Search results for: experimental diabetes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7929

Search results for: experimental diabetes

189 Effectiveness of Prehabilitation on Improving Emotional and Clinical Recovery of Patients Undergoing Open Heart Surgeries

Authors: Fatma Ahmed, Heba Mostafa, Bassem Ramdan, Azza El-Soussi

Abstract:

Background: World Health Organization stated that by 2020 cardiac disease will be the number one cause of death worldwide and estimates that 25 million people per year will suffer from heart disease. Cardiac surgery is considered an effective treatment for severe forms of cardiovascular diseases that cannot be treated by medical treatment or cardiac interventions. In spite of the benefits of cardiac surgery, it is considered a major stressful experience for patients who are candidate for surgery. Prehabilitation can decrease incidences of postoperative complications as it prepares patients for surgical stress through enhancing their defenses to meet the demands of surgery. When patients anticipate the postoperative sequence of events, they will prepare themselves to act certain behaviors, identify their roles and actively participate in their own recovery, therefore, anxiety levels are decreased and functional capacity is enhanced. Prehabilitation programs can comprise interventions that include physical exercise, psychological prehabilitation, nutritional optimization and risk factor modification. Physical exercises are associated with improvements in the functioning of the various physiological systems, reflected in increased functional capacity, improved cardiac and respiratory functions and make patients fit for surgical intervention. Prehabilitation programs should also prepare patients psychologically in order to cope with stress, anxiety and depression associated with postoperative pain, fatigue, limited ability to perform the usual activities of daily living through acting in a healthy manner. Notwithstanding the benefits of psychological preparations, there are limited studies which investigated the effect of psychological prehabilitation to confirm its effect on psychological, quality of life and physiological outcomes of patients who had undergone cardiac surgery. Aim of the study: The study aims to determine the effect of prehabilitation interventions on outcomes of patients undergoing cardiac surgeries. Methods: Quasi experimental study design was used to conduct this study. Sixty eligible and consenting patients were recruited and divided into two groups: control and intervention group (30 participants in each). One tool namely emotional, physiological, clinical, cognitive and functional capacity outcomes of prehabilitation intervention assessment tool was utilized to collect the data of this study. Results: Data analysis showed significant improvement in patients' emotional state, physiological and clinical outcomes (P < 0.000) with the use of prehabilitation interventions. Conclusions: Cardiac prehabilitation in the form of providing information about surgery, circulation exercise, deep breathing exercise, incentive spirometer training and nutritional education implemented daily by patients scheduled for elective open heart surgery one week before surgery have been shown to improve patients' emotional state, physiological and clinical outcomes.

Keywords: emotional recovery, clinical recovery, coronary artery bypass grafting patients, prehabilitation

Procedia PDF Downloads 177
188 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning

Authors: Ali Kazemi

Abstract:

The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.

Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis

Procedia PDF Downloads 20
187 Effect of Endurance Training on Serum Chemerin Levels and Lipid Profile of Plasma in Obese Women

Authors: A. Moghadasein, M. Ghasemi, S. Fazelifar

Abstract:

Aim: Chemerin is a novel adipokine that play an important role in regulating lipid metabolism and abiogenesis. Chemerin is dependent on autocrine and paracrine signals for the differentiation and maturation of fat cells; it also regulates glucose uptake in fat cells and stimulates lipolysis. It has been reported that in adipocytes, chemerin enhances the insulin-stimulated glucose and causes the phosphorylation of tyrosine in Insulin receptor substrate. According to the studies, Chemerin may increase insulin sensitivity in adipose tissue and is largely associated with Body mass index, triglycerides, and blood pressure in those with normal glucose tolerance. There is limited information available regarding the effect of exercise training on serum chemerin concentrations. The purpose of this study was to investigate the effect of endurance training on serum chemerin levels and lipids of plasma in overweight women. Methodology: This study was a quasi-experimental research with a pre-post test design. After required examination and verification of high pressure by the physician, 22 obese subjects (age: 35.64±5.55 yr, weight: 75.62±9.30 kg, body mass index: 32.4±1.6 kg/m2) were randomly assigned to aerobic training (n= 12) and control (n= 12) groups. Participants completed a questionnaire indicating the lack of sports history during the past six months, the lack of anti-hypertension drugs use, hormone therapy, cardiovascular problems, and complete stoppage of menstrual cycle. Aerobic training was performed 3 times weekly for 8 weeks. Resting levels of chemerin plasma, metabolic parameters were measured prior to and after the intervention. The control group did not participate in any training program. In this study, ethical considerations included the complete description of the objectives to the study participants, ensuring the confidentiality of their information. Kolmogorov-Smirnov and Levin test were used for determining the normal distribution of data and homogeneity of variances, respectively. Analyze of variance with repeated measure were used to investigate the changes in the intra-group and the differences in inter-group of variables. Statistical operations were performed using SPSS 16 and the significance level of the tests was considered at P < 0.05. Results: After an 8 week aerobic training, levels of chemerin plasma were significantly decreased in aerobic trained group when compared with their control groups (p < 0.05).Concurrently, levels of HDL-c were significantly decreased (p < 0.05) whereas, levels of cholesterol, TG and LDL-c, showed no significant changes (p > 0.05). No significant correlations between chemerin levels and weight loss were observed in subjects with overweight women. Conclusion: The present study demonstrated, 8 weeks aerobic training, reduced serum chemerin concentrations in overweight women. Whereas, aerobic training exercise programmers affected the lipid profile response of obese subjects differently. However further research is warranted in order to unravel the molecular mechanism for the range of responses and the role of serum chemerin.

Keywords: chemerin, aerobic training, lipid profile, obese women

Procedia PDF Downloads 469
186 Targeting Apoptosis by Novel Adamantane Analogs as an Emerging Therapy for the Treatment of Hepatocellular Carcinoma Through EGFR, Bcl-2/BAX Cascade

Authors: Hanan M. Hassan, Laila Abouzeid, Lamya H. Al-Wahaibi, George S. G. Shehatou, Ali A. El-Emam

Abstract:

Cancer is a major public health problem and the second leading cause of death worldwide. In 2020, cancer diagnosis and treatment have been negatively affected by the coronavirus 2019 (COVID-19) pandemic. During the quarantine, because of the limited access to healthcare and avoiding exposure to COVID-19 as a contagious disease; patients of cancer suffered deferments in follow-up and treatment regimens leading to substantial worsening of disease, death, and increased healthcare costs. Thus, this study is designed to investigate the molecular mechanisms by which adamantne derivatives attenuate hepatocllular carcinoma experimentally and theoretically. There is a close association between increased resistance to anticancer drugs and defective apoptosis that considered a causative factor for oncogenesis. Cancer cells use different molecular pathways to inhibit apoptosis, BAX and Bcl-2 proteins have essential roles in the progression or inhibition of intrinsic apoptotic pathways triggered by mitochondrial dysfunction. Therefore, their balance ratio can promote the cellular apoptotic fate. In this study, the in vitro cytotoxic effects of seven synthetic adamantyl isothiorea derivatives were evaluated against five human tumor cell lines by MTT assay. Compounds 5 and 6 showed the best results, mostly against hepatocellular carcinoma (HCC). Hence, in vivo studies were performed in male Sprague-Dawley (SD) rats in which experimental hepatocellular carcinoma was induced with thioacetamide (TAA) (200 mg/kg, i.p., twice weekly) for 16 weeks. The most promising compounds, 5 and 6, were administered to treat liver cancer rats at a dose of 10 mg/kg/day for an additional two weeks, and the effects were compared with doxorubicin (DR), the anticancer drug. Hepatocellular carcinoma was evidenced by a dramatic increase in liver indices, oxidative stress markers, and immunohistochemical studies that were accompanied by a plethora of inflammatory mediators and alterations in the apoptotic cascade. Our results showed that treatment with adamantane derivatives 5 and 6 significantly suppressed fibrosis, inflammation, and other histopathological insults resulting in the diminished formation of hepatocyte tumorigenesis. Moreover, administration of the tested compounds resulted in amelioration of EGFR protein expression, upregulation of BAX, and lessening down of Bcl-2 levels that prove their role as apoptosis inducers. Also, the docking simulations performed for adamantane showed good fit and binding to the EGFR protein through hydrogen bond formation with conservative amino acids, which gives a shred of strong evidence for its hepatoprotective effect. In most analyses, the effects of compound 6 were more comparable to DR than compound 5. Our findings suggest that adamantane derivatives 5 and 6 are shown to have cytotoxic activity against HCC in vitro and in vivo, by more than one mechanism, possibly by inhibiting the TLR4-MyD88-NF-κB pathway and targeting EGFR signaling.

