Search results for: energy storage system (ESS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23710

Search results for: energy storage system (ESS)

23620 Performance Improvement of Electric Vehicle Using K - Map Constructed Rule Based Energy Management Strategy for Battery/Ultracapacitor Hybrid Energy Storage System

Authors: Jyothi P. Phatak, L. Venkatesha, C. S. Raviprasad

Abstract:

The performance improvement of Hybrid Energy Storage System (HESS) in Electric Vehicle (EV) has been in discussion over the last decade. The important issues in terms of performance parameters addressed are, range of vehicle and battery (BA) peak current. Published literature has either addressed battery peak current reduction or range improvement in EV. Both the issues have not been specifically discussed and analyzed. This paper deals with both range improvement in EV and battery peak current reduction by applying a new Karnaugh Map (K-Map) constructed rule based energy management strategy to proposed HESS. The strategy allows Ultracapacitor (UC) to assist battery when the vehicle accelerates there by reducing the burden on battery. Simulation is carried out for various operating modes of EV considering both urban and highway driving conditions. Simulation is done for different values of UC by keeping battery rating constant for each driving cycle and results are presented. Feasible value of UC is selected based on simulation results. The results of proposed HESS show an improvement in performance parameters compared to Battery only Energy Storage System (BESS). Battery life is improved to considerable extent and there is an overall development in the performance of electric vehicle.

Keywords: electric vehicle, PID controller, energy management strategy, range, battery current, ultracapacitor

Procedia PDF Downloads 83
23619 Central Energy Management for Optimizing Utility Grid Power Exchange with a Network of Smart Homes

Authors: Sima Aznavi, Poria Fajri, Hanif Livani

Abstract:

Smart homes are small energy systems which may be equipped with renewable energy sources, storage devices, and loads. Energy management strategy plays a main role in the efficient operation of smart homes. Effective energy scheduling of the renewable energy sources and storage devices guarantees efficient energy management in households while reducing the energy imports from the grid. Nevertheless, despite such strategies, independently day ahead energy schedules for multiple households can cause undesired effects such as high power exchange with the grid at certain times of the day. Therefore, the interactions between multiple smart home day ahead energy projections is a challenging issue in a smart grid system and if not managed appropriately, the imported energy from the power network can impose additional burden on the distribution grid. In this paper, a central energy management strategy for a network consisting of multiple households each equipped with renewable energy sources, storage devices, and Plug-in Electric Vehicles (PEV) is proposed. The decision-making strategy alongside the smart home energy management system, minimizes the energy purchase cost of the end users, while at the same time reducing the stress on the utility grid. In this approach, the smart home energy management system determines different operating scenarios based on the forecasted household daily load and the components connected to the household with the objective of minimizing the end user overall cost. Then, selected projections for each household that are within the same cost range are sent to the central decision-making system. The central controller then organizes the schedules to reduce the overall peak to average ratio of the total imported energy from the grid. To validate this approach simulations are carried out for a network of five smart homes with different load requirements and the results confirm that by applying the proposed central energy management strategy, the overall power demand from the grid can be significantly flattened. This is an effective approach to alleviate the stress on the network by distributing its energy to a network of multiple households over a 24- hour period.

Keywords: energy management, renewable energy sources, smart grid, smart home

Procedia PDF Downloads 215
23618 A Comprehensive Study of a Hybrid System Integrated Solid Oxide Fuel cell, Gas Turbine, Organic Rankine Cycle with Compressed air Energy Storage

Authors: Taiheng Zhang, Hongbin Zhao

Abstract:

Compressed air energy storage become increasingly vital for solving intermittency problem of some renewable energies. In this study, a new hybrid system on a combination of compressed air energy storage (CAES), solid oxide fuel cell (SOFC), gas turbine (GT), and organic Rankine cycle (ORC) is proposed. In the new system, excess electricity during off-peak time is utilized to compress air. Then, the compressed air is stored in compressed air storage tank. During peak time, the compressed air enters the cathode of SOFC directly instead of combustion chamber of traditional CAES. There is no air compressor consumption of SOFC-GT in peak demand, so SOFC- GT can generate power with high-efficiency. In addition, the waste heat of exhaust from GT is recovered by applying an ORC. Three different organic working fluid (R123, R601, R601a) of ORC are chosen to evaluate system performance. Based on Aspen plus and Engineering Equation Solver (EES) software, energy and exergoeconomic analysis are used to access the viability of the combined system. Besides, the effect of two parameters (fuel flow and ORC turbine inlet pressure) on energy efficiency is studied. The effect of low-price electricity at off-peak hours on thermodynamic criteria (total unit exergy cost of products and total cost rate) is also investigated. Furthermore, for three different organic working fluids, the results of round-trip efficiency, exergy efficiency, and exergoeconomic factors are calculated and compared. Based on thermodynamic performance and exergoeconomic performance of different organic working fluids, the best suitable working fluid will be chosen. In conclusion, this study can provide important guidance for system efficiency improvement and viability.

