Search results for: energy system modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23934

Search results for: energy system modelling

23904 Mathematical Modelling of Wastewater Collection System in Cha-Am Municipality Using PCSWMM

Authors: Thawtar Htun, Kim N. Irvine, Ranjna Jindal

Abstract:

This study aimed at modelling the wastewater collection system in Cha-Am Municipality using PCSWMM to investigate the quantity of combined sewage delivered to the aeration lagoon treatment system (ALTS). Cha-Am is a small sea resort town in Petchaburi Province located about 175 km southwest of Bangkok and is facing increasing development so it is important to understand current system performance and plan for future build out. PCSWMM was calibrated using observed ALTS inflow data for the period 15 June to 20 July 2015. The model was validated using observed ALTS inflow data for the periods 19 July to 20 October 2015 and 1 October to 31 December 2015, respectively. The 1:1 lines between modeled and observed peak flow and event volume for the calibration events qualitatively showed good correspondence. The r2 values between modeled and observed peak flow (99%) and event volume (89%) also were strong.

Keywords: combined sewer system, mathematical modelling, PCSWMM, wastewater collection system

Procedia PDF Downloads 188
23903 A Study on Energy Efficiency of Vertical Water Treatment System with DC Power Supply

Authors: Young-Kwan Choi, Gang-Wook Shin, Sung-Taek Hong

Abstract:

Water supply system consumes large amount of power load during water treatment and transportation of purified water. Many energy conserving high efficiency materials such as DC motor and LED light have recently been introduced to water supply system for energy conservation. This paper performed empirical analysis on BLDC, AC motors, and comparatively analyzed the change in power according to DC power supply ratio in order to conserve energy of a next-generation water treatment system called vertical water treatment system. In addition, a DC distribution system linked with photovoltaic generation was simulated to analyze the energy conserving effect of DC load.

Keywords: vertical water treatment system, DC power supply, energy efficiency, BLDC

Procedia PDF Downloads 469
23902 The Effects of Plantation Size and Internal Transport on Energy Efficiency of Biofuel Production

Authors: Olga Orynycz, Andrzej Wasiak

Abstract:

Mathematical model describing energetic efficiency (defined as a ratio of energy obtained in the form of biofuel to the sum of energy inputs necessary to facilitate production) of agricultural subsystem as a function of technological parameters was developed. Production technology is characterized by parameters of machinery, topological characteristics of the plantation as well as transportation routes inside and outside of plantation. The relationship between the energetic efficiency of agricultural and industrial subsystems is also derived. Due to the assumed large area of the individual field, the operations last for several days increasing inter-fields routes because of several returns. The total distance driven outside of the fields is, however, small as compared to the distance driven inside of the fields. This results in small energy consumption during inter-fields transport that, however, causes a substantial decrease of the energetic effectiveness of the whole system.

Keywords: biofuel, energetic efficiency, EROEI, mathematical modelling, production system

Procedia PDF Downloads 324
23901 Power Management Strategy for Solar-Wind-Diesel Stand-Alone Hybrid Energy System

Authors: Md. Aminul Islam, Adel Merabet, Rachid Beguenane, Hussein Ibrahim

Abstract:

This paper presents a simulation and mathematical model of stand-alone solar-wind-diesel based hybrid energy system (HES). A power management system is designed for multiple energy resources in a stand-alone hybrid energy system. Both Solar photovoltaic and wind energy conversion system consists of maximum power point tracking (MPPT), voltage regulation, and basic power electronic interfaces. An additional diesel generator is included to support and improve the reliability of stand-alone system when renewable energy sources are not available. A power management strategy is introduced to distribute the generated power among resistive load banks. The frequency regulation is developed with conventional phase locked loop (PLL) system. The power management algorithm was applied in Matlab®/Simulink® to simulate the results.