Keywords: adamantane, EGFR, HCC, apoptosis

Procedia PDF Downloads 126
185 Evaluation of Natural Frequency of Single and Grouped Helical Piles

Authors: Maryam Shahbazi, Amy B. Cerato

Abstract:

The importance of a systems’ natural frequency (fn) emerges when the vibration force frequency is equivalent to foundation's fn which causes response amplitude (resonance) that may cause irreversible damage to the structure. Several factors such as pile geometry (e.g., length and diameter), soil density, load magnitude, pile condition, and physical structure affect the fn of a soil-pile system; some of these parameters are evaluated in this study. Although experimental and analytical studies have assessed the fn of a soil-pile system, few have included individual and grouped helical piles. Thus, the current study aims to provide quantitative data on dynamic characteristics of helical pile-soil systems from full-scale shake table tests that will allow engineers to predict more realistic dynamic response under motions with variable frequency ranges. To evaluate the fn of single and grouped helical piles in dry dense sand, full-scale shake table tests were conducted in a laminar box (6.7 m x 3.0 m with 4.6 m high). Two different diameters (8.8 cm and 14 cm) helical piles were embedded in the soil box with corresponding lengths of 3.66m (excluding one pile with length of 3.96) and 4.27m. Different configurations were implemented to evaluate conditions such as fixed and pinned connections. In the group configuration, all four piles with similar geometry were tied together. Simulated real earthquake motions, in addition to white noise, were applied to evaluate the wide range of soil-pile system behavior. The Fast Fourier Transform (FFT) of measured time history responses using installed strain gages and accelerometers were used to evaluate fn. Both time-history records using accelerometer or strain gages were found to be acceptable for calculating fn. In this study, the existence of a pile reduced the fn of the soil slightly. Greater fn occurred on single piles with larger l/d ratios (higher slenderness ratio). Also, regardless of the connection type, the more slender pile group which is obviously surrounded by more soil, yielded higher natural frequencies under white noise, which may be due to exhibiting more passive soil resistance around it. Relatively speaking, within both pile groups, a pinned connection led to a lower fn than a fixed connection (e.g., for the same pile group the fn’s are 5.23Hz and 4.65Hz for fixed and pinned connections, respectively). Generally speaking, a stronger motion causes nonlinear behavior and degrades stiffness which reduces a pile’s fn; even more, reduction occurs in soil with a lower density. Moreover, fn of dense sand under white noise signal was obtained 5.03 which is reduced by 44% when an earthquake with the acceleration of 0.5g was applied. By knowing the factors affecting fn, the designer can effectively match the properties of the soil to a type of pile and structure to attempt to avoid resonance. The quantitative results in this study assist engineers in predicting a probable range of fn for helical pile foundations under potential future earthquake, and machine loading applied forces.

Keywords: helical pile, natural frequency, pile group, shake table, stiffness

Procedia PDF Downloads 107
184 Solomon 300 OD (Betacyfluthrin+Imidacloprid): A Combi-Product for the Management of Insect-Pests of Chilli (Capsicum annum L.)

Authors: R. S. Giraddi, B. Thirupam Reddy, D. N. Kambrekar

Abstract:

Chilli (Capsicum annum L.) an important commercial vegetable crop is ravaged by a number of insect-pests during both vegetative and reproductive phase resulting into significant crop loss.Thrips, Scirtothripsdorsalis, mite, Polyphagotarsonemuslatus and whitefly, Bemisiatabaci are the key sap feeding insects, their infestation leads to leaf curl, stunted growth and yield loss.During flowering and fruit formation stage, gall midge fly, Asphondyliacapparis (Rubsaaman) infesting flower buds and young fruits andHelicoverpaarmigera (Hubner) feeding on matured green fruits are the important insect pests causing significant crop loss.The pest is known to infest both flower buds and young fruits resulting into malformation of flower buds and twisting of fruits.In order to manage these insect-pests a combi product consisting of imidacloprid and betacyfluthrin (Soloman 300 OD) was evaluated for its bio-efficacy, phytotoxicity and effect on predator activity.Imidacloprid, a systemic insecticide belonging to neo-nicotinoid group, is effective against insect pests such as aphids, whiteflies (sap feeders) and other insectsviz., termites and soil insects.Beta-Cyfluthrin is an insecticide of synthetic pyrethroid group which acts by contact action and ingestion. It acts on the insects' nervous system as sodium channel blocker consequently a disorder of the nervous system occurs leading finally to the death. The field experiments were taken up during 2015 and 2016 at the Main Agricultural Research Station of University of Agricultural Sciences, Dharwad, Karnataka, India.The trials were laid out in a Randomized Block Design (RBD) with three replications using popular land race of Byadagi crop variety.Results indicated that the product at 21.6 + 50.4% gai/ha (240 ml/ha) and 27.9 + 65% gai/ha (310 ml/ha) was found quite effective in controlling thrips (0.00 to 0.66 thrips per six leaves) as against the standard check insecticide recommended for thrips by the University of Agricultural Sciences, Dharwad wherein the density of thrips recorded was significantly higher (1.00 to 2.00 Nos./6 leaves). Similarly, the test insecticide was quite effective against other target insects, whiteflies, fruit borer and gall midge fly as indicated by lower insect population observed in the treatments as compared to standard insecticidal control. The predatory beetle activity was found to be normal in all experimental plots. Highest green fruit yield of 5100-5500 kg/ha was recorded in Soloman 300 OD applied crop at 310 ml/ha rate as compared to 4750 to 5050 kg/ha recorded in check. At present 6-8 sprays of insecticides are recommended for management of these insect-pests on the crop. If combi-products are used in pest management programmes, it is possible to reduce insecticide usages in crop ecosystem.

Keywords: Imidacloprid, Betacyfluthrin, gallmidge fly, thrips, chilli

Procedia PDF Downloads 134
183 Vortex Generation to Model the Airflow Downstream of a Piezoelectric Fan Array

Authors: Alastair Hales, Xi Jiang, Siming Zhang

Abstract:

Numerical methods are used to generate vortices in a domain. Through considered design, two counter-rotating vortices may interact and effectively drive one another downstream. This phenomenon is comparable to the vortex interaction that occurs in a region immediately downstream from two counter-oscillating piezoelectric (PE) fan blades. PE fans are small blades clamped at one end and driven to oscillate at their first natural frequency by an extremely low powered actuator. In operation, the high oscillation amplitude and frequency generate sufficient blade tip speed through the surrounding air to create downstream air flow. PE fans are considered an ideal solution for low power hot spot cooling in a range of small electronic devices, but a single blade does not typically induce enough air flow to be considered a direct alternative to conventional air movers, such as axial fans. The development of face-to-face PE fan arrays containing multiple blades oscillating in counter-phase to one another is essential for expanding the range of potential PE fan applications regarding the cooling of power electronics. Even in an unoptimised state, these arrays are capable of moving air volumes comparable to axial fans with less than 50% of the power demand. Replicating the airflow generated by face-to-face PE fan arrays without including the actual blades in the model reduces the process’s computational demands and enhances the rate of innovation and development in the field. Vortices are generated at a defined inlet using a time-dependent velocity profile function, which pulsates the inlet air velocity magnitude. This induces vortex generation in the considered domain, and these vortices are shown to separate and propagate downstream in a regular manner. The generation and propagation of a single vortex are compared to an equivalent vortex generated from a PE fan blade in a previous experimental investigation. Vortex separation is found to be accurately replicated in the present numerical model. Additionally, the downstream trajectory of the vortices’ centres vary by just 10.5%, and size and strength of the vortices differ by a maximum of 10.6%. Through non-dimensionalisation, the numerical method is shown to be valid for PE fan blades with differing parameters to the specific case investigated. The thorough validation methods presented verify that the numerical model may be used to replicate vortex formation from an oscillating PE fans blade. An investigation is carried out to evaluate the effects of varying the distance between two PE fan blade, pitch. At small pitch, the vorticity in the domain is maximised, along with turbulence in the near vicinity of the inlet zones. It is proposed that face-to-face PE fan arrays, oscillating in counter-phase, should have a minimal pitch to optimally cool nearby heat sources. On the other hand, downstream airflow is maximised at a larger pitch, where the vortices can fully form and effectively drive one another downstream. As such, this should be implemented when bulk airflow generation is the desired result.

Keywords: piezoelectric fans, low energy cooling, vortex formation, computational fluid dynamics

Procedia PDF Downloads 149
182 Antifungal Activity of Processed Sulfur Solution as Potential Eco-Friendly Disinfectant against Saprolegnia parasitica and Its Safety in Freshwater-Farmed Fish

Authors: Hye-Hyun Lee, Hyo-Kon Chun, Kyung-Hee Kim Kim, Mi-Hee Kim, Saet-Byul Chu, Sang-Jong Lee, Seung-Hyeop Lee, Seung-Won Yi

Abstract:

Some chemicals such as malachite green, methylene blue, and copper sulfate had been used frequently as disinfectants controlling fungal infection in aquaculture. However, their carcinogenicity, mutagenicity and teratogenicity were reported in mammals. After their accumulation in food fish and its consumers was confirmed, concerns about public health has resulted in enhanced monitoring and increased demand for eco-friendly treatments. Therefore, this study aimed to evaluate safety to fish and efficacy of sulfur solution processed by effective microorganisms (EM-PSS) against Saprolegnia parasitica, for use of a potential aquatic fungicidal disinfectant. The natural sulfur purchased from Kawah Ijen volcano, East Java, Indonesia was processed by the liquid mixture consisting of following twelve effective microorganisms (Rapha-el®; Lbiotech, Jeonnam, Korea), Lactobacillus parafarraginis, L. paracasei, L. harbinensis, L. buchneri, L. perolens, L. rhamnosus, L. vaccinostercus, Acetobacter lovaniensis, A. peroxydans, Pichia fermentans, Candida ethanolica, Saccharomycopsis schoenii isolated from fermentation process of oriental medicinal herbs including green tea, privet, and puer tea. The material was applied to in vitro antifungal activity test for Saprolegnia parasitica using agar dilution method. In addition, an acute toxicity test was performed on carp (Cyprinus carpio), eel (Anguilla japonica), and mud fish (Misgurnus mizolepis) for 96 hours. After three species of fish (n=15) were accustomed to experimental water environment for three days, the EM-PSS was added to each tank as final concentrations to be 0 to 500 ppm. The fish were taken into necropsy, and the histological sections of the gill, liver, and spleen were counter-stained with hematoxylin and eosin (H-E). And hence, no observed effect concentration (NOEC) of the solution was used for taking a medicinal bath for mudfish infected by Saprolegnia parasitica in practice. The result of in vitro antifungal activity test showed the growth inhibition of the fungus at 100 ppm, which and the lower concentrations occurred no fatal case in any fish species tested until the end of the examination. The 125 ppm of the solution, however, resulted in 13.3 %, 13.3 %, and 6.3 % of mortality in carp, eel, and mudfish, respectively. But both 250 and 500 ppm of the solution leaded lethality to all population of each fish species within 24 hours. Besides, H-E staining also showed no specific evidence for toxicity in fish at lesser than 100 ppm of EM-PSS. On the other hand, as a result of field application of the solution, no growth of fungal mycelium was found in fish bodies from gross observation 5 days post treatment. In conclusion, 100ppm of EM-PSS resulted in inhibition and treatment of Saprolegnia parasitica infection. In addition, the use of EM-PSS lower than 100 ppm is safe for fish. Therefore, EM-PSS could be used as aquatic fungicide, and also may be possible to be a potential eco-friendly disinfectant in aquaculture.

