Thus, the Prkachin and Solomon pain intensity (PSPI) metric is defined. So, it is very important to notice that facial expressions, being a behavioral source in communication media, provide an important opening into the issues of non-verbal communication in pain. People express their pain in many ways, and this pain behavior is the basis on which most inferences about pain are drawn in clinical and research settings. Hence, to understand the roles of different pain behaviors, it is essential to study the properties. For the past several years, the studies are concentrated on the properties of one specific form of pain behavior i.e. facial expression. This paper represents a comprehensive study on pain assessment that can model and estimate the intensity of pain that the patient is suffering. It also reviews the historical background of different pain assessment techniques in the context of painful expressions. Different approaches incorporate FACS from psychological views and a pain intensity score using the PSPI metric in pain estimation. This paper investigates in depth analysis of different approaches used in pain estimation and presents different observations found from each technique. It also offers a brief study on different distinguishing features of real and fake pain. Therefore, the necessity of the study lies in the emerging fields of painful face assessment in clinical settings.

Keywords: facial action coding system (FACS), pain, pain behavior, Prkachin and Solomon pain intensity (PSPI)

Procedia PDF Downloads 304
309 Gender Recognition with Deep Belief Networks

Authors: Xiaoqi Jia, Qing Zhu, Hao Zhang, Su Yang

Abstract:

A gender recognition system is able to tell the gender of the given person through a few of frontal facial images. An effective gender recognition approach enables to improve the performance of many other applications, including security monitoring, human-computer interaction, image or video retrieval and so on. In this paper, we present an effective method for gender classification task in frontal facial images based on deep belief networks (DBNs), which can pre-train model and improve accuracy a little bit. Our experiments have shown that the pre-training method with DBNs for gender classification task is feasible and achieves a little improvement of accuracy on FERET and CAS-PEAL-R1 facial datasets.

Keywords: gender recognition, beep belief net-works, semi-supervised learning, greedy-layer wise RBMs

Procedia PDF Downloads 420
308 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition

Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade

Abstract:

The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.

Keywords: automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection

Procedia PDF Downloads 139
307 The Role of Emotional Intelligence in the Manager's Psychophysiological Activity during a Performance-Review Discussion

Authors: Mikko Salminen, Niklas Ravaja

Abstract:

Emotional intelligence (EI) consists of skills for monitoring own emotions and emotions of others, skills for discriminating different emotions, and skills for using this information in thinking and actions. EI enhances, for example, work outcomes and organizational climate. We suggest that the role and manifestations of EI should also be studied in real leadership situations, especially during the emotional, social interaction. Leadership is essentially a process to influence others for reaching a certain goal. This influencing happens by managerial processes and computer-mediated communication (e.g. e-mail) but also by face-to-face, where facial expressions have a significant role in conveying emotional information. Persons with high EI are typically perceived more positively, and they have better social skills. We hypothesize, that during social interaction high EI enhances the ability to detect other’s emotional state and controlling own emotional expressions. We suggest, that emotionally intelligent leader’s experience less stress during social leadership situations, since they have better skills in dealing with the related emotional work. Thus the high-EI leaders would be more able to enjoy these situations, but also be more efficient in choosing appropriate expressions for building constructive dialogue. We suggest, that emotionally intelligent leaders show more positive emotional expressions than low-EI leaders. To study these hypotheses we observed performance review discussions of 40 leaders (24 female) with 78 (45 female) of their followers. Each leader held a discussion with two followers. Psychophysiological methods were chosen because they provide objective and continuous data from the whole duration of the discussions. We recorded sweating of the hands (electrodermal activation) by electrodes placed to the fingers of the non-dominant hand to assess the stress-related physiological arousal of the leaders. In addition, facial electromyography was recorded from cheek (zygomaticus major, activated during e.g. smiling) and periocular (orbicularis oculi, activated during smiling) muscles using electrode pairs placed on the left side of the face. Leader’s trait EI was measured with a 360 questionnaire, filled by each leader’s followers, peers, managers and by themselves. High-EI leaders had less sweating of the hands (p = .007) than the low-EI leaders. It is thus suggested that the high-EI leaders experienced less physiological stress during the discussions. Also, high scores in the factor “Using of emotions” were related to more facial muscle activation indicating positive emotional expressions (cheek muscle: p = .048; periocular muscle: p = .076, almost statistically significant). The results imply that emotionally intelligent managers are positively relaxed during s social leadership situations such as a performance review discussion. The current study also highlights the importance of EI in face-to-face social interaction, given the central role facial expressions have in interaction situations. The study also offers new insight to the biological basis of trait EI. It is suggested that the identification, forming, and intelligently using of facial expressions are skills that could be trained during leadership development courses.