Keywords: solar photovoltaic, wind energy, diesel engine, hybrid energy system, power management, frequency and voltage regulation

Procedia PDF Downloads 423
23900 A System Dynamics Model for Assessment of Alternative Energy Policy Measures: A Case of Energy Management System as an Energy Efficiency Policy Tool

Authors: Andra Blumberga, Uldis Bariss, Anna Kubule, Dagnija Blumberga

Abstract:

European Union Energy Efficiency Directive provides a set of binding energy efficiency measures to reach. Each of the member states can use either energy efficiency obligation scheme or alternative policy measures or combination of both. Latvian government has decided to divide savings among obligation scheme (65%) and alternative measures (35%). This decision might lead to significant energy tariff increase hence impact on the national economy. To assess impact of alternative policy measures focusing on energy management scheme based on ISO 50001 and ability to decrease share of obligation scheme a System Dynamics modeling was used. Simulation results show that energy efficiency goal can be met with alternative policy measure to large energy consumers in industrial, tertiary and public sectors by applying the energy tax exemption for implementers of energy management system. A delay in applying alternative policy measures plays very important role in reaching the energy efficiency goal. One year delay in implementation of this policy measure reduces cumulative energy savings from 2016 to 2017 from 5200 GWh to 3000 GWh in 2020.

Keywords: system dynamics, energy efficiency, policy measure, energy management system, obligation scheme

Procedia PDF Downloads 254
23899 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community

Authors: Mohamed Ghorab

Abstract:

Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.  

Keywords: distributed energy resources, network energy system, optimization, microgeneration system

Procedia PDF Downloads 170
23898 Drivers of Energy Saving Behaviour: The Relative Influence of Normative, Habitual, Intentional, and Situational Processes

Authors: Karlijn Van Den Broek, Ian Walker, Christian Klöckner

Abstract:

Campaigns aiming to induce energy-saving behaviour among householders use a wide range of approaches that address many different drivers thought to underpin this behaviour. However, little research has compared the relative importance of the different factors that influence energy behaviour, meaning campaigns are not informed about where best to focus resources. Therefore, this study applies the Comprehensive Action Determination Model (CADM) to compare the role of normative, intentional, habitual, and situational processes on energy-saving behaviour. An online survey on a sample of households (N = 247) measured the CADM variables and the data was analysed using structural equation modelling. Results showed that situational and habitual processes were best able to account for energy saving behaviour while normative and intentional processes had little predictive power. These findings suggest that policymakers should move away from motivating householders to save energy and should instead focus their efforts on changing energy habits and creating environments that facilitate energy saving behaviour. These findings add to the wider development in social and environmental psychology that emphasizes the importance of extra-personal variables such as the physical environment in shaping behaviour.

Keywords: energy consumption, behavioural modelling, environmental psychology theory, habits, values

Procedia PDF Downloads 220
23897 Object-Oriented Multivariate Proportional-Integral-Derivative Control of Hydraulic Systems

Authors: J. Fernandez de Canete, S. Fernandez-Calvo, I. García-Moral

Abstract:

This paper presents and discusses the application of the object-oriented modelling software SIMSCAPE to hydraulic systems, with particular reference to multivariable proportional-integral-derivative (PID) control. As a result, a particular modelling approach of a double cylinder-piston coupled system is proposed and motivated, and the SIMULINK based PID tuning tool has also been used to select the proper controller parameters. The paper demonstrates the usefulness of the object-oriented approach when both physical modelling and control are tackled.

Keywords: object-oriented modeling, multivariable hydraulic system, multivariable PID control, computer simulation

Procedia PDF Downloads 321
23896 [Keynote Talk]: Wave-Tidal Integral Turbine Hybrid Generation Approach for Characterizing Performance of Surface Wave

Authors: Norshazmira Mat Azmi, Sayidal El Fatimah Masnan, Shatirah Akib

Abstract:

Boundless renewable energy, such as tidal energy, tidal current energy, wave energy, thermal energy and chemical energy are covered and possessed by oceans. The hybrid system helps in improving the economic and environmental sustainability of renewable energy systems to fulfill the energy demand. The objective and concept of hybridizing renewable energy is to meet the desired system requirements, with the lowest value of the energy cost. This paper reviews applications of using hybrid power generation system for remote area. It also highlights the future directions to investigate the impacts of surface waves on turbine design and performance. The importance of understanding the site-specific wave conditions could also been explored.