Keywords: antifungal activity, effective microorganism, toxicity, saprolegnia, processed sulfur solution

Procedia PDF Downloads 230
181 Comparison of the Effect of Heart Rate Variability Biofeedback and Slow Breathing Training on Promoting Autonomic Nervous Function Related Performance

Authors: Yi Jen Wang, Yu Ju Chen

Abstract:

Background: Heart rate variability (HRV) biofeedback can promote autonomic nervous function, sleep quality and reduce psychological stress. In HRV biofeedback training, it is hoped that through the guidance of machine video or audio, the patient can breathe slowly according to his own heart rate changes so that the heart and lungs can achieve resonance, thereby promoting the related effects of autonomic nerve function; while, it is also pointed out that if slow breathing of 6 times per minute can also guide the case to achieve the effect of cardiopulmonary resonance. However, there is no relevant research to explore the comparison of the effectiveness of cardiopulmonary resonance by using video or audio HRV biofeedback training and metronome-guided slow breathing. Purpose: To compare the promotion of autonomic nervous function performance between using HRV biofeedback and slow breathing guided by a metronome. Method: This research is a kind of experimental design with convenient sampling; the cases are randomly divided into the heart rate variability biofeedback training group and the slow breathing training group. The HRV biofeedback training group will conduct HRV biofeedback training in a four-week laboratory and use the home training device for autonomous training; while the slow breathing training group will conduct slow breathing training in the four-week laboratory using the mobile phone APP breathing metronome to guide the slow breathing training, and use the mobile phone APP for autonomous training at home. After two groups were enrolled and four weeks after the intervention, the autonomic nervous function-related performance was repeatedly measured. Using the chi-square test, student’s t-test and other statistical methods to analyze the results, and use p <0.05 as the basis for statistical significance. Results: A total of 27 subjects were included in the analysis. After four weeks of training, the HRV biofeedback training group showed significant improvement in the HRV indexes (SDNN, RMSSD, HF, TP) and sleep quality. Although the stress index also decreased, it did not reach statistical significance; the slow breathing training group was not statistically significant after four weeks of training, only sleep quality improved significantly, while the HRV indexes (SDNN, RMSSD, TP) all increased. Although HF and stress indexes decreased, they were not statistically significant. Comparing the difference between the two groups after training, it was found that the HF index improved significantly and reached statistical significance in the HRV biofeedback training group. Although the sleep quality of the two groups improved, it did not reach that level in a statistically significant difference. Conclusion: HRV biofeedback training is more effective in promoting autonomic nervous function than slow breathing training, but the effects of reducing stress and promoting sleep quality need to be explored after increasing the number of samples. The results of this study can provide a reference for clinical or community health promotion. In the future, it can also be further designed to integrate heart rate variability biological feedback training into the development of AI artificial intelligence wearable devices, which can make it more convenient for people to train independently and get effective feedback in time.

Keywords: autonomic nervous function, HRV biofeedback, heart rate variability, slow breathing

Procedia PDF Downloads 146
180 Simulation and Thermal Evaluation of Containers Using PCM in Different Weather Conditions of Chile: Energy Savings in Lightweight Constructions

Authors: Paula Marín, Mohammad Saffari, Alvaro de Gracia, Luisa F. Cabeza, Svetlana Ushak

Abstract:

Climate control represents an important issue when referring to energy consumption of buildings and associated expenses, both in installation or operation periods. The climate control of a building relies on several factors. Among them, localization, orientation, architectural elements, sources of energy used, are considered. In order to study the thermal behaviour of a building set up, the present study proposes the use of energy simulation program Energy Plus. In recent years, energy simulation programs have become important tools for evaluation of thermal/energy performance of buildings and facilities. Besides, the need to find new forms of passive conditioning in buildings for energy saving is a critical component. The use of phase change materials (PCMs) for heat storage applications has grown in importance due to its high efficiency. Therefore, the climatic conditions of Northern Chile: high solar radiation and extreme temperature fluctuations ranging from -10°C to 30°C (Calama city), low index of cloudy days during the year are appropriate to take advantage of solar energy and use passive systems in buildings. Also, the extensive mining activities in northern Chile encourage the use of large numbers of containers to harbour workers during shifts. These containers are constructed with lightweight construction systems, requiring heating during night and cooling during day, increasing the HVAC electricity consumption. The use of PCM can improve thermal comfort and reduce the energy consumption. The objective of this study was to evaluate the thermal and energy performance of containers of 2.5×2.5×2.5 m3, located in four cities of Chile: Antofagasta, Calama, Santiago, and Concepción. Lightweight envelopes, typically used in these building prototypes, were evaluated considering a container without PCM inclusion as the reference building and another container with PCM-enhanced envelopes as a test case, both of which have a door and a window in the same wall, orientated in two directions: North and South. To see the thermal response of these containers in different seasons, the simulations were performed considering a period of one year. The results show that higher energy savings for the four cities studied are obtained when the distribution of door and window in the container is in the north direction because of higher solar radiation incidence. The comparison of HVAC consumption and energy savings in % for north direction of door and window are summarised. Simulation results show that in the city of Antofagasta 47% of heating energy could be saved and in the cities of Calama and Concepción the biggest savings in terms of cooling could be achieved since PCM reduces almost all the cooling demand. Currently, based on simulation results, four containers have been constructed and sized with the same structural characteristics carried out in simulations, that are, containers with/without PCM, with door and window in one wall. Two of these containers will be placed in Antofagasta and two containers in a copper mine near to Calama, all of them will be monitored for a period of one year. The simulation results will be validated with experimental measurements and will be reported in the future.

Keywords: energy saving, lightweight construction, PCM, simulation

Procedia PDF Downloads 255
179 The Impact of Professional Development on Teachers’ Instructional Practice

Authors: Karen Koellner, Nanette Seago, Jennifer Jacobs, Helen Garnier

Abstract:

Although studies of teacher professional development (PD) are prevalent, surprisingly most have only produced incremental shifts in teachers’ learning and their impact on students. There is a critical need to understand what teachers take up and use in their classroom practice after attending PD and why we often do not see greater changes in learning and practice. This paper is based on a mixed methods efficacy study of the Learning and Teaching Geometry (LTG) video-based mathematics professional development materials. The extent to which the materials produce a beneficial impact on teachers’ mathematics knowledge, classroom practices, and their students’ knowledge in the domain of geometry through a group-randomized experimental design are considered. In this study, we examine a small group of teachers to better understand their interpretations of the workshops and their classroom uptake. The participants included 103 secondary mathematics teachers serving grades 6-12 from two states in different regions. Randomization was conducted at the school level, with 23 schools and 49 teachers assigned to the treatment group and 18 schools and 54 teachers assigned to the comparison group. The case study examination included twelve treatment teachers. PD workshops for treatment teachers began in Summer 2016. Nine full days of professional development were offered to teachers, beginning with the one-week institute (Summer 2016) and four days of PD throughout the academic year. The same facilitator-led all of the workshops, after completing a facilitator preparation process that included a multi-faceted assessment of fidelity. The overall impact of the LTG PD program was assessed from multiple sources: two teacher content assessments, two PD embedded assessments, pre-post-post videotaped classroom observations, and student assessments. Additional data was collected from the case study teachers including additional videotaped classroom observations and interviews. Repeated measures ANOVA analyses were used to detect patterns of change in the treatment teachers’ content knowledge before and after completion of the LTG PD, relative to the comparison group. No significant effects were found across the two groups of teachers on the two teacher content assessments. Teachers were rated on the quality of their mathematics instruction captured in videotaped classroom observations using the Math in Common Observation Protocol. On average, teachers who attended the LTG PD intervention improved their ability to engage students in mathematical reasoning and to provide accurate, coherent, and well-justified mathematical content. In addition, the LTG PD intervention and instruction that engaged students in mathematical practices both positively and significantly predicted greater student knowledge gains. Teacher knowledge was not a significant predictor. Twelve treatment teachers were self-selected to serve as case study teachers to provide additional videotapes in which they felt they were using something from the PD they learned and experienced. Project staff analyzed the videos, compared them to previous videos and interviewed the teachers regarding their uptake of the PD related to content knowledge, pedagogical knowledge and resources used.