Keywords: CAES, SOFC, ORC, energy and exergoeconomic analysis, organic working fluids

Procedia PDF Downloads 90
23617 Utilization of a Composite of Oil Ash, Scoria, and Expanded Perlite with Polyethylene Glycol for Energy Storage Systems

Authors: Khaled Own Mohaisen, Md. Hasan Zahir, Salah U. Al-Dulaijan, Shamsad Ahmad, Mohammed Maslehuddin

Abstract:

Shape-stabilized phase change materials (ss-PCMs) for energy storage systems were developed using perlite, scoria, and oil ash as a carrier, with polyethylene glycol (PEG) with a molecular weight of 6000 as phase change material (PCM). Physical mixing using simple impregnation of ethanol evaporation technique method was carried out to fabricate the form stabilized PCM. The fabricated PCMs prevent leakage, reduce the supercooling effect and minimize recalescence problems of the PCM. The differential scanning calorimetry (DSC) results show that perlite composite (ExPP) has the highest latent heat of melting and freezing values of (141.6 J/g and 143.7 J/g) respectively, compared with oil ash (OAP) and scoria (SCP) composites. Moreover, ExPP has the highest impregnation ratio, energy storage efficiency, and energy storage capacity compared with OAP and SCP. However, OAP and SCP have higher thermal conductivity values compared to ExPP composites which accelerate the thermal storage response in the composite. These results were confirmed with DSC, and the characteristic of the PCMs was investigated by using XRD and FE-SEM techniques.

Keywords: expanded perlite, oil ash, scoria, energy storage material

Procedia PDF Downloads 53
23616 Properties of Ettringite According to Hydration, Dehydration and Carbonation Process

Authors: Bao Chen, Frederic Kuznik, Matthieu Horgnies, Kevyn Johannes, Vincent Morin, Edouard Gengembre

Abstract:

The contradiction between energy consumption, environment protection, and social development is increasingly intensified during recent decade years. At the same time, as avoiding fossil-fuels-thirsty, people turn their view on the renewable green energy, such as solar energy, wind power, hydropower, etc. However, due to the unavoidable mismatch on geography and time for production and consumption, energy storage seems to be one of the most reasonable solutions to enlarge the use of renewable energies. Thermal energy storage (TES), a branch of energy storage solution, mainly concerns the capture, storage and consumption of thermal energy for later use in different scales (individual house, apartment, district, and city). In TES research field, sensible heat and latent heat storage have been widely studied and presented at an advanced stage of development. Compared with them, thermochemical energy storage is still at initial phase but provides a relatively higher theoretical energy density and a long shelf life without heat dissipation during storage. Among thermochemical energy storage materials, inorganic pure or composite compounds like micro-porous silica gel, SrBr₂ hydrate and MgSO₄-Zeolithe have been reported as promising to be integrated into thermal energy storage systems. However, the cost of these materials, one of main obstacles, may hinder the wide use of energy storage systems in real application scales (individual house, apartment, district and even city). New studies on ettringite show promising application for thermal energy storage since its high energy density and large resource from cementitious materials. Ettringite, or calcium trisulfoaluminate hydrate, of which chemical formula is 3CaO∙Al₂O₃∙3CaSO₄∙32H₂O, or C₆AS̅₃H₃₂ as known in cement chemistry notation, is one of the most important members of AFt group. As a common compound in hydrated cements, ettringite has been widely studied for its performances in construction but barely known as a thermochemical material. For this study, we summarize available data about the structure and properties of ettringite and its metastable phase (meta-ettringite), including the processes of hydration, thermal conversion and carbonation durability for thermal energy storage.

Keywords: building materials, ettringite, meta-ettringite, thermal energy storage

Procedia PDF Downloads 189
23615 Peak Shaving in Microgrids Using Hybrid Storage

Authors: Juraj Londák, Radoslav Vargic, Pavol Podhradský

Abstract:

In this contribution, we focus on the technical and economic aspects of using hybrid storage in microgrids for peak shaving. We perform a feasibility analysis of hybrid storage consisting of conventional supercapacitors and chemical batteries. We use multiple real-life consumption profiles from various industry-oriented microgrids. The primary purpose is to construct a digital twin model for reserved capacity simulation and prediction. The main objective is to find the equilibrium between technical innovations, acquisition costs and energy cost savings

Keywords: microgrid, peak shaving, energy storage, digital twin

Procedia PDF Downloads 129
23614 Influence of Surfactant on Supercooling Degree of Aqueous Titania Nanofluids in Energy Storage Systems

Authors: Hoda Aslani, Mohammad Moghiman, Mohammad Aslani

Abstract:

Considering the demand to reduce global warming potential and importance of solidification in various applications, there is an increasing interest in energy storage systems to find the efficient phase change materials. Therefore, this paper presents an experimental study and comparison on the potential of titania nanofluids with and without surfactant for cooling energy storage systems. A designed cooling generation device based on compression refrigeration cycle is used to explore nanofluids solidification characteristics. In this work, titania nanoparticles of 0.01, 0.02 and 0.04 wt.% are dispersed in deionized water as base fluid. Measurement of phase change parameters of nanofluids illustrates that the addition of polyvinylpyrrolidone (PVP) as surfactant to titania nanofluids advances the onset nucleation time and leads to lower solidification time. Also, the experimental results show that only adding 0.02 wt.% titania nanoparticles, especially in the case of nanofluids with a surfactant, can evidently reduce the supercooling degree by nearly 70%. Hence, it is concluded that there is a great energy saving potential in the energy storage systems using titania nanofluid with PVP.