Keywords: hybrid, marine current energy, tidal turbine, wave turbine

Procedia PDF Downloads 328
23895 Power Control in Solar Battery Charging Station Using Fuzzy Decision Support System

Authors: Krishnan Manickavasagam, Manikandan Shanmugam

Abstract:

Clean and abundant renewable energy sources (RES) such as solar energy is seen as the best solution to replace conventional energy source. Unpredictable power generation is a major issue in the penetration of solar energy, as power generated is governed by the irradiance received. Controlling the power generated from solar PV (SPV) panels to battery and load is a challenging task. In this paper, power flow control from SPV to load and energy storage device (ESD) is controlled by a fuzzy decision support system (FDSS) on the availability of solar irradiation. The results show that FDSS implemented with the energy management system (EMS) is capable of managing power within the area, and if excess power is available, then shared with the neighboring area.

Keywords: renewable energy sources, fuzzy decision support system, solar photovoltaic, energy storage device, energy management system

Procedia PDF Downloads 75
23894 Optimization and Feasibility Analysis of a PV/Wind/ Battery Hybrid Energy Conversion

Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassan T. Dorra

Abstract:

In this paper, the optimum design for renewable energy system powered an aquaculture pond was determined. Hybrid Optimization Model for Electric Renewable (HOMER) software program, which is developed by U.S National Renewable Energy Laboratory (NREL), is used for analyzing the feasibility of the stand-alone and hybrid system in this study. HOMER program determines whether renewable energy resources satisfy hourly electric demand or not. The program calculates energy balance for every 8760 hours in a year to simulate operation of the system. This optimization compares the demand for the electrical energy for each hour of the year with the energy supplied by the system for that hour and calculates the relevant energy flow for each component in the model. The essential principle is to minimize the total system cost while HOMER ensures control of the system. Moreover the feasibility analysis of the energy system is also studied. Wind speed, solar irradiance, interest rate and capacity shortage are the parameters which are taken into consideration. The simulation results indicate that the hybrid system is the best choice in this study, yielding lower net present cost. Thus, it provides higher system performance than PV or wind stand-alone systems.

Keywords: wind stand-alone system, photovoltaic stand-alone system, hybrid system, optimum system sizing, feasibility, cost analysis

Procedia PDF Downloads 317
23893 Development of a Comprehensive Energy Model for Canada

Authors: Matthew B. Davis, Amit Kumar

Abstract:

With potentially dangerous impacts of climate change on the horizon, Canada has an opportunity to take a lead role on the international stage to demonstrate how energy use intensity and greenhouse gas emission intensity may be effectively reduced. Through bottom-up modelling of Canada’s energy sector using Long-range Energy Alternative Planning (LEAP) software, it can be determined where efforts should to be concentrated to produce the most positive energy management results. By analyzing a provincially integrated Canada, one can develop strategies to minimize the country’s economic downfall while transitioning to lower-emission energy technologies. Canada’s electricity sector plays an important role in accommodating these transitionary technologies as fossil-fuel based power production is prevalent in many parts of the country and is responsible for a large portion (17%) of Canada’s greenhouse gas emissions. Current findings incorporate an in-depth model of Canada’s current energy supply and demand sectors, as well as a business-as-usual scenario up to the year 2035. This allows for in-depth analysis of energy flow from resource potential, to extraction, to fuel and electricity production, to energy end use and emissions in Canada’s residential, transportation, commercial, institutional, industrial, and agricultural sectors. Bottom-up modelling techniques such as these are useful to critically analyze and compare the various possible scenarios of implementing sustainable energy measures. This work can aid government in creating effective energy and environmental policies, as well as guide industry to what technology or process changes would be most worthwhile to pursue.