Keywords: teacher learning, professional development, pedagogical content knowledge, geometry

Procedia PDF Downloads 143
178 Numerical Study of Homogeneous Nanodroplet Growth

Authors: S. B. Q. Tran

Abstract:

Drop condensation is the phenomenon that the tiny drops form when the oversaturated vapour present in the environment condenses on a substrate and makes the droplet growth. Recently, this subject has received much attention due to its applications in many fields such as thin film growth, heat transfer, recovery of atmospheric water and polymer templating. In literature, many papers investigated theoretically and experimentally in macro droplet growth with the size of millimeter scale of radius. However few papers about nanodroplet condensation are found in the literature especially theoretical work. In order to understand the droplet growth in nanoscale, we perform the numerical simulation work to study nanodroplet growth. We investigate and discuss the role of the droplet shape and monomer diffusion on drop growth and their effect on growth law. The effect of droplet shape is studied by doing parametric studies of contact angle and disjoining pressure magnitude. Besides, the effect of pinning and de-pinning behaviours is also studied. We investigate the axisymmetric homogeneous growth of 10–100 nm single water nanodroplet on a substrate surface. The main mechanism of droplet growth is attributed to the accumulation of laterally diffusing water monomers, formed by the absorption of water vapour in the environment onto the substrate. Under assumptions of quasi-steady thermodynamic equilibrium, the nanodroplet evolves according to the augmented Young–Laplace equation. Using continuum theory, we model the dynamics of nanodroplet growth including the coupled effects of disjoining pressure, contact angle and monomer diffusion with the assumption of constant flux of water monomers at the far field. The simulation result is validated by comparing with the published experimental result. For the case of nanodroplet growth with constant contact angle, our numerical results show that the initial droplet growth is transient by monomer diffusion. When the flux at the far field is small, at the beginning, the droplet grows by the diffusion of initially available water monomers on the substrate and after that by the flux at the far field. In the steady late growth rate of droplet radius and droplet height follow a power law of 1/3, which is unaffected by the substrate disjoining pressure and contact angle. However, it is found that the droplet grows faster in radial direction than high direction when disjoining pressure and contact angle increase. The simulation also shows the information of computational domain effect in the transient growth period. When the computational domain size is larger, the mass coming in the free substrate domain is higher. So the mass coming in the droplet is also higher. The droplet grows and reaches the steady state faster. For the case of pinning and de-pinning droplet growth, the simulation shows that the disjoining pressure does not affect the droplet radius growth law 1/3 in steady state. However the disjoining pressure modifies the growth rate of the droplet height, which then follows a power law of 1/4. We demonstrate how spatial depletion of monomers could lead to a growth arrest of the nanodroplet, as observed experimentally.

Keywords: augmented young-laplace equation, contact angle, disjoining pressure, nanodroplet growth

Procedia PDF Downloads 244
177 Design, Control and Implementation of 300Wp Single Phase Photovoltaic Micro Inverter for Village Nano Grid Application

Authors: Ramesh P., Aby Joseph

Abstract:

Micro Inverters provide Module Embedded Solution for harvesting energy from small-scale solar photovoltaic (PV) panels. In addition to higher modularity & reliability (25 years of life), the MicroInverter has inherent advantages such as avoidance of long DC cables, eliminates module mismatch losses, minimizes partial shading effect, improves safety and flexibility in installations etc. Due to the above-stated benefits, the renewable energy technology with Solar Photovoltaic (PV) Micro Inverter becomes more widespread in Village Nano Grid application ensuring grid independence for rural communities and areas without access to electricity. While the primary objective of this paper is to discuss the problems related to rural electrification, this concept can also be extended to urban installation with grid connectivity. This work presents a comprehensive analysis of the power circuit design, control methodologies and prototyping of 300Wₚ Single Phase PV Micro Inverter. This paper investigates two different topologies for PV Micro Inverters, based on the first hand on Single Stage Flyback/ Forward PV Micro-Inverter configuration and the other hand on the Double stage configuration including DC-DC converter, H bridge DC-AC Inverter. This work covers Power Decoupling techniques to reduce the input filter capacitor size to buffer double line (100 Hz) ripple energy and eliminates the use of electrolytic capacitors. The propagation of the double line oscillation reflected back to PV module will affect the Maximum Power Point Tracking (MPPT) performance. Also, the grid current will be distorted. To mitigate this issue, an independent MPPT control algorithm is developed in this work to reject the propagation of this double line ripple oscillation to PV side to improve the MPPT performance and grid side to improve current quality. Here, the power hardware topology accepts wide input voltage variation and consists of suitably rated MOSFET switches, Galvanically Isolated gate drivers, high-frequency magnetics and Film capacitors with a long lifespan. The digital controller hardware platform inbuilt with the external peripheral interface is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the PV Micro Inverter is written in C language and was developed using code composer studio Integrated Development Environment (IDE). In this work, the prototype hardware for the Single Phase Photovoltaic Micro Inverter with Double stage configuration was developed and the comparative analysis between the above mentioned configurations with experimental results will be presented.

Keywords: double line oscillation, micro inverter, MPPT, nano grid, power decoupling

Procedia PDF Downloads 109
176 Supercritical Water Gasification of Organic Wastes for Hydrogen Production and Waste Valorization

Authors: Laura Alvarez-Alonso, Francisco Garcia-Carro, Jorge Loredo

Abstract:

Population growth and industrial development imply an increase in the energy demands and the problems caused by emissions of greenhouse effect gases, which has inspired the search for clean sources of energy. Hydrogen (H₂) is expected to play a key role in the world’s energy future by replacing fossil fuels. The properties of H₂ make it a green fuel that does not generate pollutants and supplies sufficient energy for power generation, transportation, and other applications. Supercritical Water Gasification (SCWG) represents an attractive alternative for the recovery of energy from wastes. SCWG allows conversion of a wide range of raw materials into a fuel gas with a high content of hydrogen and light hydrocarbons through their treatment at conditions higher than those that define the critical point of water (temperature of 374°C and pressure of 221 bar). Methane used as a transport fuel is another important gasification product. The number of different uses of gas and energy forms that can be produced depending on the kind of material gasified and type of technology used to process it, shows the flexibility of SCWG. This feature allows it to be integrated with several industrial processes, as well as power generation systems or waste-to-energy production systems. The final aim of this work is to study which conditions and equipment are the most efficient and advantageous to explore the possibilities to obtain streams rich in H₂ from oily wastes, which represent a major problem both for the environment and human health throughout the world. In this paper, the relative complexity of technology needed for feasible gasification process cycles is discussed with particular reference to the different feedstocks that can be used as raw material, different reactors, and energy recovery systems. For this purpose, a review of the current status of SCWG technologies has been carried out, by means of different classifications based on key features as the feed treated or the type of reactor and other apparatus. This analysis allows to improve the technology efficiency through the study of model calculations and its comparison with experimental data, the establishment of kinetics for chemical reactions, the analysis of how the main reaction parameters affect the yield and composition of products, or the determination of the most common problems and risks that can occur. The results of this work show that SCWG is a promising method for the production of both hydrogen and methane. The most significant choices of design are the reactor type and process cycle, which can be conveniently adopted according to waste characteristics. Regarding the future of the technology, the design of SCWG plants is still to be optimized to include energy recovery systems in order to reduce costs of equipment and operation derived from the high temperature and pressure conditions that are necessary to convert water to the SC state, as well as to find solutions to remove corrosion and clogging of components of the reactor.

Keywords: hydrogen production, organic wastes, supercritical water gasification, system integration, waste-to-energy

Procedia PDF Downloads 119
175 Chiral Molecule Detection via Optical Rectification in Spin-Momentum Locking

Authors: Jessie Rapoza, Petr Moroshkin, Jimmy Xu

Abstract:

Chirality is omnipresent, in nature, in life, and in the field of physics. One intriguing example is the homochirality that has remained a great secret of life. Another is the pairs of mirror-image molecules – enantiomers. They are identical in atomic composition and therefore indistinguishable in the scalar physical properties. Yet, they can be either therapeutic or toxic, depending on their chirality. Recent studies suggest a potential link between abnormal levels of certain D-amino acids and some serious health impairments, including schizophrenia, amyotrophic lateral sclerosis, and potentially cancer. Although indistinguishable in their scalar properties, the chirality of a molecule reveals itself in interaction with the surrounding of a certain chirality, or more generally, a broken mirror-symmetry. In this work, we report on a system for chiral molecule detection, in which the mirror-symmetry is doubly broken, first by asymmetric structuring a nanopatterned plasmonic surface than by the incidence of circularly polarized light (CPL). In this system, the incident circularly-polarized light induces a surface plasmon polariton (SPP) wave, propagating along the asymmetric plasmonic surface. This SPP field itself is chiral, evanescently bound to a near-field zone on the surface (~10nm thick), but with an amplitude greatly intensified (by up to 104) over that of the incident light. It hence probes just the molecules on the surface instead of those in the volume. In coupling to molecules along its path on the surface, the chiral SPP wave favors one chirality over the other, allowing for chirality detection via the change in an optical rectification current measured at the edges of the sample. The asymmetrically structured surface converts the high-frequency electron plasmonic-oscillations in the SPP wave into a net DC drift current that can be measured at the edge of the sample via the mechanism of optical rectification. The measured results validate these design concepts and principles. The observed optical rectification current exhibits a clear differentiation between a pair of enantiomers. Experiments were performed by focusing a 1064nm CW laser light at the sample - a gold grating microchip submerged in an approximately 1.82M solution of either L-arabinose or D-arabinose and water. A measurement of the current output was then recorded under both rights and left circularly polarized lights. Measurements were recorded at various angles of incidence to optimize the coupling between the spin-momentums of the incident light and that of the SPP, that is, spin-momentum locking. In order to suppress the background, the values of the photocurrent for the right CPL are subtracted from those for the left CPL. Comparison between the two arabinose enantiomers reveals a preferential signal response of one enantiomer to left CPL and the other enantiomer to right CPL. In sum, this work reports on the first experimental evidence of the feasibility of chiral molecule detection via optical rectification in a metal meta-grating. This nanoscale interfaced electrical detection technology is advantageous over other detection methods due to its size, cost, ease of use, and integration ability with read-out electronic circuits for data processing and interpretation.

