Search results for: electrostatic induction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 905

Search results for: electrostatic induction

245 Eco-Friendly Control of Bacterial Speck on Solanum lycopersicum by Azadirachta indica Extract

Authors: Navodit Goel, Prabir K. Paul

Abstract:

Tomato (Solanum lycopersicum) is attacked by Pseudomonas syringae pv. tomato causing speck lesions on the leaves leading to severe economic casualty. In the present study, aqueous fruit extracts of Azadirachta indica (neem) were sprayed on a single node of tomato plants grown under controlled contamination-free conditions. The treatment of plants was performed with neem fruit extract either alone or along with the pathogen. The parameters of observation were activities of polyphenol oxidase (PPO) and lysozyme, and isoform analysis of PPO; both at the treated leaves as well as untreated leaves away from the site of extract application. Polyphenol oxidase initiates phenylpropanoid pathway resulting in the synthesis of quinines from cytoplasmic phenols and production of reactive oxygen species toxic to broad spectrum microbes. Lysozyme is responsible for the breakdown of bacterial cell wall. The results indicate the upregulation of PPO and lysozyme activities in both the treated and untreated leaves along with de novo expression of newer PPO isoenzymes (which were absent in control samples). The appearance of additional PPO isoenzymes in bioelicitor-treated plants indicates that either the isoenzymes were expressed after bioelicitor application or the already expressed but inactive isoenzymes were activated by it. Lysozyme activity was significantly increased in the plants when treated with the bioelicitor or the pathogen alone. However, no new isoenzymes of lysozyme were expressed upon application of the extract. Induction of resistance by neem fruit extract could be a potent weapon in eco-friendly plant protection strategies.

Keywords: Azadirachta indica, lysozyme, polyphenol oxidase, Solanum lycopersicum

Procedia PDF Downloads 258
244 Self-Assembling Layered Double Hydroxide Nanosheets on β-FeOOH Nanorods for Reducing Fire Hazards of Epoxy Resin

Authors: Wei Wang, Yuan Hu

Abstract:

Epoxy resins (EP), one of the most important thermosetting polymers, is widely applied in various fields due to its desirable properties, such as excellent electrical insulation, low shrinkage, outstanding mechanical stiffness, satisfactory adhesion and solvent resistance. However, like most of the polymeric materials, EP has the fatal drawbacks including inherent flammability and high yield of toxic smoke, which restricts its application in the fields requiring fire safety. So, it is still a challenge and an interesting subject to develop new flame retardants which can not only remarkably improve the flame retardancy, but also render modified resins low toxic gases generation. In recent work, polymer nanocomposites based on nanohybrids that contain two or more kinds of nanofillers have drawn intensive interest, which can realize performance enhancements. The realization of previous hybrids of carbon nanotubes (CNTs) and molybdenum disulfide provides us a novel route to decorate layered double hydroxide (LDH) nanosheets on the surface of β-FeOOH nanorods; the deposited LDH nanosheets can fill the network and promote the work efficiency of β-FeOOH nanorods. Moreover, the synergistic effects between LDH and β-FeOOH can be anticipated to have potential applications in reducing fire hazards of EP composites for the combination of condense-phase and gas-phase mechanism. As reported, β-FeOOH nanorods can act as a core to prepare hybrid nanostructures combining with other nanoparticles through electrostatic attraction through layer-by-layer assembly technique. In this work, LDH nanosheets wrapped β-FeOOH nanorods (LDH-β-FeOOH) hybrids was synthesized by a facile method, with the purpose of combining the characteristics of one dimension (1D) and two dimension (2D), to improve the fire resistance of epoxy resin. The hybrids showed a well dispersion in EP matrix and had no obvious aggregation. Thermogravimetric analysis and cone calorimeter tests confirmed that LDH-β-FeOOH hybrids into EP matrix with a loading of 3% could obviously improve the fire safety of EP composites. The plausible flame retardancy mechanism was explored by thermogravimetric infrared (TG-IR) and X-ray photoelectron spectroscopy. The reasons were concluded: condense-phase and gas-phase. Nanofillers were transferred to the surface of matrix during combustion, which could not only shield EP matrix from external radiation and heat feedback from the fire zone, but also efficiently retard transport of oxygen and flammable pyrolysis.