Keywords: energy management, LEAP, energy end-use, GHG emissions

Procedia PDF Downloads 278
23892 Development of a Mathematical Theoretical Model and Simulation of the Electromechanical System for Wave Energy Harvesting

Authors: P. Valdez, M. Pelissero, A. Haim, F. Muiño, F. Galia, R. Tula

Abstract:

As a result of the studies performed on the wave energy resource worldwide, a research project was set up to harvest wave energy for its conversion into electrical energy. Within this framework, a theoretical model of the electromechanical energy harvesting system, developed with MATLAB’s Simulink software, will be provided. This tool recreates the site conditions where the device will be installed and offers valuable information about the amount of energy that can be harnessed. This research provides a deeper understanding of the utilization of wave energy in order to improve the efficiency of a 1:1 scale prototype of the device.

Keywords: electromechanical device, modeling, renewable energy, sea wave energy, simulation

Procedia PDF Downloads 457
23891 Renewable Energy in Morocco: Photovoltaic Water Pumping System

Authors: Sarah Abdourraziq, R. El Bachtiri

Abstract:

Renewable energies have a major importance of Morocco's new energy strategy. The geographical location of the Kingdom promotes the development of the use of solar energy. The use of this energy reduces the dependence on imports of primary energy, meets the growing demand for water and electricity in remote areas encourages the deployment of a local industry in the renewable energy sector and Minimize carbon emissions. Indeed, given the importance of the radiation intensity received and the duration of the sunshine, the country can cover some of its solar energy needs. The use of solar energy to pump water is one of the most promising application, this technique represents a solution wherever the grid does not exist. In this paper, we will present a presentation of photovoltaic pumping system components, and the important solar pumping projects installed in Morocco to supply water from remote area.

Keywords: PV pumping system, Morocco, PV panel, renewable energy

Procedia PDF Downloads 471
23890 Evaluation of an Air Energy Recovery System in Greenhouse Fed by an Axial Air Extractor

Authors: Eugueni Romantchik, Gilbero Lopez, Diego Terrazas

Abstract:

The residual wind energy recovery from axial air extractors in greenhouses represents a constant source of clean energy production, which reduces production costs by reducing energy consumption costs. The objective of this work is to design, build and evaluate a residual wind energy recovery system. This system consists of a wind turbine placed at an optimal distance, a cone in the air discharge and a mechanism to vary the blades angle of the wind turbine. The system energy balance was analyzed, measuring the main energy parameters such as voltage, amperage, air velocities and angular speeds of the rotors. Tests were carried in a greenhouse with extractor Multifan 130 (1.2 kW, 550 rpm and 1.3 m of diameter) without cone and with cone, with the wind turbine (3 blades with 1.2 m in diameter). The implementation of the system allowed recovering up to 55% of the motor's energy. With the cone installed, the electric energy recovered was increased by 10%. Experimentally, it was shown that changing in 3 degrees the original angle of the wind turbine blades, the angular velocity increases 17.7%.

Keywords: air energy, exhaust fan, greenhouse, wind turbine

Procedia PDF Downloads 139
23889 Smart Grid Simulator

Authors: Ursachi Andrei

Abstract:

The Smart Grid Simulator is a computer software based on advanced algorithms which has as the main purpose to lower the energy bill in the most optimized price efficient way as possible for private households, companies or energy providers. It combines the energy provided by a number of solar modules and wind turbines with the consumption of one household or a cluster of nearby households and information regarding weather conditions and energy prices in order to predict the amount of energy that can be produced by renewable energy sources and the amount of energy that will be bought from the distributor for the following day. The user of the system will not only be able to minimize his expenditures on energy fractures, but also he will be informed about his hourly consumption, electricity prices fluctuation and money spent for energy bought as well as how much money he saved each day and since he installed the system. The paper outlines the algorithm that supports the Smart Grid Simulator idea and presents preliminary test results that support the discussion and implementation of the system.