Keywords: Chirality, detection, molecule, spin

Procedia PDF Downloads 73
174 Study of Biomechanical Model for Smart Sensor Based Prosthetic Socket Design System

Authors: Wei Xu, Abdo S. Haidar, Jianxin Gao

Abstract:

Prosthetic socket is a component that connects the residual limb of an amputee with an artificial prosthesis. It is widely recognized as the most critical component that determines the comfort of a patient when wearing the prosthesis in his/her daily activities. Through the socket, the body weight and its associated dynamic load are distributed and transmitted to the prosthesis during walking, running or climbing. In order to achieve a good-fit socket for an individual amputee, it is essential to obtain the biomechanical properties of the residual limb. In current clinical practices, this is achieved by a touch-and-feel approach which is highly subjective. Although there have been significant advancements in prosthetic technologies such as microprocessor controlled knee and ankle joints in the last decade, the progress in designing a comfortable socket has been rather limited. This means that the current process of socket design is still very time-consuming, and highly dependent on the expertise of the prosthetist. Supported by the state-of-the-art sensor technologies and numerical simulations, a new socket design system is being developed to help prosthetists achieve rapid design of comfortable sockets for above knee amputees. This paper reports the research work related to establishing biomechanical models for socket design. Through numerical simulation using finite element method, comprehensive relationships between pressure on residual limb and socket geometry were established. This allowed local topological adjustment for the socket so as to optimize the pressure distributions across the residual limb. When the full body weight of a patient is exerted on the residual limb, high pressures and shear forces between the residual limb and the socket occur. During numerical simulations, various hyperplastic models, namely Ogden, Yeoh and Mooney-Rivlin, were used, and their effectiveness in representing the biomechanical properties of soft tissues of the residual limb was evaluated. This also involved reverse engineering, which resulted in an optimal representative model under compression test. To validate the simulation results, a range of silicone models were fabricated. They were tested by an indentation device which yielded the force-displacement relationships. Comparisons of results obtained from FEA simulations and experimental tests showed that the Ogden model did not fit well the soft tissue material indentation data, while the Yeoh model gave the best representation of the soft tissue mechanical behavior under indentation. Compared with hyperplastic model, the result showed that elastic model also had significant errors. In addition, normal and shear stress distributions on the surface of the soft tissue model were obtained. The effect of friction in compression testing and the influence of soft tissue stiffness and testing boundary conditions were also analyzed. All these have contributed to the overall goal of designing a good-fit socket for individual above knee amputees.

Keywords: above knee amputee, finite element simulation, hyperplastic model, prosthetic socket

Procedia PDF Downloads 175
173 Phorbol 12-Myristate 13-Acetate (PMA)-Differentiated THP-1 Monocytes as a Validated Microglial-Like Model in Vitro

Authors: Amelia J. McFarland, Andrew K. Davey, Shailendra Anoopkumar-Dukie

Abstract:

Microglia are the resident macrophage population of the central nervous system (CNS), contributing to both innate and adaptive immune response, and brain homeostasis. Activation of microglia occurs in response to a multitude of pathogenic stimuli in their microenvironment; this induces morphological and functional changes, resulting in a state of acute neuroinflammation which facilitates injury resolution. Adequate microglial function is essential for the health of the neuroparenchyma, with microglial dysfunction implicated in numerous CNS pathologies. Given the critical role that these macrophage-derived cells play in CNS homeostasis, there is a high demand for microglial models suitable for use in neuroscience research. The isolation of primary human microglia, however, is both difficult and costly, with microglial activation an unwanted but inevitable result of the extraction process. Consequently, there is a need for the development of alternative experimental models which exhibit morphological, biochemical and functional characteristics of human microglia without the difficulties associated with primary cell lines. In this study, our aim was to evaluate whether THP-1 human peripheral blood monocytes would display microglial-like qualities following an induced differentiation, and, therefore, be suitable for use as surrogate microglia. To achieve this aim, THP-1 human peripheral blood monocytes from acute monocytic leukaemia were differentiated with a range of phorbol 12-myristate 13-acetate (PMA) concentrations (50-200 nM) using two different protocols: a 5-day continuous PMA exposure or a 3-day continuous PMA exposure followed by a 5-day rest in normal media. In each protocol and at each PMA concentration, microglial-like cell morphology was assessed through crystal violet staining and the presence of CD-14 microglial / macrophage cell surface marker. Lipopolysaccharide (LPS) from Escherichia coli (055: B5) was then added at a range of concentrations from 0-10 mcg/mL to activate the PMA-differentiated THP-1 cells. Functional microglial-like behavior was evaluated by quantifying the release of prostaglandin (PG)-E2 and pro-inflammatory cytokines interleukin (IL)-1β and tumour necrosis factor (TNF)-α using mediator-specific ELISAs. Furthermore, production of global reactive oxygen species (ROS) and nitric oxide (NO) were determined fluorometrically using dichlorodihydrofluorescein diacetate (DCFH-DA) and diaminofluorescein diacetate (DAF-2-DA) respectively. Following PMA-treatment, it was observed both differentiation protocols resulted in cells displaying distinct microglial morphology from 10 nM PMA. Activation of differentiated cells using LPS significantly augmented IL-1β, TNF-α and PGE2 release at all LPS concentrations under both differentiation protocols. Similarly, a significant increase in DCFH-DA and DAF-2-DA fluorescence was observed, indicative of increases in ROS and NO production. For all endpoints, the 5-day continuous PMA treatment protocol yielded significantly higher mediator levels than the 3-day treatment and 5-day rest protocol. Our data, therefore, suggests that the differentiation of THP-1 human monocyte cells with PMA yields a homogenous microglial-like population which, following stimulation with LPS, undergo activation to release a range of pro-inflammatory mediators associated with microglial activation. Thus, the use of PMA-differentiated THP-1 cells represents a suitable microglial model for in vitro research.

Keywords: differentiation, lipopolysaccharide, microglia, monocyte, neuroscience, THP-1

Procedia PDF Downloads 354
172 Effect of Toxic Metals Exposure on Rat Behavior and Brain Morphology: Arsenic, Manganese

Authors: Tamar Bikashvili, Tamar Lordkipanidze, Ilia Lazrishvili

Abstract:

Heavy metals remain one of serious environmental problems due to their toxic effects. The effect of arsenic and manganese compounds on rat behavior and neuromorphology was studied. Wistar rats were assigned to four groups: rats in control group were given regular water, while rats in other groups drank water with final manganese concentration of 10 mg/L (group A), 20 mg/L (group B) and final arsenic concentration 68 mg/L (group C), respectively, for a month. To study exploratory and anxiety behavior and also to evaluate aggressive performance in “home cage” rats were tested in “Open Field” and to estimate learning and memory status multi-branched maze was used. Statistically significant increase of motor and oriental-searching activity in experimental groups was revealed by an open field test, which was expressed in increase of number of lines crossed, rearing and hole reflexes. Obtained results indicated the suppression of fear in rats exposed to manganese. Specifically, this was estimated by the frequency of getting to the central part of the open field. Experiments revealed that 30-day exposure to 10 mg/ml manganese did not stimulate aggressive behavior in rats, while exposure to the higher dose (20 mg/ml), 37% of initially non-aggressive animals manifested aggressive behavior. Furthermore, 25% of rats were extremely aggressive. Obtained data support the hypothesis that excess manganese in the body is one of the immediate causes of enhancement of interspecific predatory aggressive and violent behavior in rats. It was also discovered that manganese intoxication produces non-reversible severe learning disability and insignificant, reversible memory disturbances. Studies of rodents exposed to arsenic also revealed changes in the learning process. As it is known, the distribution of metal ions differs in various brain regions. The principle manganese accumulation was observed in the hippocampus and in the neocortex, while arsenic was predominantly accumulated in nucleus accumbens, striatum, and cortex. These brain regions play an important role in the regulation of emotional state and motor activity. Histopathological analyzes of brain sections illustrated two morphologically distinct altered phenotypes of neurons: (1) shrunk cells with indications of apoptosis - nucleus and cytoplasm were very difficult to be distinguished, the integrity of neuronal cytoplasm was not disturbed; and (2) swollen cells - with indications of necrosis. Pyknotic nucleus, plasma membrane disruption and cytoplasmic vacuoles were observed in swollen neurons and they were surrounded by activated gliocytes. It’s worth to mention that in the cortex the majority of damaged neurons were apoptotic while in subcortical nuclei –neurons were mainly necrotic. Ultrastructural analyses demonstrated that all cell types in the cortex and the nucleus caudatus represent destructed mitochondria, widened neurons’ vacuolar system profiles, increased number of lysosomes and degeneration of axonal endings.

Keywords: arsenic, manganese, behavior, learning, neuron

Procedia PDF Downloads 329
171 Reinventing Business Education: Filling the Knowledge Gap on the Verge of the 4th Industrial Revolution

Authors: Elena Perepelova

Abstract:

As the world approaches the 4th industrial revolution, income inequality has become one of the major societal concerns. Displacement of workers by technology becomes a reality, and in return, new skills and competencies are required. More important than ever, education needs to help individuals understand the wider world around them and make global connections. The author argues for the necessity to incorporate business, economics and finance studies as a part of primary education and offer access to business education to the general population with the primary objective to understand how the world functions. The paper offers a fresh look at existing business theory through an innovative program called 'Usefulnomics'. Realizing that the subject of Economics, Finance and Business are perceived as overwhelming for a large part of the population, the author has taken a holistic approach and created a program that simplifies the definitions of the existing concepts and shifts from the traditional breakdown into subjects and specialties to a teaching method that is based exclusively on real-life example case studies and group debates, in order to better grasp the concepts and put them into context. The paper findings are the result of a two-year project and experimental work with students from UK, USA, Malaysia, Russia, and Spain. The author conducted extensive research through on-line and in-person classes and workshops as well as in-depth interviews of primary and secondary grade students to assess their understanding of what is a business, how businesses operate and the role businesses play in their communities. The findings clearly indicate that students of all ages often understood business concepts and processes only in an intuitive way, which resulted in misconceptions and gaps in knowledge. While knowledge gaps were easier to identify and correct in primary school students, as students’ age increased, the learning process became distorted by career choices, political views, and the students’ actual (or perceived) economic status. While secondary school students recognized more concepts, their real understanding was often on par with upper primary school age students. The research has also shown that lack of correct vocabulary created a strong barrier to communication and real-life application or further learning. Based on these findings, each key business concept was practiced and put into context with small groups of students in order to design the content and format which would be well accepted and understood by the target group. As a result, the final learning program package was based on case studies from daily modern life and used a wide range of examples: from popular brands and well-known companies to basic commodities. In the final stage, the content and format were put into practice in larger classrooms. The author would like to share the key findings from the research, the resulting learning program as well as present new ideas on how the program could be further enriched and adapted so schools and organizations can deliver it.