Keywords: fire hazards, toxic gases, self-assembly, epoxy

Procedia PDF Downloads 153
243 Anticancer Activity of Calyx of Diospyros kaki Thunb. through Downregulation of Cyclin D1 Protein Level in Human Colorectal Cancer Cells

Authors: Jin Boo Jeong

Abstract:

In this study, we elucidated anti-cancer activity and potential molecular mechanism of DKC against human colorectal cancer cells. DKC-E70 suppressed the proliferation of human colorectal cancer cell lines such as HCT116, SW480, LoVo and HT-29. Although DKC-E70 decreased cyclin D1 expression in protein and mRNA level, decreased level of cyclin D1 protein by DKC-E70 occurred at the earlier time than that of cyclin D1 mRNA, which indicates that DKC-E70-mediated downregulation of cyclin D1 protein may be a consequence of the induction of degradation and transcriptional inhibition of cyclin D1. In cyclin D1 degradation, we found that cyclin D1 downregulation by DKC-E70 was attenuated in presence of MG132. In addition, DKC-E70 phosphorylated threonine-286 (T286) of cyclin D1 and T286A abolished cyclin D1 downregulation by DKC-E70. We also observed that DKC-E70-mediated T286 phosphorylation and subsequent cyclin D1 degradation was blocked in presence of the inhibitors of ERK1/2, p38 or GSK3β. In cyclin D1 transcriptional inhibition, DKC-E70 inhibited the expression of β-catenin and TCF4, and β–catenin/TCF-dependent luciferase activity. Our results suggest that DKC-E70 may downregulate cyclin D1 as one of the potential anti-cancer targets through cyclin D1 degradation by T286 phosphorylation dependent on ERK1/2, p38 or GSK3β, and cyclin D1 transcriptional inhibition through Wnt signaling. From these findings, DKC-E70 has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A3B03931713).

Keywords: anticancer, calyx of persimmon, cyclin D1, Diospyros kaki Thunb., human colorectal cancer

Procedia PDF Downloads 289
242 Clinical Signs of Neonatal Calves in Experimental Colisepticemia

Authors: Samad Lotfollahzadeh

Abstract:

Escherichia coli (E.coli) is the most isolated bacteria from blood circulation of septicemic calves. Given the prevalence of septicemia in animals and its economic importance in veterinary practice, better understanding of changes in clinical signs following disease, may contribute to early detection of the disorder. The present study has been carried out to detect changes of clinical signs in induced sepsis in calves with E.coli. Colisepticemia has been induced in 10 twenty-day old healthy Holstein- Frisian calves with intravenous injection of 1.5 X 109 colony forming units (cfu) of O111: H8 strain of E.coli. Clinical signs including rectal temperature, heart rate, respiratory rate, shock, appetite, sucking reflex, feces consistency, general behavior, dehydration and standing ability were recorded in experimental calves during 24 hours after induction of colisepticemia. Blood culture was also carried out from calves four times during the experiment. ANOVA with repeated measure is used to see changes of calves’ clinical signs to experimental colisepticemia, and values of P≤ 0.05 was considered statistically significant. Mean values of rectal temperature and heart rate as well as median values of respiratory rate, appetite, suckling reflex, standing ability and feces consistency of experimental calves increased significantly during the study (P<0.05). In the present study, median value of shock score was not significantly increased in experimental calves (P> 0.05). The results of present study showed that total score of clinical signs in calves with experimental colisepticemia increased significantly, although the score of some clinical signs such as shock did not change significantly.