Keywords: smart grid, sustainable energy, applied science, renewable energy sources

Procedia PDF Downloads 321
23888 Modelling the Photovoltaic Pump Output Using Empirical Data from Local Conditions in the Vhembe District

Authors: C. Matasane, C. Dwarika, R. Naidoo

Abstract:

The mathematical analysis on radiation obtained and the development of the solar photovoltaic (PV) array groundwater pumping is needed in the rural areas of Thohoyandou, Limpopo Province for sizing and power performance subject to the climate conditions within the area. A simple methodology approach is developed for the directed coupled solar, controller and submersible ground water pump system. The system consists of a PV array, pump controller and submerged pump, battery backup and charger controller. For this reason, the theoretical solar radiation obtained for optimal predictions and system performance in order to achieve different design and operating parameters. Here the examination of the PV schematic module in a Direct Current (DC) application is used for obtainable maximum solar power energy for water pumping. In this paper, a simple efficient photovoltaic water pumping system is presented with its theoretical studies and mathematical modeling of photovoltaics (PV) system.

Keywords: renewable energy sources, solar groundwater pumping, theoretical and mathematical analysis of photovoltaic (PV) system, theoretical solar radiation

Procedia PDF Downloads 348
23887 Distributed Energy System - Microgrid Integration of Hybrid Power Systems

Authors: Pedro Esteban

Abstract:

Planning a hybrid power system (HPS) that integrates renewable generation sources, non-renewable generation sources and energy storage, involves determining the capacity and size of various components to be used in the system to be able to supply reliable electricity to the connected load as required. Nowadays it is very common to integrate solar photovoltaic (PV) power plants for renewable generation as part of HPS. The solar PV system is usually balanced via a second form of generation (renewable such as wind power or using fossil fuels such as a diesel generator) or an energy storage system (such as a battery bank). Hybrid power systems can also provide other forms of power such as heat for some applications. Modern hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.

Keywords: microgrids, hybrid power systems, energy storage, grid code compliance

Procedia PDF Downloads 124
23886 Optimal Planning and Design of Hybrid Energy System for Taxila University

Authors: Habib Ur Rahman Habib

Abstract:

Renewable energy resources are being realized as suitable options in hybrid energy planning for on-grid and micro grid. In this paper, operation, planning and optimal design of on-grid distributed energy resources based hybrid system are investigated. The aim is to minimize the cost of the overall energy system keeping in view the environmental emission and minimum penetration of conventional energy resources. Seven grid connected different case studies including diesel only, diesel-renewable based, and renewable based only are designed to perform economic analysis, operational planning and emission. Sensitivity analysis is implemented to investigate the impact of different parameters on the performance of energy resources.

Keywords: data management, renewable energy, distributed energy, smart grid, micro-grid, modeling, energy planning, design optimization

Procedia PDF Downloads 425
23885 Evaluation of Energy Upgrade Measures and Connection of Renewable Energy Sources Using Software Tools: Case Study of an Academic Library Building in Larissa, Greece

Authors: Giwrgos S. Gkarmpounis, Aikaterini G. Rokkou, Marios N. Moschakis

Abstract:

Increased energy consumption in the academic buildings, creates the need to implement energy saving measures and to take advantage of the renewable energy sources to cover the electrical needs of those buildings. An Academic Library will be used as a case study. With the aid of RETScreen software that takes into account the energy consumptions and characteristics of the Library Building, it is proved that measures such as the replacement of fluorescent lights with led lights, the installation of outdoor shading, the replacement of the openings and Building Management System installation, provide a high level of energy savings. Moreover, given the available space of the building and the climatic data, the installation of a photovoltaic system of 100 kW can also cover a serious amount of the building energy consumption, unlike a wind system that seems uncompromising. Lastly, HOMER software is used to compare the use of a photovoltaic system against a wind system in order to verify the results that came up from the RETScreen software concerning the renewable energy sources.