Keywords: business, finance, economics, lifelong learning, XXI century skills

Procedia PDF Downloads 95
170 Bacterial Community Diversity in Soil under Two Tillage Systems

Authors: Dalia Ambrazaitienė, Monika Vilkienė, Danute Karcauskienė, Gintaras Siaudinis

Abstract:

The soil is a complex ecosystem that is part of our biosphere. The ability of soil to provide ecosystem services is dependent on microbial diversity. T Tillage is one of the major factors that affect soil properties. The no-till systems or shallow ploughless tillage are opposite of traditional deep ploughing, no-tillage systems, for instance, increase soil organic matter by reducing mineralization rates and stimulating litter concentrations of the top soil layer, whereas deep ploughing increases the biological activity of arable soil layer and reduces the incidence of weeds. The role of soil organisms is central to soil processes. Although the number of microbial species in soil is still being debated, the metagenomic approach to estimate microbial diversity predicted about 2000 – 18 000 bacterial genomes in 1 g of soil. Despite the key role of bacteria in soil processes, there is still lack of information about the bacterial diversity of soils as affected by tillage practices. This study focused on metagenomic analysis of bacterial diversity in long-term experimental plots of Dystric Epihypogleyic Albeluvisols in western part of Lithuania. The experiment was set up in 2013 and had a split-plot design where the whole-plot treatments were laid out in a randomized design with three replicates. The whole-plot treatments consisted of two tillage methods - deep ploughing (22-25 cm) (DP), ploughless tillage (7-10 cm) (PT). Three subsamples (0-20 cm) were collected on October 22, 2015 for each of the three replicates. Subsamples from the DP and PT systems were pooled together wise to make two composition samples, one representing deep ploughing (DP) and the other ploughless tillage (PT). Genomic DNA from soil sample was extracted from approximately 200 mg field-moist soil by using the D6005 Fungal/Bacterial Miniprep set (Zymo Research®) following the manufacturer’s instructions. To determine bacterial diversity and community composition, we employed a culture – independent approach of high-throughput pyrosequencing of the 16S rRNA gene. Metagenomic sequencing was made with Illumina MiSeq platform in Base Clear Company. The microbial component of soil plays a crucial role in cycling of nutrients in biosphere. Our study was a preliminary attempt at observing bacterial diversity in soil under two common but contrasting tillage practices. The number of sequenced reads obtained for PT (161 917) was higher than DP (131 194). The 10 most abundant genus in soil sample were the same (Arthrobacter, Candidatus Saccharibacteria, Actinobacteria, Acidobacterium, Mycobacterium, Bacillus, Alphaproteobacteria, Longilinea, Gemmatimonas, Solirubrobacter), just the percent of community part was different. In DP the Arthrobacter and Acidobacterium consist respectively 8.4 % and 2.5%, meanwhile in PT just 5.8% and 2.1% of all community. The Nocardioides and Terrabacter were observed just in PT. This work was supported by the project VP1-3.1-ŠMM-01-V-03-001 NKPDOKT and National Science Program: The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems [grant number SIT-9/2015] funded by the Research Council of Lithuania.

Keywords: deep ploughing, metagenomics, ploughless tillage, soil community analysis

Procedia PDF Downloads 218
169 A Geographic Information System Mapping Method for Creating Improved Satellite Solar Radiation Dataset Over Qatar

Authors: Sachin Jain, Daniel Perez-Astudillo, Dunia A. Bachour, Antonio P. Sanfilippo

Abstract:

The future of solar energy in Qatar is evolving steadily. Hence, high-quality spatial solar radiation data is of the uttermost requirement for any planning and commissioning of solar technology. Generally, two types of solar radiation data are available: satellite data and ground observations. Satellite solar radiation data is developed by the physical and statistical model. Ground data is collected by solar radiation measurement stations. The ground data is of high quality. However, they are limited to distributed point locations with the high cost of installation and maintenance for the ground stations. On the other hand, satellite solar radiation data is continuous and available throughout geographical locations, but they are relatively less accurate than ground data. To utilize the advantage of both data, a product has been developed here which provides spatial continuity and higher accuracy than any of the data alone. The popular satellite databases: National Solar radiation Data Base, NSRDB (PSM V3 model, spatial resolution: 4 km) is chosen here for merging with ground-measured solar radiation measurement in Qatar. The spatial distribution of ground solar radiation measurement stations is comprehensive in Qatar, with a network of 13 ground stations. The monthly average of the daily total Global Horizontal Irradiation (GHI) component from ground and satellite data is used for error analysis. The normalized root means square error (NRMSE) values of 3.31%, 6.53%, and 6.63% for October, November, and December 2019 were observed respectively when comparing in-situ and NSRDB data. The method is based on the Empirical Bayesian Kriging Regression Prediction model available in ArcGIS, ESRI. The workflow of the algorithm is based on the combination of regression and kriging methods. A regression model (OLS, ordinary least square) is fitted between the ground and NSBRD data points. A semi-variogram is fitted into the experimental semi-variogram obtained from the residuals. The kriging residuals obtained after fitting the semi-variogram model were added to NSRBD data predicted values obtained from the regression model to obtain the final predicted values. The NRMSE values obtained after merging are respectively 1.84%, 1.28%, and 1.81% for October, November, and December 2019. One more explanatory variable, that is the ground elevation, has been incorporated in the regression and kriging methods to reduce the error and to provide higher spatial resolution (30 m). The final GHI maps have been created after merging, and NRMSE values of 1.24%, 1.28%, and 1.28% have been observed for October, November, and December 2019, respectively. The proposed merging method has proven as a highly accurate method. An additional method is also proposed here to generate calibrated maps by using regression and kriging model and further to use the calibrated model to generate solar radiation maps from the explanatory variable only when not enough historical ground data is available for long-term analysis. The NRMSE values obtained after the comparison of the calibrated maps with ground data are 5.60% and 5.31% for November and December 2019 month respectively.

Keywords: global horizontal irradiation, GIS, empirical bayesian kriging regression prediction, NSRDB

Procedia PDF Downloads 63
168 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments

Authors: David X. Dong, Qingming Zhang, Meng Lu

Abstract:

Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.

Keywords: optical sensor, regression model, nitrites, water quality

Procedia PDF Downloads 46
167 Examining the Impact of De-Escalation Training among Emergency Department Nurses

Authors: Jonathan D. Recchi

Abstract:

Introduction: Workplace violence is a major concern for nurses throughout the United States and is a rising occupational health hazard that has been exacerbated by both the Covid-19 pandemic and increasing patient and family member incivility. De-escalation training has been found to be an evidence-based tool for emergency department nurses to help avoid or mitigate high-risk situations that could lead to workplace violence. Many healthcare organizations either do not provide de-escalation training to their staff or only provide it sparingly, such as during new employee orientation. There is limited research in the literature on the psychological benefits of de-escalation training. Purpose: The purpose of this study is to determine if there are psychological and organizational advantages to providing emergency department nurses with de-escalation training. Equipping emergency department nurses with skills that are essential to de-escalate violent or potentially violent patients may help prevent physical, mental, and/or psychological damage to the nurse because of violence and/or threatening acts. The hypothesis is that providing de-scalation training to emergency department nurses will lead to increased nurse confidence in dealing with aggressive patients, increased resiliency, increased professional quality of life, and increased intention to stay with their current organization. This study aims to show that organizations would benefit from providing de-escalation training to all nurses operating in high-risk areas on a regular basis. Significance: Showing psychological benefits to providing evidence-based de-escalation training can provide healthcare organizations with the ability to retain a more resilient and prepared workforce. Method: This study uses a pre-experimental cross-sectional pre-/post-test design using a convenience sample of emergency department registered nurses employed across Jefferson Health Northeast (Jefferson Torresdale, Jefferson Bucks, and Jefferson Frankford. Inclusion criteria include registered nurses who work full or part-time, with 51% or more of their clinical time spent in direct clinical care. Excluded from participation are registered nurses in orientation, per-diem nurses, temporary and/or travel nurses, nurses who spend less than 51% of their time in direct patient care, and nurses who have received de-escalation training within the past two years. This study uses the Connor-Davidson Resilience Scale 10 (CD-RISC-10), the Clinician Confidence in Coping with Patient Aggression Scale, the Press Ganey Intention To Stay question, and the Professional Quality of Life Scale. Results: A Paired t-Test will be used to analyze the mean scores of the three scales and one question pre and post-intervention to determine if there is a statistically significant difference in RN resiliency, confidence in coping with patient aggression, intention to stay, and professional quality of life. Discussion and Conclusions: Upon completion, the outcomes of this intervention will show the importance of providing evidence-based de-escalation training to all nurses operating within the emergency department.