Keywords: cooling energy storage, nanofluid, PVP, solidification, titania

Procedia PDF Downloads 166
23613 Integration of Thermal Energy Storage and Electric Heating with Combined Heat and Power Plants

Authors: Erich Ryan, Benjamin McDaniel, Dragoljub Kosanovic

Abstract:

Combined heat and power (CHP) plants are an efficient technology for meeting the heating and electric needs of large campus energy systems, but have come under greater scrutiny as the world pushes for emissions reductions and lower consumption of fossil fuels. The electrification of heating and cooling systems offers a great deal of potential for carbon savings, but these systems can be costly endeavors due to increased electric consumption and peak demand. Thermal energy storage (TES) has been shown to be an effective means of improving the viability of electrified systems, by shifting heating and cooling load to off-peak hours and reducing peak demand charges. In this study, we analyze the integration of an electrified heating and cooling system with thermal energy storage into a campus CHP plant, to investigate the potential of leveraging existing infrastructure and technologies with the climate goals of the 21st century. A TRNSYS model was built to simulate a ground source heat pump (GSHP) system with TES using measured campus heating and cooling loads. The GSHP with TES system is modeled to follow the parameters of industry standards and sized to provide an optimal balance of capital and operating costs. Using known CHP production information, costs and emissions were investigated for a unique large energy user rate structure that operates a CHP plant. The results highlight the cost and emissions benefits of a targeted integration of heat pump technology within the framework of existing CHP systems, along with the performance impacts and value of TES capability within the combined system.

Keywords: thermal energy storage, combined heat and power, heat pumps, electrification

Procedia PDF Downloads 70
23612 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based on Li-Ion Battery and Solar Energy Supply

Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan

Abstract:

Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries. In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.

Keywords: ZigBee, Li-ion battery, solar panel, CC2530

Procedia PDF Downloads 347
23611 Investigation on Development of Pv and Wind Power with Hydro Pumped Storage to Increase Renewable Energy Penetration: A Parallel Analysis of Taiwan and Greece

Authors: Robel Habtemariam

Abstract:

Globally, wind energy and photovoltaics (PV) solar energy are among the leading renewable energy sources (RES) in terms of installed capacity. In order to increase the contribution of RES to the power supply system, large scale energy integration is required, mainly due to wind energy and PV. In this paper, an investigation has been made on the electrical power supply systems of Taiwan and Greece in order to integrate high level of wind and photovoltaic (PV) to increase the penetration of renewable energy resources. Currently, both countries heavily depend on fossil fuels to meet the demand and to generate adequate electricity. Therefore, this study is carried out to look into the two cases power supply system by developing a methodology that includes major power units. To address the analysis, an approach for simulation of power systems is formulated and applied. The simulation is based on the non-dynamic analysis of the electrical system. This simulation results in calculating the energy contribution of different types of power units; namely the wind, PV, non-flexible and flexible power units. The calculation is done for three different scenarios (2020, 2030, & 2050), where the first two scenarios are based on national targets and scenario 2050 is a reflection of ambitious global targets. By 2030 in Taiwan, the input of the power units is evaluated as 4.3% (wind), 3.7% (PV), 65.2 (non-flexible), 25.3% (flexible), and 1.5% belongs to hydropower plants. In Greece, much higher renewable energy contribution is observed for the same scenario with 21.7% (wind), 14.3% (PV), 38.7% (non-flexible), 14.9% (flexible), and 10.3% (hydro). Moreover, it examines the ability of the power systems to deal with the variable nature of the wind and PV generation. For this reason, an investigation has also been done on the use of the combined wind power with pumped storage systems (WPS) to enable the system to exploit the curtailed wind energy & surplus PV and thus increase the wind and PV installed capacity and replace the peak supply by conventional power units. Results show that the feasibility of pumped storage can be justified in the high scenario (that is the scenario of 2050) of RES integration especially in the case of Greece.