Keywords: calves, clinical signs scoring, E. coli O111:H8, experimental colisepticemia

Procedia PDF Downloads 352
241 Investigating the Viability of Small-Scale Rapid Alloy Prototyping of Interstitial Free Steels

Authors: Talal S. Abdullah, Shahin Mehraban, Geraint Lodwig, Nicholas P. Lavery

Abstract:

The defining property of Interstitial Free (IF) steels is formability, comprehensively measured using the Lankford coefficient (r-value) on uniaxial tensile test data. The contributing factors supporting this feature are grain size, orientation, and elemental additions. The processes that effectively modulate these factors are the casting procedure, hot rolling, and heat treatment. An existing methodology is well-practised in the steel Industry; however, large-scale production and experimentation consume significant proportions of time, money, and material. Introducing small-scale rapid alloy prototyping (RAP) as an alternative process would considerably reduce the drawbacks relative to standard practices. The aim is to finetune the existing fundamental procedures implemented in the industrial plant to adapt to the RAP route. IF material is remelted in the 80-gram coil induction melting (CIM) glovebox. To birth small grains, maximum deformation must be induced onto the cast material during the hot rolling process. The rolled strip must then satisfy the polycrystalline behaviour of the bulk material by displaying a resemblance in microstructure, hardness, and formability to that of the literature and actual plant steel. A successful outcome of this work is that small-scale RAP can achieve target compositions with similar microstructures and statistically consistent mechanical properties which complements and accelerates the development of novel steel grades.

Keywords: rapid alloy prototyping, plastic anisotropy, interstitial free, miniaturised tensile testing, formability

Procedia PDF Downloads 76
240 The Effect of Excess Workload on Lecturers in Higher Institution and Its Relation with Instructional Technology a Case Study of North-West Nigeria

Authors: Shitu Sani

Abstract:

The paper is advanced on the historical background of the effects of excess work load on lecturers in higher institutions of learning which will assess the socio-economic and psychological disposition of lecturers in the realm of quality production. The paper further discusses the significant roles played by excess work load in general transformation of higher education, which will give the management and stake holders input for successful development of higher education. Even though all forms of work and organizational procedures are potential source of stress and stressors. In higher institution of leaning, lecturers perform many responsibilities such as lecturing, carrying out research and engaging in community services. If these multiple roles could not be handle property it would have result in stress which may have negative impact on job performance, and it’s relation with instructional technology. A sample 191 lecturers were randomly selected from the higher institutions in the northern west zone in Nigerian using two instruments i.e. work load stress management question and job performance Approval, data were collected on lecturers of socio-economic and physiological stress and job performances. Findings of the study shows that lecture experienced excess work load in academic activities. Lecturer’s job performance was negatively influences by socio-economic and psychological work stress. Among the recommendation made were the need for organizing regular induction courses for lecturers on stress, and enhance interpersonal relations among the lecturers as well as provision of electronic public address system to reduce the stress.

Keywords: effect, excess, lecturers, workload

Procedia PDF Downloads 327
239 Induction of Cytotoxicity and Apoptosis in Ovarian Cancer Cell Line (CAOV-3) by an Isoquinoline Alkaloid Isolated from Enicosanthellum pulchrum (King) Heusden

Authors: Noraziah Nordin, Najihah Mohd Hashim, Nazia Abdul Majid, Mashitoh Abdul Rahman, Hamed Karimian, Hapipah Mohd Ali

Abstract:

Enicosanthellum pulchrum belongs to family Annonaceae is also known as family of 'mempisang' in Malaysia. Liriodenine was isolated by prep-HPLC method. This method was first technique used for the isolation of this compound. The structure of the liriodenine was elucidated by 1D and 2D spectroscopy techniques. Liriodenine was tested on ovarian cancer cells line (CAOV-3) for MTT, AO/PI and cytotoxicity 3 assays. The MTT assay was performed to determine the cytotoxicity effect of lirodenine on CAOV-3 cells. The morphological changes on CAOV-3 cells were observed by AO/PI assay for the early and late stage of apoptosis, as well as necrosis. Meanwhile, the measurement of cell loss, nuclear morphology, DNA content, cell membrane permeability, mitochondrial membrane potential changes and cytochrome c release from mitochondria were detected through cytotoxicity 3 assay. The IC50 results showed liriodenine inhibits the growth of CAOV-3 cells after 24 h of treatment at 10.25 ± 1.06 µg/mL. After 48 and 72 h of treatments, the IC50 values were decreased to 7.65 ± 0:07 and 6.35 ± 1.62 µg/mL, respectively. The morphology changes can be seen on CAOV-3 with a production of cell membrane blebbing, cromatin condensation and apoptotic bodies with increasing time of treatment from 24 to 72 h. Evaluation of cytotoxicity 3 on CAOV-3 cells after treated with liriodenine, resulting loss of mitochondrial membrane potential and release of cytochrome c from mitochondria. The results demonstrated the capability of liriodenine as a promising anticancer agent, particularly on human ovarian cancer.

Keywords: Enicosanthellum pulchrum, ovarian cancer, apoptosis, cytotoxicity

Procedia PDF Downloads 416
238 Effect of Ocimum americanum Water Extract on Antioxidant System in Rat

Authors: Pornrut Rabintossaporn, Suphaket Saenthaweesuk, Amornnat Thuppia, Nuntiya Somparn

Abstract:

Several dietary and herbal plants have been shown to possess cytoprotective and antioxidant effects with various mechanisms of action. The aim of this study was to determine the antioxidant effects and its mechanism of aqueous leaves extract of Ocimum americanum (OA), commonly known as American basil or 'hoary basil', in rat. The extract was screened for its phytochemical contents and antioxidant activity in vitro. Moreover, the extract was studied in rats to evaluate its effects in vivo. Rats were orally administered with the extract at the dose of 100, 200 and 400 mg/kg for 28 days. Phytochemical screening of plant extracts revealed the presence of alkaloid, cardiac glycosides, tannin and steroid compounds. The extract contained phenolic compounds 36.91 ± 0.66 mg of gallic acid equivalents per gram OA extract. The free radical scavenging activity assessed by DPPH assay gave IC50 of 41.27 ± 1.86 µg/mL, which is relatively lower than that of BHT with IC50 of 12.34 ± 1.14µg/mL. In the animals, the extract was well tolerated by the animals throughout the 28 days of study as shown by normal serum levels AST, ALP, ALT, BUN and Cr as well as normal histology of liver and pancreatic and kidney tissue. The protein expression of antioxidant enzymes, γ-glutamylcysteine ligase (γ-GCL) in liver was significantly increased compared with normal control. Consistent with the induction of γ-GCL protein expression significantly reduction of serum oxidative stress marker malondialdehyde (MDA) was found in rat treated with OA extract compared with control. Taken together, this study provides evidence that Ocimum americanum exhibits direct antioxidant properties and can induce cytoprotective enzyme in vivo.

Keywords: antioxidant, γ-glutamylcysteine ligase, MDA, Ocimum americanum

Procedia PDF Downloads 215
237 The Generation of Insulin Producing Cells from Human Mesenchymal Stem Cells by miR-375 and Anti-miR-9

Authors: Arefeh Jafarian, Mohammad Taghikani, Saied Abroun, Amir Allahverdi, Masoud Soleimani

Abstract:

Introduction: The miRNAs have key roles in control of pancreatic islet development and insulin secretion. In this regards, current study investigated the pancreatic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) by up-regulation of miR-375 and down-regulation of miR-9 by lentiviruses containing miR-375 and anti-miR-9. Findings: After 21 days of induction, islet-like clusters containing insulin producing cells (IPCs) were confirmed by dithizone (DTZ) staining. The IPCs and β cell specific related genes and proteins were detected using qRT-PCR and immunofluorescence on days 7, 14 and 21 of differentiation. Glucose challenge test was performed at different concentrations of glucose as well as extracellular and intracellular insulin and C-peptide were assayed using ELISA kit. In derived IPCs by miR-375 alone are capable to express insulin and other endocrine specific transcription factors, the cells lack the machinery to respond to glucose. The differentiated hMSCs by miR-375 and anti-miR-9 lentiviruses could secrete insulin and c-peptide in a glucose-regulated manner. Conclusion: It was found that over-expression of miR-375 led to a reduction in levels of Mtpn protein in derived IPCs, while treatment with anti-miR-9 following miR-375 over-expression had synergistic effects on MSCs differentiation and insulin secretion in a glucose-regulated manner. The researchers reported that silencing of miR-9 increased OC-2 protein in IPCs that may contribute to the observed glucose-regulated insulin secretion. These findings highlight miRNAs functions in stem cells differentiation and suggest that they could be used as therapeutic tools for gene-based therapy in diabetes mellitus.