Keywords: building sector, energy saving measures, energy upgrading, homer software, renewable energy sources, RETScreen software

Procedia PDF Downloads 200
23884 Geographic Information System for District Level Energy Performance Simulations

Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck

Abstract:

The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.

Keywords: CityGML, EnergyADE, energy performance simulation, GIS

Procedia PDF Downloads 146
23883 Large Eddy Simulation with Energy-Conserving Schemes: Understanding Wind Farm Aerodynamics

Authors: Dhruv Mehta, Alexander van Zuijlen, Hester Bijl

Abstract:

Large Eddy Simulation (LES) numerically resolves the large energy-containing eddies of a turbulent flow, while modelling the small dissipative eddies. On a wind farm, these large scales carry the energy wind turbines extracts and are also responsible for transporting the turbines’ wakes, which may interact with downstream turbines and certainly with the atmospheric boundary layer (ABL). In this situation, it is important to conserve the energy that these wake’s carry and which could be altered artificially through numerical dissipation brought about by the schemes used for the spatial discretisation and temporal integration. Numerical dissipation has been reported to cause the premature recovery of turbine wakes, leading to an over prediction in the power produced by wind farms.An energy-conserving scheme is free from numerical dissipation and ensures that the energy of the wakes is increased or decreased only by the action of molecular viscosity or the action of wind turbines (body forces). The aim is to create an LES package with energy-conserving schemes to simulate wind turbine wakes correctly to gain insight into power-production, wake meandering etc. Such knowledge will be useful in designing more efficient wind farms with minimal wake interaction, which if unchecked could lead to major losses in energy production per unit area of the wind farm. For their research, the authors intend to use the Energy-Conserving Navier-Stokes code developed by the Energy Research Centre of the Netherlands.

Keywords: energy-conserving schemes, modelling turbulence, Large Eddy Simulation, atmospheric boundary layer

Procedia PDF Downloads 445
23882 Toward the Decarbonisation of EU Transport Sector: Impacts and Challenges of the Diffusion of Electric Vehicles

Authors: Francesca Fermi, Paola Astegiano, Angelo Martino, Stephanie Heitel, Michael Krail

Abstract:

In order to achieve the targeted emission reductions for the decarbonisation of the European economy by 2050, fundamental contributions are required from both energy and transport sectors. The objective of this paper is to analyse the impacts of a largescale diffusion of e-vehicles, either battery-based or fuel cells, together with the implementation of transport policies aiming at decreasing the use of motorised private modes in order to achieve greenhouse gas emission reduction goals, in the context of a future high share of renewable energy. The analysis of the impacts and challenges of future scenarios on transport sector is performed with the ASTRA (ASsessment of TRAnsport Strategies) model. ASTRA is a strategic system-dynamic model at European scale (EU28 countries, Switzerland and Norway), consisting of different sub-modules related to specific aspects: the transport system (e.g. passenger trips, tonnes moved), the vehicle fleet (composition and evolution of technologies), the demographic system, the economic system, the environmental system (energy consumption, emissions). A key feature of ASTRA is that the modules are linked together: changes in one system are transmitted to other systems and can feed-back to the original source of variation. Thanks to its multidimensional structure, ASTRA is capable to simulate a wide range of impacts stemming from the application of transport policy measures: the model addresses direct impacts as well as second-level and third-level impacts. The simulation of the different scenarios is performed within the REFLEX project, where the ASTRA model is employed in combination with several energy models in a comprehensive Modelling System. From the transport sector perspective, some of the impacts are driven by the trend of electricity price estimated from the energy modelling system. Nevertheless, the major drivers to a low carbon transport sector are policies related to increased fuel efficiency of conventional drivetrain technologies, improvement of demand management (e.g. increase of public transport and car sharing services/usage) and diffusion of environmentally friendly vehicles (e.g. electric vehicles). The final modelling results of the REFLEX project will be available from October 2018. The analysis of the impacts and challenges of future scenarios is performed in terms of transport, environmental and social indicators. The diffusion of e-vehicles produces a consistent reduction of future greenhouse gas emissions, although the decarbonisation target can be achieved only with the contribution of complementary transport policies on demand management and supporting the deployment of low-emission alternative energy for non-road transport modes. The paper explores the implications through time of transport policy measures on mobility and environment, underlying to what extent they can contribute to a decarbonisation of the transport sector. Acknowledgements: The results refer to the REFLEX project which has received grants from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 691685.