Keywords: large scale energy integration, photovoltaics solar energy, pumped storage systems, renewable energy sources

Procedia PDF Downloads 256
23610 Synthesis and Performance Adsorbent from Coconut Shells Polyetheretherketone for Natural Gas Storage

Authors: Umar Hayatu Sidik

Abstract:

The natural gas vehicle represents a cost-competitive, lower-emission alternative to the gasoline-fuelled vehicle. The immediate challenge that confronts natural gas is increasing its energy density. This paper addresses the question of energy density by reviewing the storage technologies for natural gas with improved adsorbent. Technical comparisons are made between storage systems containing adsorbent and conventional compressed natural gas based on the associated amount of moles contained with Compressed Natural Gas (CNG) and Adsorbed Natural Gas (ANG). We also compare gas storage in different cylinder types (1, 2, 3 and 4) based on weight factor and storage capacity. For the storage tank system, we discussed the concept of carbon adsorbents, when used in CNG tanks, offer a means of increasing onboard fuel storage and, thereby, increase the driving range of the vehicle. It confirms that the density of the stored gas in ANG is higher than that of compressed natural gas (CNG) operated at the same pressure. The obtained experimental data were correlated using linear regression analysis with common adsorption kinetic (Pseudo-first order and Pseudo-second order) and isotherm models (Sip and Toth). The pseudo-second-order kinetics describe the best fitness with a correlation coefficient of 9945 at 35 bar. For adsorption isotherms, the Sip model shows better fitness with the regression coefficient (R2) of 0.9982 and with the lowest RSMD value of 0.0148. The findings revealed the potential of adsorbent in natural gas storage applications.

Keywords: natural gas, adsorbent, compressed natural gas, adsorption

Procedia PDF Downloads 34
23609 Compression and Air Storage Systems for Small Size CAES Plants: Design and Off-Design Analysis

Authors: Coriolano Salvini, Ambra Giovannelli

Abstract:

The use of renewable energy sources for electric power production leads to reduced CO2 emissions and contributes to improving the domestic energy security. On the other hand, the intermittency and unpredictability of their availability poses relevant problems in fulfilling safely and in a cost efficient way the load demand along the time. Significant benefits in terms of “grid system applications”, “end-use applications” and “renewable applications” can be achieved by introducing energy storage systems. Among the currently available solutions, CAES (Compressed Air Energy Storage) shows favorable features. Small-medium size plants equipped with artificial air reservoirs can constitute an interesting option to get efficient and cost-effective distributed energy storage systems. The present paper is addressed to the design and off-design analysis of the compression system of small size CAES plants suited to absorb electric power in the range of hundreds of kilowatt. The system of interest is constituted by an intercooled (in case aftercooled) multi-stage reciprocating compressor and a man-made reservoir obtained by connecting large diameter steel pipe sections. A specific methodology for the system preliminary sizing and off-design modeling has been developed. Since during the charging phase the electric power absorbed along the time has to change according to the peculiar CAES requirements and the pressure ratio increases continuously during the filling of the reservoir, the compressor has to work at variable mass flow rate. In order to ensure an appropriately wide range of operations, particular attention has been paid to the selection of the most suitable compressor capacity control device. Given the capacity regulation margin of the compressor and the actual level of charge of the reservoir, the proposed approach allows the instant-by-instant evaluation of minimum and maximum electric power absorbable from the grid. The developed tool gives useful information to appropriately size the compression system and to manage it in the most effective way. Various cases characterized by different system requirements are analysed. Results are given and widely discussed.

Keywords: artificial air storage reservoir, compressed air energy storage (CAES), compressor design, compression system management.

Procedia PDF Downloads 198
23608 Energy Efficient Microgrid Design with Hybrid Power Systems

Authors: Pedro Esteban

Abstract:

Today’s electrical networks, including microgrids, are evolving into smart grids. The smart grid concept brings the idea that the power comes from various sources (continuous or intermittent), in various forms (AC or DC, high, medium or low voltage, etc.), and it must be integrated into the electric power system in a smart way to guarantee a continuous and reliable supply that complies with power quality and energy efficiency standards and grid code requirements. This idea brings questions for the different players like how the required power will be generated, what kind of power will be more suitable, how to store exceeding levels for short or long-term usage, and how to combine and distribute all the different generation power sources in an efficient way. To address these issues, there has been lots of development in recent years on the field of on-grid and off-grid hybrid power systems (HPS). These systems usually combine one or more modes of electricity generation together with energy storage to ensure optimal supply reliability and high level of energy security. Hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.

Keywords: microgrids, hybrid power systems, energy storage, power quality improvement

Procedia PDF Downloads 109
23607 Internet of Things Based Battery Management System

Authors: Pakhil Singh, Rahul Singh, Mohammad Saad Alam, Yasser Rafat

Abstract:

The battery management system is an essential package/system which ensures optimum performance and safety of a battery by monitoring the key essential parameters of the battery like the voltage, current, temperature, state of charge, state of health during charging and discharging. This can be accomplished using outputs of various sensors employed to serve the purpose. The increasing demand for electricity generation from renewable energy sources requires proper storage and hence a proper monitoring system as well. A battery management system is required in wide applications ranging from renewable energy storage systems, off-grid solar PV applications to electric vehicles. The aim of this paper is to study the parameters used in monitoring various battery operating conditions and proposes the usage of the internet of things (IoT) to implement a reliable battery management system.