Keywords: emotional intelligence, leadership, performance review discussion, psychophysiology, social interaction

Procedia PDF Downloads 225
306 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores

Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan

Abstract:

Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.

Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics

Procedia PDF Downloads 99
305 The Effect of Experimentally Induced Stress on Facial Recognition Ability of Security Personnel’s

Authors: Zunjarrao Kadam, Vikas Minchekar

Abstract:

The facial recognition is an important task in criminal investigation procedure. The security guards-constantly watching the persons-can help to identify the suspected accused. The forensic psychologists are tackled such cases in the criminal justice system. The security personnel may loss their ability to correctly identify the persons due to constant stress while performing the duty. The present study aimed at to identify the effect of experimentally induced stress on facial recognition ability of security personnel’s. For this study 50, security guards from Sangli, Miraj & Jaysingpur city of the Maharashtra States of India were recruited in the experimental study. The randomized two group design was employed to carry out the research. In the initial condition twenty identity card size photographs were shown to both groups. Afterward, artificial stress was induced in the experimental group through the difficultpuzzle-solvingtask in a limited period. In the second condition, both groups were presented earlier photographs with another additional thirty new photographs. The subjects were asked to recognize the photographs which are shown earliest. The analyzed data revealed that control group has ahighest mean score of facial recognition than experimental group. The results were discussed in the present research.

Keywords: experimentally induced stress, facial recognition, cognition, security personnel

Procedia PDF Downloads 232
304 Forensic Comparison of Facial Images for Human Identification

Authors: D. P. Gangwar

Abstract:

Identification of human through facial images has got great importance in forensic science. The video recordings, CCTV footage, passports, driver licenses and other related documents are invariably sent to the laboratory for comparison of the questioned photographs as well as video recordings with suspected photographs/recordings to prove the identity of a person. More than 300 questioned and 300 control photographs received in actual crime cases, received from various investigation agencies, have been compared by me so far using various familiar analysis and comparison techniques such as Holistic comparison, Morphological analysis, Photo-anthropometry and superimposition. On the basis of findings obtained during the examination huge photo exhibits, a realistic and comprehensive technique has been proposed which could be very useful for forensic.

Keywords: CCTV Images, facial features, photo-anthropometry, superimposition

Procedia PDF Downloads 502
303 System for Electromyography Signal Emulation Through the Use of Embedded Systems

Authors: Valentina Narvaez Gaitan, Laura Valentina Rodriguez Leguizamon, Ruben Dario Hernandez B.

Abstract:

This work describes a physiological signal emulation system that uses electromyography (EMG) signals obtained from muscle sensors in the first instance. These signals are used to extract their characteristics to model and emulate specific arm movements. The main objective of this effort is to develop a new biomedical software system capable of generating physiological signals through the use of embedded systems by establishing the characteristics of the acquired signals. The acquisition system used was Biosignals, which contains two EMG electrodes used to acquire signals from the forearm muscles placed on the extensor and flexor muscles. Processing algorithms were implemented to classify the signals generated by the arm muscles when performing specific movements such as wrist flexion extension, palmar grip, and wrist pronation-supination. Matlab software was used to condition and preprocess the signals for subsequent classification. Subsequently, the mathematical modeling of each signal is performed to be generated by the embedded system, with a validation of the accuracy of the obtained signal using the percentage of cross-correlation, obtaining a precision of 96%. The equations are then discretized to be emulated in the embedded system, obtaining a system capable of generating physiological signals according to the characteristics of medical analysis.