Keywords: decarbonisation, greenhouse gas emissions, e-mobility, transport policies, energy

Procedia PDF Downloads 129
23881 Assessment of Multi-Domain Energy Systems Modelling Methods

Authors: M. Stewart, Ameer Al-Khaykan, J. M. Counsell

Abstract:

Emissions are a consequence of electricity generation. A major option for low carbon generation, local energy systems featuring Combined Heat and Power with solar PV (CHPV) has significant potential to increase energy performance, increase resilience, and offer greater control of local energy prices while complementing the UK’s emissions standards and targets. Recent advances in dynamic modelling and simulation of buildings and clusters of buildings using the IDEAS framework have successfully validated a novel multi-vector (simultaneous control of both heat and electricity) approach to integrating the wide range of primary and secondary plant typical of local energy systems designs including CHP, solar PV, gas boilers, absorption chillers and thermal energy storage, and associated electrical and hot water networks, all operating under a single unified control strategy. Results from this work indicate through simulation that integrated control of thermal storage can have a pivotal role in optimizing system performance well beyond the present expectations. Environmental impact analysis and reporting of all energy systems including CHPV LES presently employ a static annual average carbon emissions intensity for grid supplied electricity. This paper focuses on establishing and validating CHPV environmental performance against conventional emissions values and assessment benchmarks to analyze emissions performance without and with an active thermal store in a notional group of non-domestic buildings. Results of this analysis are presented and discussed in context of performance validation and quantifying the reduced environmental impact of CHPV systems with active energy storage in comparison with conventional LES designs.

Keywords: CHPV, thermal storage, control, dynamic simulation

Procedia PDF Downloads 212
23880 H∞ Fuzzy Integral Power Control for DFIG Wind Energy System

Authors: N. Chayaopas, W. Assawinchaichote

Abstract:

In order to maximize energy capturing from wind energy, controlling the doubly fed induction generator to have optimal power from the wind, generator speed and output electrical power control in wind energy system have a great importance due to the nonlinear behavior of wind velocities. In this paper purposes the design of a control scheme is developed for power control of wind energy system via H∞ fuzzy integral controller. Firstly, the nonlinear system is represented in term of a TS fuzzy control design via linear matrix inequality approach to find the optimal controller to have an H∞ performance are derived. The proposed control method extract the maximum energy from the wind and overcome the nonlinearity and disturbances problems of wind energy system which give good tracking performance and high efficiency power output of the DFIG.

Keywords: doubly fed induction generator, H-infinity fuzzy integral control, linear matrix inequality, wind energy system

Procedia PDF Downloads 318
23879 Optimizing Inanda Dam Using Water Resources Models

Authors: O. I. Nkwonta, B. Dzwairo, J. Adeyemo, A. Jaiyola, N. Sawyerr, F. Otieno

Abstract:

The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, Water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options.