Keywords: electric vehicles, internet of things, sensors, state of charge, state of health

Procedia PDF Downloads 155
23606 Influence of the Non-Uniform Distribution of Filler Porosity on the Thermal Performance of Sensible Heat Thermocline Storage Tanks

Authors: Yuchao Hua, Lingai Luo

Abstract:

Thermal energy storage is of critical importance for the highly-efficient utilization of renewable energy sources. Over the past decades, single-tank thermocline technology has attracted much attention owing to its high cost-effectiveness. In the present work, we investigate the influence of the filler porosity’s non-uniform distribution on the thermal performance of the packed-bed sensible heat thermocline storage tanks on the basis of the analytical model obtained by the Laplace transform. It is found that when the total amount of filler materials (i.e., the integration of porosity) is fixed, the different porosity distributions can result in the significantly-different behaviors of outlet temperature and thus the varied charging and discharging efficiencies. Our results indicate that a non-uniform distribution of the fillers with the proper design can improve the heat storage performance without changing the total amount of the filling materials.

Keywords: energy storage, heat thermocline storage tank, packed bed, transient thermal analysis

Procedia PDF Downloads 57
23605 Investigation of Night Cooling Event, Experimental Radiator

Authors: Fatemeh Karampour

Abstract:

In the hot climate countries, especially those countries with great desert area, such as Iran, a considerable part of the energy is consumed due to cooling and air conditioning system in a hot season. So it is important to find a renewable energy supply for cooling systems. Although, there are few consistent researches in this field of renewable energy in compare with other fields. This research is presenting a study on performance of a night cooling radiator and working fluid storage for night time operation and day time resting periods. In these experiments, we didn’t expose any heating load but focused only on the possibility of system combination and its potential cooling effect. A very simple radiator has been designed in south of Iran, Shiraz, in order to perform this study. The radiator has been insulated with polystyrene foam and bubbled plastic sheets have been used as top cover. Using a single bubbled plastic sheet, the radiator temperature reached 0°C which is 20°C lower than minimum ambient temperature. Putting a small storage tank in the line increased the radiator’s minimum temperature at night; however, provided some cool fluid source for hot days of Shiraz that easily reaches 40°C. The results have shown very good cooling potential without heating load and acceptable temperature increasing during hot day with a small, short term storage tank. Future studies can make the system more effective and applicable.

Keywords: night cooling, experimental set up, cooling radiator, chill storage

Procedia PDF Downloads 125
23604 A Review of Current Trends in Grid Balancing Technologies

Authors: Kulkarni Rohini D.

Abstract:

While emerging as plausible sources of energy generation, new technologies, including photovoltaic (PV) solar panels, home battery energy storage systems, and electric vehicles (EVs), are exacerbating the operations of power distribution networks for distribution network operators (DNOs). Renewable energy production fluctuates, stemming in over- and under-generation energy, further complicating the issue of storing excess power and using it when necessary. Though renewable sources are non-exhausting and reoccurring, power storage of generated energy is almost as paramount as to its production process. Hence, to ensure smooth and efficient power storage at different levels, Grid balancing technologies are consequently the next theme to address in the sustainable space and growth sector. But, since hydrogen batteries were used in the earlier days to achieve this balance in power grids, new, recent advancements are more efficient and capable per unit of storage space while also being distinctive in terms of their underlying operating principles. The underlying technologies of "Flow batteries," "Gravity Solutions," and "Graphene Batteries" already have entered the market and are leading the race for efficient storage device solutions that will improve and stabilize Grid networks, followed by Grid balancing technologies.

Keywords: flow batteries, grid balancing, hydrogen batteries, power storage, solar

Procedia PDF Downloads 37
23603 Designing ZIF67 Derivatives Using Ammonia-Based Fluorine Complex as Structure-Directing Agent for Energy Storage Applications

Authors: Lu-Yin Lin

Abstract:

The morphology of electroactive material is highly related to energy storage ability. Structure-directing agent (SDA) can design electroactive materials with favorable surface properties. Zeolitic imidazolate framework 67 (ZIF67) is one of the potential electroactive materials for energy storage devices. The SDA concept is less applied to designing ZIF67 derivatives in previous studies. An in-situ technique with ammonium fluoride (NH₄F) as SDA is proposed to produce a ZIF67 derivative with highly improved energy storage ability. Attracted by the effective in-situ technique, the NH₄F, ammonium bifluoride (NH₄HF₂), and ammonium tetrafluoroborate (NH₄BF₄) are first used as SDA to synthesize ZIF67 derivatives in one-step solution process as electroactive material of energy storage devices. The mechanisms of forming ZIF67 derivatives synthesized with different SDAs are discussed to explain the SDA effects on physical and electrochemical properties. The largest specific capacitance (CF) of 1527.0 Fg-¹ and the capacity of 296.9 mAhg-¹ are obtained for the ZIF67 derivative prepared using NH₄BF₄ as SDA. The energy storage device composed of the optimal ZIF67 derivative and carbon electrodes presents a maximum energy density of 15.1 Whkg-¹ at the power density of 857 Wkg-¹. The CF retention of 90% and Coulombic efficiency larger than 98% are also obtained after 5000 cycles.