Keywords: de-escalation, nursing, emergency department, workplace violence

Procedia PDF Downloads 76
166 Interferon-Induced Transmembrane Protein-3 rs12252-CC Associated with the Progress of Hepatocellular Carcinoma by Up-Regulating the Expression of Interferon-Induced Transmembrane Protein 3

Authors: Yuli Hou, Jianping Sun, Mengdan Gao, Hui Liu, Ling Qin, Ang Li, Dongfu Li, Yonghong Zhang, Yan Zhao

Abstract:

Background and Aims: Interferon-induced transmembrane protein 3 (IFITM3) is a component of ISG (Interferon-Stimulated Gene) family. IFITM3 has been recognized as a key signal molecule regulating cell growth in some tumors. However, the function of IFITM3 rs12252-CC genotype in the hepatocellular carcinoma (HCC) remains unknown to author’s best knowledge. A cohort study was employed to clarify the relationship between IFITM3 rs12252-CC genotype and HCC progression, and cellular experiments were used to investigate the correlation of function of IFITM3 and the progress of HCC. Methods: 336 candidates were enrolled in study, including 156 with HBV related HCC and 180 with chronic Hepatitis B infections or liver cirrhosis. Polymerase chain reaction (PCR) was employed to determine the gene polymorphism of IFITM3. The functions of IFITM3 were detected in PLC/PRF/5 cell with different treated:LV-IFITM3 transfected with lentivirus to knockdown the expression of IFITM3 and LV-NC transfected with empty lentivirus as negative control. The IFITM3 expression, proliferation and migration were detected by Quantitative reverse transcription polymerase chain reaction (qRT-PCR), QuantiGene Plex 2.0 assay, western blotting, immunohistochemistry, Cell Counting Kit(CCK)-8 and wound healing respectively. Six samples (three infected with empty lentiviral as control; three infected with LV-IFITM3 vector lentiviral as experimental group ) of PLC/PRF/5 were sequenced at BGI (Beijing Genomics Institute, Shenzhen,China) using RNA-seq technology to identify the IFITM3-related signaling pathways and chose PI3K/AKT pathway as related signaling to verify. Results: The patients with HCC had a significantly higher proportion of IFITM3 rs12252-CC compared with the patients with chronic HBV infection or liver cirrhosis. The distribution of CC genotype in HCC patients with low differentiation was significantly higher than that in those with high differentiation. Patients with CC genotype found with bigger tumor size, higher percentage of vascular thrombosis, higher distribution of low differentiation and higher 5-year relapse rate than those with CT/TT genotypes. The expression of IFITM3 was higher in HCC tissues than adjacent normal tissues, and the level of IFITM3 was higher in HCC tissues with low differentiation and metastatic than high/medium differentiation and without metastatic. Higher RNA level of IFITM3 was found in CC genotype than TT genotype. In PLC/PRF/5 cell with knockdown, the ability of cell proliferation and migration was inhibited. Analysis RNA sequencing and verification of RT-PCR found out the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/AKT/mTOR) pathway was associated with knockdown IFITM3.With the inhibition of IFITM3, the expression of PI3K/AKT/mTOR signaling pathway was blocked and the expression of vimentin was decreased. Conclusions: IFITM3 rs12252-CC with the higher expression plays a vital role in the progress of HCC by regulating HCC cell proliferation and migration. These effects are associated with PI3K/AKT/mTOR signaling pathway.

Keywords: IFITM3, interferon-induced transmembrane protein 3, HCC, hepatocellular carcinoma, PI3K/ AKT/mTOR, phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin

Procedia PDF Downloads 104
165 Nonequilibrium Effects in Photoinduced Ultrafast Charge Transfer Reactions

Authors: Valentina A. Mikhailova, Serguei V. Feskov, Anatoly I. Ivanov

Abstract:

In the last decade the nonequilibrium charge transfer have attracted considerable interest from the scientific community. Examples of such processes are the charge recombination in excited donor-acceptor complexes and the intramolecular electron transfer from the second excited electronic state. In these reactions the charge transfer proceeds predominantly in the nonequilibrium mode. In the excited donor-acceptor complexes the nuclear nonequilibrium is created by the pump pulse. The intramolecular electron transfer from the second excited electronic state is an example where the nuclear nonequilibrium is created by the forward electron transfer. The kinetics of these nonequilibrium reactions demonstrate a number of peculiar properties. Most important from them are: (i) the absence of the Marcus normal region in the free energy gap law for the charge recombination in excited donor-acceptor complexes, (ii) extremely low quantum yield of thermalized charge separated state in the ultrafast charge transfer from the second excited state, (iii) the nonexponential charge recombination dynamics in excited donor-acceptor complexes, (iv) the dependence of the charge transfer rate constant on the excitation pulse frequency. This report shows that most of these kinetic features can be well reproduced in the framework of stochastic point-transition multichannel model. The model involves an explicit description of the nonequilibrium excited state formation by the pump pulse and accounts for the reorganization of intramolecular high-frequency vibrational modes, for their relaxation as well as for the solvent relaxation. The model is able to quantitatively reproduce complex nonequilibrium charge transfer kinetics observed in modern experiments. The interpretation of the nonequilibrium effects from a unified point of view in the terms of the multichannel point transition stochastic model allows to see similarities and differences of electron transfer mechanism in various molecular donor-acceptor systems and formulates general regularities inherent in these phenomena. The nonequilibrium effects in photoinduced ultrafast charge transfer which have been studied for the last 10 years are analyzed. The methods of suppression of the ultrafast charge recombination, similarities and dissimilarities of electron transfer mechanism in different molecular donor-acceptor systems are discussed. The extremely low quantum yield of the thermalized charge separated state observed in the ultrafast charge transfer from the second excited state in the complex consisting of 1,2,4-trimethoxybenzene and tetracyanoethylene in acetonitrile solution directly demonstrates that its effectiveness can be close to unity. This experimental finding supports the idea that the nonequilibrium charge recombination in the excited donor-acceptor complexes can be also very effective so that the part of thermalized complexes is negligible. It is discussed the regularities inherent to the equilibrium and nonequilibrium reactions. Their fundamental differences are analyzed. Namely the opposite dependencies of the charge transfer rates on the dynamical properties of the solvent. The increase of the solvent viscosity results in decreasing the thermal rate and vice versa increasing the nonequilibrium rate. The dependencies of the rates on the solvent reorganization energy and the free energy gap also can considerably differ. This work was supported by the Russian Science Foundation (Grant No. 16-13-10122).

Keywords: Charge recombination, higher excited states, free energy gap law, nonequilibrium

Procedia PDF Downloads 290
164 The Effects of Aging on Visuomotor Behaviors in Reaching

Authors: Mengjiao Fan, Thomson W. L. Wong

Abstract:

It is unavoidable that older adults may have to deal with aging-related motor problems. Aging is highly likely to affect motor learning and control as well. For example, older adults may suffer from poor motor function and quality of life due to age-related eye changes. These adverse changes in vision results in impairment of movement automaticity. Reaching is a fundamental component of various complex movements, which is therefore beneficial to explore the changes and adaptation in visuomotor behaviors. The current study aims to explore how aging affects visuomotor behaviors by comparing motor performance and gaze behaviors between two age groups (i.e., young and older adults). Visuomotor behaviors in reaching under providing or blocking online visual feedback (simulated visual deficiency) conditions were investigated in 60 healthy young adults (Mean age=24.49 years, SD=2.12) and 37 older adults (Mean age=70.07 years, SD=2.37) with normal or corrected-to-normal vision. Participants in each group were randomly allocated into two subgroups. Subgroup 1 was provided with online visual feedback of the hand-controlled mouse cursor. However, in subgroup 2, visual feedback was blocked to simulate visual deficiency. The experimental task required participants to complete 20 times of reaching to a target by controlling the mouse cursor on the computer screen. Among all the 20 trials, start position was upright in the center of the screen and target appeared at a randomly selected position by the tailor-made computer program. Primary outcomes of motor performance and gaze behaviours data were recorded by the EyeLink II (SR Research, Canada). The results suggested that aging seems to affect the performance of reaching tasks significantly in both visual feedback conditions. In both age groups, blocking online visual feedback of the cursor in reaching resulted in longer hand movement time (p < .001), longer reaching distance away from the target center (p<.001) and poorer reaching motor accuracy (p < .001). Concerning gaze behaviors, blocking online visual feedback increased the first fixation duration time in young adults (p<.001) but decreased it in older adults (p < .001). Besides, under the condition of providing online visual feedback of the cursor, older adults conducted a longer fixation dwell time on target throughout reaching than the young adults (p < .001) although the effect was not significant under blocking online visual feedback condition (p=.215). Therefore, the results suggested that different levels of visual feedback during movement execution can affect gaze behaviors differently in older and young adults. Differential effects by aging on visuomotor behaviors appear on two visual feedback patterns (i.e., blocking or providing online visual feedback of hand-controlled cursor in reaching). Several specific gaze behaviors among the older adults were found, which imply that blocking of visual feedback may act as a stimulus to seduce extra perceptive load in movement execution and age-related visual degeneration might further deteriorate the situation. It indeed provides us with insight for the future development of potential rehabilitative training method (e.g., well-designed errorless training) in enhancing visuomotor adaptation for our aging population in the context of improving their movement automaticity by facilitating their compensation of visual degeneration.