Keywords: complex, water resources, planning, cost effective and management

Procedia PDF Downloads 549
23878 The Design and Construction of the PV-Wind Autonomous System for Greenhouse Plantations in Central Thailand

Authors: Napat Watjanatepin, Wikorn Wong-Satiean

Abstract:

The objective of this research is to design and construct the PV-Wind hybrid autonomous system for the greenhouse plantation, and analyze the technical performance of the PV-Wind energy system. This design depends on the water consumption in the greenhouse by using 24 of the fogging mist each with the capability of 24 liter/min. The operating time is 4 times per day, each round for 15 min. The fogging system is being driven by water pump with AC motor rating 0.5 hp. The load energy consumed is around 1.125 kWh/d. The designing results of the PV-Wind hybrid energy system is that sufficient energy could be generated by this system. The results of this study can be applied as a technical data reference for other areas in the central part of Thailand.

Keywords: PV-Wind hybrid autonomous system, greenhouse plantation, fogging system, central part of Thailand

Procedia PDF Downloads 289
23877 Optimal Scheduling for Energy Storage System Considering Reliability Constraints

Authors: Wook-Won Kim, Je-Seok Shin, Jin-O Kim

Abstract:

This paper propose the method for optimal scheduling for battery energy storage system with reliability constraint of energy storage system in reliability aspect. The optimal scheduling problem is solved by dynamic programming with proposed transition matrix. Proposed optimal scheduling method guarantees the minimum fuel cost within specific reliability constraint. For evaluating proposed method, the timely capacity outage probability table (COPT) is used that is calculated by convolution of probability mass function of each generator. This study shows the result of optimal schedule of energy storage system.

Keywords: energy storage system (ESS), optimal scheduling, dynamic programming, reliability constraints

Procedia PDF Downloads 380
23876 Urban Energy Demand Modelling: Spatial Analysis Approach

Authors: Hung-Chu Chen, Han Qi, Bauke de Vries

Abstract:

Energy consumption in the urban environment has attracted numerous researches in recent decades. However, it is comparatively rare to find literary works which investigated 3D spatial analysis of urban energy demand modelling. In order to analyze the spatial correlation between urban morphology and energy demand comprehensively, this paper investigates their relation by using the spatial regression tool. In addition, the spatial regression tool which is applied in this paper is ordinary least squares regression (OLS) and geographically weighted regression (GWR) model. Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), and building volume are explainers of urban morphology, which act as independent variables of Energy-land use (E-L) model. NDBI and NDVI are used as the index to describe five types of land use: urban area (U), open space (O), artificial green area (G), natural green area (V), and water body (W). Accordingly, annual electricity, gas demand and energy demand are dependent variables of the E-L model. Based on the analytical result of E-L model relation, it revealed that energy demand and urban morphology are closely connected and the possible causes and practical use are discussed. Besides, the spatial analysis methods of OLS and GWR are compared.

Keywords: energy demand model, geographically weighted regression, normalized difference built-up index, normalized difference vegetation index, spatial statistics

Procedia PDF Downloads 120
23875 Dynamic Thermal Modelling of a PEMFC-Type Fuel Cell

Authors: Marco Avila Lopez, Hasnae Ait-Douchi, Silvia De Los Santos, Badr Eddine Lebrouhi, Pamela Ramírez Vidal

Abstract:

In the context of the energy transition, fuel cell technology has emerged as a solution for harnessing hydrogen energy and mitigating greenhouse gas emissions. An in-depth study was conducted on a PEMFC-type fuel cell, with an initiation of an analysis of its operational principles and constituent components. Subsequently, the modelling of the fuel cell was undertaken using the Python programming language, encompassing both steady-state and transient regimes. In the case of the steady-state regime, the physical and electrochemical phenomena occurring within the fuel cell were modelled, with the assumption of uniform temperature throughout all cell compartments. Parametric identification was carried out, resulting in a remarkable mean error of only 1.62% when the model results were compared to experimental data documented in the literature. The dynamic model that was developed enabled the scrutiny of the fuel cell's response in terms of temperature and voltage under varying current conditions.

Keywords: fuel cell, modelling, dynamic, thermal model, PEMFC

Procedia PDF Downloads 60