Keywords: ammonium bifluoride, ammonium tetrafluoroborate, energy storage device, one-step solution process, structure-directing agent, zeolitic imidazolate framework 67

Procedia PDF Downloads 21
23602 FACTS Based Stabilization for Smart Grid Applications

Authors: Adel. M. Sharaf, Foad H. Gandoman

Abstract:

Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PV-hybrid-Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid-Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6-pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.

Keywords: AC FACTS, smart grid, stabilization, PV-battery storage, Switched Filter-Compensation (SFC)

Procedia PDF Downloads 387
23601 Optimal Allocation of Battery Energy Storage Considering Stiffness Constraints

Authors: Felipe Riveros, Ricardo Alvarez, Claudia Rahmann, Rodrigo Moreno

Abstract:

Around the world, many countries have committed to a decarbonization of their electricity system. Under this global drive, converter-interfaced generators (CIG) such as wind and photovoltaic generation appear as cornerstones to achieve these energy targets. Despite its benefits, an increasing use of CIG brings several technical challenges in power systems, especially from a stability viewpoint. Among the key differences are limited short circuit current capacity, inertia-less characteristic of CIG, and response times within the electromagnetic timescale. Along with the integration of CIG into the power system, one enabling technology for the energy transition towards low-carbon power systems is battery energy storage systems (BESS). Because of the flexibility that BESS provides in power system operation, its integration allows for mitigating the variability and uncertainty of renewable energies, thus optimizing the use of existing assets and reducing operational costs. Another characteristic of BESS is that they can also support power system stability by injecting reactive power during the fault, providing short circuit currents, and delivering fast frequency response. However, most methodologies for sizing and allocating BESS in power systems are based on economic aspects and do not exploit the benefits that BESSs can offer to system stability. In this context, this paper presents a methodology for determining the optimal allocation of battery energy storage systems (BESS) in weak power systems with high levels of CIG. Unlike traditional economic approaches, this methodology incorporates stability constraints to allocate BESS, aiming to mitigate instability issues arising from weak grid conditions with low short-circuit levels. The proposed methodology offers valuable insights for power system engineers and planners seeking to maintain grid stability while harnessing the benefits of renewable energy integration. The methodology is validated in the reduced Chilean electrical system. The results show that integrating BESS into a power system with high levels of CIG with stability criteria contributes to decarbonizing and strengthening the network in a cost-effective way while sustaining system stability. This paper potentially lays the foundation for understanding the benefits of integrating BESS in electrical power systems and coordinating their placements in future converter-dominated power systems.

Keywords: battery energy storage, power system stability, system strength, weak power system

Procedia PDF Downloads 35
23600 Dynamic Self-Scheduling of Pumped-Storage Power Plant in Energy and Ancillary Service Markets Using Sliding Window Technique

Authors: P. Kanakasabapathy, S. Radhika

Abstract:

In the competitive electricity market environment, the profit of the pumped-storage plant in the energy market can be maximized by operating it as a generator, when market clearing price is high and as a pump, to pump water from lower reservoir to upper reservoir, when the price is low. An optimal self-scheduling plan has been developed for a pumped-storage plant, carried out on weekly basis in order to maximize the profit of the plant, keeping into account of all the major uncertainties such as the sudden ancillary service delivery request and the price forecasting errors. For a pumped storage power plant to operate in a real time market successive self-scheduling has to be done by considering the forecast of the day-ahead market and the modified reservoir storage due to the ancillary service request of the previous day. Sliding Window Technique has been used for successive self-scheduling to ensure profit for the plant.

Keywords: ancillary services, BPSO, power system economics, self-scheduling, sliding window technique

Procedia PDF Downloads 379
23599 Stand Alone Multiple Trough Solar Desalination with Heat Storage

Authors: Abderrahmane Diaf, Kamel Benabdellaziz

Abstract:

Remote arid areas of the vast expanses of the African deserts hold huge subterranean reserves of brackish water resources waiting for economic development. This work presents design guidelines as well as initial performance data of new autonomous solar desalination equipment which could help local communities produce their own fresh water using solar energy only and, why not, contribute to transforming desert lands into lush gardens. The output of solar distillation equipment is typically low and in the range of 3 l/m2/day on the average. This new design with an integrated, water-based, environmentally-friendly solar heat storage system produced 5 l/m2/day in early spring weather. Equipment output during summer exceeded 9 liters per m2 per day.