Keywords: aging effect, movement automaticity, reaching, visuomotor behaviors, visual degeneration

Procedia PDF Downloads 289
163 Optimal-Based Structural Vibration Attenuation Using Nonlinear Tuned Vibration Absorbers

Authors: Pawel Martynowicz

Abstract:

Vibrations are a crucial problem for slender structures such as towers, masts, chimneys, wind turbines, bridges, high buildings, etc., that is why most of them are equipped with vibration attenuation or fatigue reduction solutions. In this work, a slender structure (i.e., wind turbine tower-nacelle model) equipped with nonlinear, semiactive tuned vibration absorber(s) is analyzed. For this study purposes, magnetorheological (MR) dampers are used as semiactive actuators. Several optimal-based approaches to structural vibration attenuation are investigated against the standard ‘ground-hook’ law and passive tuned vibration absorber(s) implementations. The common approach to optimal control of nonlinear systems is offline computation of the optimal solution, however, so determined open loop control suffers from lack of robustness to uncertainties (e.g., unmodelled dynamics, perturbations of external forces or initial conditions), and thus perturbation control techniques are often used. However, proper linearization may be an issue for highly nonlinear systems with implicit relations between state, co-state, and control. The main contribution of the author is the development as well as numerical and experimental verification of the Pontriagin maximum-principle-based vibration control concepts that produce directly actuator control input (not the demanded force), thus force tracking algorithm that results in control inaccuracy is entirely omitted. These concepts, including one-step optimal control, quasi-optimal control, and optimal-based modified ‘ground-hook’ law, can be directly implemented in online and real-time feedback control for periodic (or semi-periodic) disturbances with invariant or time-varying parameters, as well as for non-periodic, transient or random disturbances, what is a limitation for some other known solutions. No offline calculation, excitations/disturbances assumption or vibration frequency determination is necessary, moreover, all of the nonlinear actuator (MR damper) force constraints, i.e., no active forces, lower and upper saturation limits, hysteresis-type dynamics, etc., are embedded in the control technique, thus the solution is optimal or suboptimal for the assumed actuator, respecting its limitations. Depending on the selected method variant, a moderate or decisive reduction in the computational load is possible compared to other methods of nonlinear optimal control, while assuring the quality and robustness of the vibration reduction system, as well as considering multi-pronged operational aspects, such as possible minimization of the amplitude of the deflection and acceleration of the vibrating structure, its potential and/or kinetic energy, required actuator force, control input (e.g. electric current in the MR damper coil) and/or stroke amplitude. The developed solutions are characterized by high vibration reduction efficiency – the obtained maximum values of the dynamic amplification factor are close to 2.0, while for the best of the passive systems, these values exceed 3.5.

Keywords: magnetorheological damper, nonlinear tuned vibration absorber, optimal control, real-time structural vibration attenuation, wind turbines

Procedia PDF Downloads 99
162 The Reliability Analysis of Concrete Chimneys Due to Random Vortex Shedding

Authors: Saba Rahman, Arvind K. Jain, S. D. Bharti, T. K. Datta

Abstract:

Chimneys are generally tall and slender structures with circular cross-sections, due to which they are highly prone to wind forces. Wind exerts pressure on the wall of the chimneys, which produces unwanted forces. Vortex-induced oscillation is one of such excitations which can lead to the failure of the chimneys. Therefore, vortex-induced oscillation of chimneys is of great concern to researchers and practitioners since many failures of chimneys due to vortex shedding have occurred in the past. As a consequence, extensive research has taken place on the subject over decades. Many laboratory experiments have been performed to verify the theoretical models proposed to predict vortex-induced forces, including aero-elastic effects. Comparatively, very few proto-type measurement data have been recorded to verify the proposed theoretical models. Because of this reason, the theoretical models developed with the help of experimental laboratory data are utilized for analyzing the chimneys for vortex-induced forces. This calls for reliability analysis of the predictions of the responses of the chimneys produced due to vortex shedding phenomena. Although several works of literature exist on the vortex-induced oscillation of chimneys, including code provisions, the reliability analysis of chimneys against failure caused due to vortex shedding is scanty. In the present study, the reliability analysis of chimneys against vortex shedding failure is presented, assuming the uncertainty in vortex shedding phenomena to be significantly more than other uncertainties, and hence, the latter is ignored. The vortex shedding is modeled as a stationary random process and is represented by a power spectral density function (PSDF). It is assumed that the vortex shedding forces are perfectly correlated and act over the top one-third height of the chimney. The PSDF of the tip displacement of the chimney is obtained by performing a frequency domain spectral analysis using a matrix approach. For this purpose, both chimney and random wind forces are discretized over a number of points along with the height of the chimney. The method of analysis duly accounts for the aero-elastic effects. The double barrier threshold crossing level, as proposed by Vanmarcke, is used for determining the probability of crossing different threshold levels of the tip displacement of the chimney. Assuming the annual distribution of the mean wind velocity to be a Gumbel type-I distribution, the fragility curve denoting the variation of the annual probability of threshold crossing against different threshold levels of the tip displacement of the chimney is determined. The reliability estimate is derived from the fragility curve. A 210m tall concrete chimney with a base diameter of 35m, top diameter as 21m, and thickness as 0.3m has been taken as an illustrative example. The terrain condition is assumed to be that corresponding to the city center. The expression for the PSDF of the vortex shedding force is taken to be used by Vickery and Basu. The results of the study show that the threshold crossing reliability of the tip displacement of the chimney is significantly influenced by the assumed structural damping and the Gumbel distribution parameters. Further, the aero-elastic effect influences the reliability estimate to a great extent for small structural damping.

Keywords: chimney, fragility curve, reliability analysis, vortex-induced vibration

Procedia PDF Downloads 134
161 Numerical Optimization of Cooling System Parameters for Multilayer Lithium Ion Cell and Battery Packs

Authors: Mohammad Alipour, Ekin Esen, Riza Kizilel

Abstract:

Lithium-ion batteries are a commonly used type of rechargeable batteries because of their high specific energy and specific power. With the growing popularity of electric vehicles and hybrid electric vehicles, increasing attentions have been paid to rechargeable Lithium-ion batteries. However, safety problems, high cost and poor performance in low ambient temperatures and high current rates, are big obstacles for commercial utilization of these batteries. By proper thermal management, most of the mentioned limitations could be eliminated. Temperature profile of the Li-ion cells has a significant role in the performance, safety, and cycle life of the battery. That is why little temperature gradient can lead to great loss in the performances of the battery packs. In recent years, numerous researchers are working on new techniques to imply a better thermal management on Li-ion batteries. Keeping the battery cells within an optimum range is the main objective of battery thermal management. Commercial Li-ion cells are composed of several electrochemical layers each consisting negative-current collector, negative electrode, separator, positive electrode, and positive current collector. However, many researchers have adopted a single-layer cell to save in computing time. Their hypothesis is that thermal conductivity of the layer elements is so high and heat transfer rate is so fast. Therefore, instead of several thin layers, they model the cell as one thick layer unit. In previous work, we showed that single-layer model is insufficient to simulate the thermal behavior and temperature nonuniformity of the high-capacity Li-ion cells. We also studied the effects of the number of layers on thermal behavior of the Li-ion batteries. In this work, first thermal and electrochemical behavior of the LiFePO₄ battery is modeled with 3D multilayer cell. The model is validated with the experimental measurements at different current rates and ambient temperatures. Real time heat generation rate is also studied at different discharge rates. Results showed non-uniform temperature distribution along the cell which requires thermal management system. Therefore, aluminum plates with mini-channel system were designed to control the temperature uniformity. Design parameters such as channel number and widths, inlet flow rate, and cooling fluids are optimized. As cooling fluids, water and air are compared. Pressure drop and velocity profiles inside the channels are illustrated. Both surface and internal temperature profiles of single cell and battery packs are investigated with and without cooling systems. Our results show that using optimized Mini-channel cooling plates effectively controls the temperature rise and uniformity of the single cells and battery packs. With increasing the inlet flow rate, cooling efficiency could be reached up to 60%.

Keywords: lithium ion battery, 3D multilayer model, mini-channel cooling plates, thermal management

Procedia PDF Downloads 134
160 Polarization as a Proxy of Misinformation Spreading

Authors: Michela Del Vicario, Walter Quattrociocchi, Antonio Scala, Ana Lucía Schmidt, Fabiana Zollo

Abstract:

Information, rumors, and debates may shape and impact public opinion heavily. In the latest years, several concerns have been expressed about social influence on the Internet and the outcome that online debates might have on real-world processes. Indeed, on online social networks users tend to select information that is coherent to their system of beliefs and to form groups of like-minded people –i.e., echo chambers– where they reinforce and polarize their opinions. In this way, the potential benefits coming from the exposure to different points of view may be reduced dramatically, and individuals' views may become more and more extreme. Such a context fosters misinformation spreading, which has always represented a socio-political and economic risk. The persistence of unsubstantiated rumors –e.g., the hypothetical and hazardous link between vaccines and autism– suggests that social media do have the power to misinform, manipulate, or control public opinion. As an example, current approaches such as debunking efforts or algorithmic-driven solutions based on the reputation of the source seem to prove ineffective against collective superstition. Indeed, experimental evidence shows that confirmatory information gets accepted even when containing deliberately false claims while dissenting information is mainly ignored, influences users’ emotions negatively and may even increase group polarization. Moreover, confirmation bias has been shown to play a pivotal role in information cascades, posing serious warnings about the efficacy of current debunking efforts. Nevertheless, mitigation strategies have to be adopted. To generalize the problem and to better understand social dynamics behind information spreading, in this work we rely on a tight quantitative analysis to investigate the behavior of more than 300M users w.r.t. news consumption on Facebook over a time span of six years (2010-2015). Through a massive analysis on 920 news outlets pages, we are able to characterize the anatomy of news consumption on a global and international scale. We show that users tend to focus on a limited set of pages (selective exposure) eliciting a sharp and polarized community structure among news outlets. Moreover, we find similar patterns around the Brexit –the British referendum to leave the European Union– debate, where we observe the spontaneous emergence of two well segregated and polarized groups of users around news outlets. Our findings provide interesting insights into the determinants of polarization and the evolution of core narratives on online debating. Our main aim is to understand and map the information space on online social media by identifying non-trivial proxies for the early detection of massive informational cascades. Furthermore, by combining users traces, we are finally able to draft the main concepts and beliefs of the core narrative of an echo chamber and its related perceptions.

Keywords: information spreading, misinformation, narratives, online social networks, polarization

Procedia PDF Downloads 266