Keywords: classification, electromyography, embedded system, emulation, physiological signals

Procedia PDF Downloads 62
302 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: biometric characters, facial recognition, neural network, OpenCV

Procedia PDF Downloads 228
301 Facial Recognition on the Basis of Facial Fragments

Authors: Tetyana Baydyk, Ernst Kussul, Sandra Bonilla Meza

Abstract:

There are many articles that attempt to establish the role of different facial fragments in face recognition. Various approaches are used to estimate this role. Frequently, authors calculate the entropy corresponding to the fragment. This approach can only give approximate estimation. In this paper, we propose to use a more direct measure of the importance of different fragments for face recognition. We propose to select a recognition method and a face database and experimentally investigate the recognition rate using different fragments of faces. We present two such experiments in the paper. We selected the PCNC neural classifier as a method for face recognition and parts of the LFW (Labeled Faces in the Wild) face database as training and testing sets. The recognition rate of the best experiment is comparable with the recognition rate obtained using the whole face.

Keywords: face recognition, labeled faces in the wild (LFW) database, random local descriptor (RLD), random features

Procedia PDF Downloads 329
300 Investigation of Surface Electromyograph Signal Acquired from the around Shoulder Muscles of Upper Limb Amputees

Authors: Amanpreet Kaur, Ravinder Agarwal, Amod Kumar

Abstract:

Surface electromyography is a strategy to measure the muscle activity of the skin. Sensors placed on the skin recognize the electrical current or signal generated by active muscles. A lot of the research has focussed on the detection of signal from upper limb amputee with activity of triceps and biceps muscles. The purpose of this study was to correlate phantom movement and sEMG activity in residual stump muscles of transhumeral amputee from the shoulder muscles. Eight non- amputee and seven right hand amputees were recruited for this study. sEMG data were collected for the trapezius, pectoralis and teres muscles for elevation, protraction and retraction of shoulder. Contrast between the amputees and non-amputees muscles action have been investigated. Subsequently, to investigate the impact of class separability for different motions of shoulder, analysis of variance for experimental recorded data was carried out. Results were analyzed to recognize different shoulder movements and represent a step towards the surface electromyography controlled system for amputees. Difference in F ratio (p < 0.05) values indicates the distinction in mean therefore these analysis helps to determine the independent motion. The identified signal would be used to design more accurate and efficient controllers for the upper-limb amputee for researchers.

Keywords: around shoulder amputation, surface electromyography, analysis of variance, features

Procedia PDF Downloads 402
299 Application of Vector Representation for Revealing the Richness of Meaning of Facial Expressions

Authors: Carmel Sofer, Dan Vilenchik, Ron Dotsch, Galia Avidan

Abstract:

Studies investigating emotional facial expressions typically reveal consensus among observes regarding the meaning of basic expressions, whose number ranges between 6 to 15 emotional states. Given this limited number of discrete expressions, how is it that the human vocabulary of emotional states is so rich? The present study argues that perceivers use sequences of these discrete expressions as the basis for a much richer vocabulary of emotional states. Such mechanisms, in which a relatively small number of basic components is expanded to a much larger number of possible combinations of meanings, exist in other human communications modalities, such as spoken language and music. In these modalities, letters and notes, which serve as basic components of spoken language and music respectively, are temporally linked, resulting in the richness of expressions. In the current study, in each trial participants were presented with sequences of two images containing facial expression in different combinations sampled out of the eight static basic expressions (total 64; 8X8). In each trial, using single word participants were required to judge the 'state of mind' portrayed by the person whose face was presented. Utilizing word embedding methods (Global Vectors for Word Representation), employed in the field of Natural Language Processing, and relying on machine learning computational methods, it was found that the perceived meanings of the sequences of facial expressions were a weighted average of the single expressions comprising them, resulting in 22 new emotional states, in addition to the eight, classic basic expressions. An interaction between the first and the second expression in each sequence indicated that every single facial expression modulated the effect of the other facial expression thus leading to a different interpretation ascribed to the sequence as a whole. These findings suggest that the vocabulary of emotional states conveyed by facial expressions is not restricted to the (small) number of discrete facial expressions. Rather, the vocabulary is rich, as it results from combinations of these expressions. In addition, present research suggests that using word embedding in social perception studies, can be a powerful, accurate and efficient tool, to capture explicit and implicit perceptions and intentions. Acknowledgment: The study was supported by a grant from the Ministry of Defense in Israel to GA and CS. CS is also supported by the ABC initiative in Ben-Gurion University of the Negev.

Keywords: Glove, face perception, facial expression perception. , facial expression production, machine learning, word embedding, word2vec

Procedia PDF Downloads 154
298 A Geometric Based Hybrid Approach for Facial Feature Localization

Authors: Priya Saha, Sourav Dey Roy Jr., Debotosh Bhattacharjee, Mita Nasipuri, Barin Kumar De, Mrinal Kanti Bhowmik

Abstract:

Biometric face recognition technology (FRT) has gained a lot of attention due to its extensive variety of applications in both security and non-security perspectives. It has come into view to provide a secure solution in identification and verification of person identity. Although other biometric based methods like fingerprint scans, iris scans are available, FRT is verified as an efficient technology for its user-friendliness and contact freeness. Accurate facial feature localization plays an important role for many facial analysis applications including biometrics and emotion recognition. But, there are certain factors, which make facial feature localization a challenging task. On human face, expressions can be seen from the subtle movements of facial muscles and influenced by internal emotional states. These non-rigid facial movements cause noticeable alterations in locations of facial landmarks, their usual shapes, which sometimes create occlusions in facial feature areas making face recognition as a difficult problem. The paper proposes a new hybrid based technique for automatic landmark detection in both neutral and expressive frontal and near frontal face images. The method uses the concept of thresholding, sequential searching and other image processing techniques for locating the landmark points on the face. Also, a Graphical User Interface (GUI) based software is designed that could automatically detect 16 landmark points around eyes, nose and mouth that are mostly affected by the changes in facial muscles. The proposed system has been tested on widely used JAFFE and Cohn Kanade database. Also, the system is tested on DeitY-TU face database which is created in the Biometrics Laboratory of Tripura University under the research project funded by Department of Electronics & Information Technology, Govt. of India. The performance of the proposed method has been done in terms of error measure and accuracy. The method has detection rate of 98.82% on JAFFE database, 91.27% on Cohn Kanade database and 93.05% on DeitY-TU database. Also, we have done comparative study of our proposed method with other techniques developed by other researchers. This paper will put into focus emotion-oriented systems through AU detection in future based on the located features.

Keywords: biometrics, face recognition, facial landmarks, image processing

Procedia PDF Downloads 380
297 Influence of Dental Midline Deviation with Respect to Facial Flow Line on Smile Esthetics – A Cross-sectional Study

Authors: Kanza Tahir, Mubassar Fida, Rashna Hoshang Sukhia

Abstract:

Background/Objective: A contemporary concept states that dental midline deviation towards the direction of facial flow line (FFL) can mask the compromised smile esthetics. This study aimed to identify a range of midline deviations that can be perceived towards or away from the FFL influencing smile esthetics. Materials and methods: A cross-sectional study was conducted using a frontal smile photograph of an adult female. The photograph was altered on Adobe Photoshop software into six different photographs by deviating the dental midlines towards and away from the FFL. A constant deviation of the chin towards the left side was incorporated in all the photographs. Forty-three laypersons (LP)and dental professionals (DPs) evaluated those photographs onVisual Analog Scale (VAS). An Independent t-test was used to compare the perception of dental midline deviation between LP and DPs. Simple linear regression was run to identify the factors associated with the VAS scoring. Results: A statistically significant difference was observed for picture two with 4 mm towards FFL in the perception of midline deviation between LP and DPs. LP could not perceive the midline deviations up to 4 mm, while DPs were able to perceive deviations above 2 mm. Age was positively associated with the VAS score, while the female gender had a negative association. Limitations: Only one component of mini-esthetics was studied. This study did not include an ideal picture for comparison. Only one female subject was studied of normal facial type. Conclusions: 2-4 mm of midline deviation towards the facial flow line can be tolerated by laypersons and dental professionals.

Keywords: midline, facial flow line, smile esthetics, female

Procedia PDF Downloads 69
296 Botulinum Toxin a in the Treatment of Late Facial Nerve Palsy Complications

Authors: Akulov M. A., Orlova O. R., Zaharov V. O., Tomskij A. A.

Abstract:

Introduction: One of the common postoperative complications of posterior cranial fossa (PCF) and cerebello-pontine angle tumor treatment is a facial nerve palsy, which leads to multiple and resistant to treatment impairments of mimic muscles structure and functions. After 4-6 months after facial nerve palsy with insufficient therapeutic intervention patients develop a postparalythic syndrome, which includes such symptoms as mimic muscle insufficiency, mimic muscle contractures, synkinesis and spontaneous muscular twitching. A novel method of treatment is the use of a recent local neuromuscular blocking agent– botulinum toxin A (BTA). Experience of BTA treatment enables an assumption that it can be successfully used in late facial nerve palsy complications to significantly increase quality of life of patients. Study aim. To evaluate the efficacy of botulinum toxin A (BTA) (Xeomin) treatment in patients with late facial nerve palsy complications. Patients and Methods: 31 patients aged 27-59 years 6 months after facial nerve palsy development were evaluated. All patients received conventional treatment, including massage, movement therapy etc. Facial nerve palsy developed after acoustic nerve tumor resection in 23 (74,2%) patients, petroclival meningioma resection – in 8 (25,8%) patients. The first group included 17 (54,8%) patients, receiving BT-therapy; the second group – 14 (45,2%) patients continuing conventional treatment. BT-injections were performed in synkinesis or contracture points 1-2 U on injured site and 2-4 U on healthy side (for symmetry). Facial nerve function was evaluated on 2 and 4 months of therapy according to House-Brackman scale. Pain syndrome alleviation was assessed on VAS. Results: At baseline all patients in the first and second groups demonstrated аpostparalytic syndrome. We observed a significant improvement in patients receiving BTA after only one month of treatment. Mean VAS score at baseline was 80,4±18,7 and 77,9±18,2 in the first and second group, respectively. In the first group after one month of treatment we observed a significant decrease of pain syndrome – mean VAS score was 44,7±10,2 (р<0,01), whereas in the second group VAS score was as high as 61,8±9,4 points (p>0,05). By the 3d month of treatment pain syndrome intensity continued to decrease in both groups, but, the first group demonstrated significantly better results; mean score was 8,2±3,1 and 31,8±4,6 in the first and second group, respectively (р<0,01). Total House-Brackman score at baseline was 3,67±0,16 in the first group and 3,74±0,19 in the second group. Treatment resulted in a significant symptom improvement in the first group, with no improvement in the second group. After 4 months of treatment House-Brockman score in the first group was 3,1-fold lower, than in the second group (р<0,05). Conclusion: Botulinum toxin injections decrease postparalytic syndrome symptoms in patients with facial nerve palsy.

Keywords: botulinum toxin, facial nerve palsy, postparalytic syndrome, synkinesis

Procedia PDF Downloads 266