Keywords: multiple trough distillation, solar desalination, solar distillation with heat storage, water based heat storage system

Procedia PDF Downloads 408
23598 Integration of Icf Walls as Diurnal Solar Thermal Storage with Microchannel Solar Assisted Heat Pump for Space Heating and Domestic Hot Water Production

Authors: Mohammad Emamjome Kashan, Alan S. Fung

Abstract:

In Canada, more than 32% of the total energy demand is related to the building sector. Therefore, there is a great opportunity for Greenhouse Gases (GHG) reduction by integrating solar collectors to provide building heating load and domestic hot water (DHW). Despite the cold winter weather, Canada has a good number of sunny and clear days that can be considered for diurnal solar thermal energy storage. Due to the energy mismatch between building heating load and solar irradiation availability, relatively big storage tanks are usually needed to store solar thermal energy during the daytime and then use it at night. On the other hand, water tanks occupy huge space, especially in big cities, space is relatively expensive. This project investigates the possibility of using a specific building construction material (ICF – Insulated Concrete Form) as diurnal solar thermal energy storage that is integrated with a heat pump and microchannel solar thermal collector (MCST). Not much literature has studied the application of building pre-existing walls as active solar thermal energy storage as a feasible and industrialized solution for the solar thermal mismatch. By using ICF walls that are integrated into the building envelope, instead of big storage tanks, excess solar energy can be stored in the concrete of the ICF wall that consists of EPS insulation layers on both sides to store the thermal energy. In this study, two solar-based systems are designed and simulated inTransient Systems Simulation Program(TRNSYS)to compare ICF wall thermal storage benefits over the system without ICF walls. In this study, the heating load and DHW of a Canadian single-family house located in London, Ontario, are provided by solar-based systems. The proposed system integrates the MCST collector, a water-to-water HP, a preheat tank, the main tank, fan coils (to deliver the building heating load), and ICF walls. During the day, excess solar energy is stored in the ICF walls (charging cycle). Thermal energy can be restored from the ICF walls when the preheat tank temperature drops below the ICF wall (discharging process) to increase the COP of the heat pump. The evaporator of the heat pump is taking is coupled with the preheat tank. The provided warm water by the heat pump is stored in the second tank. Fan coil units are in contact with the tank to provide a building heating load. DHW is also delivered is provided from the main tank. It is investigated that the system with ICF walls with an average solar fraction of 82%- 88% can cover the whole heating demand+DHW of nine months and has a 10-15% higher average solar fraction than the system without ICF walls. Sensitivity analysis for different parameters influencing the solar fraction is discussed in detail.

Keywords: net-zero building, renewable energy, solar thermal storage, microchannel solar thermal collector

Procedia PDF Downloads 89
23597 Simulation and Optimization of Hybrid Energy System Autonomous PV-Diesel-Wind Power with Battery Storage for Relay Antenna Telecommunication

Authors: Tahri Toufik, Bouchachia Mohamed, Braikia Oussama

Abstract:

The objective of this work is the design and optimization of a hybrid PV-Diesel-Wind power system with storage in order to power a relay antenna telecommunication isolated in Chlef region. The aim of the simulation of this hybrid system by the HOMER software is to determine the size and the number of each element of the system and to determine the optimal technical and economic configuration using monthly average values per year for a fixed charge antenna relay telecommunication of 22kWh/d.

Keywords: HOMER, hybrid, PV-diesel-wind system, relay antenna telecommunication

Procedia PDF Downloads 486
23596 Efficient Storage in Cloud Computing by Using Index Replica

Authors: Bharat Singh Deora, Sushma Satpute

Abstract:

Cloud computing is based on resource sharing. Like other resources which can be shareable, storage is a resource which can be shared. We can use collective resources of storage from different locations and maintain a central index table for storage details. The storage combining of different places can form a suitable data storage which is operated from one location and is very economical. Proper storage of data should improve data reliability & availability and bandwidth utilization. Also, we are moving the contents of one storage to other according to our need.

Keywords: cloud computing, cloud storage, Iaas, PaaS, SaaS

Procedia PDF Downloads 306
23595 Development of a Suitable Model for Energy Storage in Residential Buildings in Ahvaz Using Energy Plus Software

Authors: Farideh Azimi, Sam Vahedi Tafreshi

Abstract:

This research tries to study the residential buildings in Ahvaz, the common materials used, and the impact of passive methods of energy storage (as one of the most effective ways to reduce energy consumption in residential complexes) in order to achieve patterns for construction of residential buildings in Ahvaz conditions to reduce energy consumption. In this research, after studying Ahvaz conditions, the components of an existing building were simulated in Energy Plus software, and the climatic data of Ahvaz station was introduced to software. Then to achieve the most optimal conditions of energy consumption in Ahvaz conditions, each of the residential building elements was optimized. The results of simulation showed that using inactive materials and design including double glass, outside wall insulation, inverted roof, etc. in the buildings can reduce energy consumption in the hot and dry climate of Ahvaz. Among the parameters investigated, the inverted roof was the most effective energy saving pattern. According to the results of simulation of the entire building with the most optimal parameters, energy consumption can be saved by a mean of 12.51% in buildings of Ahvaz, and the obtained pattern can also be used in similar climates.

Keywords: residential buildings, thermal comfort, energy storage, Energy Plus software, Ahvaz

Procedia PDF Downloads 329
23594 Comparative Study of Vertical and Horizontal Triplex Tube Latent Heat Storage Units

Authors: Hamid El Qarnia

Abstract:

This study investigates the impact of the eccentricity of the central tube on the thermal and fluid characteristics of a triplex tube used in latent heat energy storage technologies. Two triplex tube orientations are considered in the proposed study: vertical and horizontal. The energy storage material, which is a phase change material (PCM), is placed in the space between the inside and outside tubes. During the thermal energy storage period, a heat transfer fluid (HTF) flows inside the two tubes, transmitting the heat to the PCM through two heat exchange surfaces instead of one heat exchange surface as it is the case for double tube heat storage systems. A CFD model is developed and validated against experimental data available in the literature. The mesh independency study is carried out to select the appropriate mesh. In addition, different time steps are examined to determine a time step ensuring accuracy of the numerical results and reduction in the computational time. The numerical model is then used to conduct numerical investigations of the thermal behavior and thermal performance of the storage unit. The effects of eccentricity of the central tube and HTF mass flow rate on thermal characteristics and performance indicators are examined for two flow arrangements: co-current and counter current flows. The results are given in terms of isotherm plots, streamlines, melting time and thermal energy storage efficiency.

Keywords: energy storage, heat transfer, melting, solidification

Procedia PDF Downloads 21
23593 2D titanium, vanadium carbide MXene, and Polyaniline heterostructures for electrochemical energy storage

Authors: Ayomide A Sijuade, Nafiza Anjum

Abstract:

The rising demand to meet the need for clean and sustainable energy solutions has led the market to create effective energy storage technologies. In this study, we look at the possibility of using a heterostructure made of polyaniline (PANI), titanium carbide (Ti₃C₂), and vanadium carbide (V₂C) for energy storage devices. V₂C is a two-dimensional transition metal carbide with remarkable mechanical and electrical conductivity. Ti₃C2 has solid thermal conductivity and mechanical strength. PANI, on the other hand, is a conducting polymer with customizable electrical characteristics and environmental stability. Layer-by-layer assembly creates the heterostructure of V₂C, Ti₃C₂, and PANI, allowing for precise film thickness and interface quality control. Structural and morphological characterization is carried out using X-ray diffraction, scanning electron microscopy, and atomic force microscopy. For energy storage applications, the heterostructure’s electrochemical performance is assessed. Electrochemical experiments, such as cyclic voltammetry and galvanostatic charge-discharge tests, examine the heterostructure’s charge storage capacity, cycle stability, and rate performance. Comparing the heterostructure to the individual components reveals better energy storage capabilities. V₂C, Ti₃C₂, and PANI synergize to increase specific capacitance, boost charge storage, and prolong cycling stability. The heterostructure’s unique arrangement of 2D materials and conducting polymers promotes effective ion diffusion and charge transfer processes, improving the effectiveness of energy storage. The heterostructure also exhibits remarkable electrochemical stability, which minimizes capacity loss after repeated cycling. The longevity and long-term dependability of energy storage systems depend on this quality. By examining the potential of V₂C, Ti₃C₂, and PANI heterostructures, the results of this study expand energy storage technology. These materials’ specialized integration and design show potential for use in hybrid energy storage systems, lithium-ion batteries, and supercapacitors. Overall, the development of high-performance energy storage devices utilizing V₂C, Ti₃C₂, and PANI heterostructures is clarified by this research, opening the door to the realization of effective, long-lasting, and eco-friendly energy storage solutions to satisfy the demands of the modern world.

Keywords: MXenes, energy storage materials, conductive polymers, composites

Procedia PDF Downloads 22
23592 Alcohols as a Phase Change Material with Excellent Thermal Storage Properties in Buildings

Authors: Dehong Li, Yuchen Chen, Alireza Kaboorani, Denis Rodrigue, Xiaodong (Alice) Wang

Abstract:

Utilizing solar energy for thermal energy storage has emerged as an appealing option for lowering the amount of energy that is consumed by buildings. Due to their high heat storage density, and non-corrosive and non-polluting properties, alcohols can be a good alternative to petroleum-derived paraffin phase change materials (PCMs). In this paper, ternary eutectic PCMs with suitable phase change temperatures were designed and prepared using lauryl alcohol (LA), cetyl alcohol (CA), stearyl alcohol (SA), and xylitol (X). The differential scanning calorimetry (DSC) results revealed that the phase change temperatures of LA-CA-SA, LA-CA-X, and LA-SA-X were 20.52°C, 20.37°C, and 22.18°C, respectively. The latent heat of phase change of the ternary eutectic PCMs was all stronger than that of the paraffinic PCMs at roughly the same temperature. The highest latent heat was 195 J/g. It had good thermal energy storage capacity. The preparation mechanism was investigated using Fourier-transform Infrared Spectroscopy (FTIR), and it was found that the ternary eutectic PCMs were only physically mixed among the components. Ternary eutectic PCMs had a simple preparation process, suitable phase change temperature, and high energy storage density. They are suitable for low-temperature architectural packaging applications.

Keywords: thermal energy storage, buildings, phase change materials, alcohols

Procedia PDF Downloads 60
23591 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: building energy management, machine learning, operation planning, simulation-based optimization

Procedia PDF Downloads 294