Keywords: diabetes, differentiation, MSCs, insulin producing cells, miR-375, miR-9

Procedia PDF Downloads 291
236 Polypeptide Modified Carbon Nanotubes – Mediated GFP Gene Transfection for H1299 Cells and Toxicity Assessment

Authors: Pei-Ying Lo, Jing-Hao Ciou, Kai-Cheng Yang, Jia-Huei Zheng, Shih-Hsiang Huang, Kuen-Chan Lee, Er-Chieh Cho

Abstract:

As-produced CNTs are insoluble in all organic solvents and aqueous solutions have imposed limitations to the use of CNTs. Therefore, how to debundle carbon nanotubes and to modify them for further uses is an important issue. There are several methods for the dispersion of CNTs in water using covalent attachment of hydrophilic groups to the surface of tubes. These methods, however, alter the electronic structure of the nanotubes by disrupting the network of sp2 hybridized carbons. In order to keep the nanotubes’ intrinsic mechanical and electrical properties intact, non-covalent interactions are increasingly being explored as an alternative route for dispersion. Apart from conventional surfactants such as sodium dodecylsulfate (SDS) or sodium dodecylbenzenesulfonate (SDBS) which are highly effective in dispersing CNTs, biopolymers have received much attention as dispersing agents due to the anticipated biocompatibility of the dispersed CNTs. Also, The pyrenyl group is known to interact strongly with the basal plane of graphene via π-stacking. In this study, a highly re-dispersible biopolymer is reported for the synthesis of pyrene-modified poly-L-lysine (PBPL) and poly(D-Glu, D-Lys) (PGLP). To provide the evidence of the safety of the PBPL/CNT & PGLP/CNT materials we use in this study, H1299 and HCT116 cells were incubated with PBPL/CNT & PGLP/CNT materials for toxicity analysis, MTS assays. The results from MTS assays indicated that no significant cellular toxicity was shown in H1299 and HCT116 cells. Furthermore, the fluorescence marker fluorescein isothiocyanate (FITC) was added to PBPL & PGLP dispersions. From the fluorescent measurements showed that the chemical functionalisation of the PBPL/CNT & PGLP/CNT conjugates with the fluorescence marker were successful. The fluorescent PBPL/CNT & PGLP/CNT conjugates could find application in medical imaging. In the next step, the GFP gene is immobilized onto PBPL/CNT conjugates by introducing electrostatic interaction. GFP-transfected cells that emitted fluorescence were imaged and counted under a fluorescence microscope. Due to the unique biocompatibility of PBPL modified CNTs, the GFP gene could be transported into H1299 cells without using antibodies. The applicability of such soluble and chemically functionalised polypeptide/CNT conjugates in biomedicine is currently investigated. We expect that this polypeptide/CNT system will be a safe and multi-functional nanomedical delivery platform and contribute to future medical therapy.

Keywords: carbon nanotube, nanotoxicology, GFP transfection, polypeptide/CNT hybrids

Procedia PDF Downloads 320
235 Positive effect of Cu2+ and Ca2+ on the Thermostability of Bambara Groundnut Peroxidase A6, and its Catalytic Efficiency Toward the Oxidation of 3,3,5,5 -Tetramethyl Benzidine

Authors: Yves Mann Elate Lea Mbassi, Marie Solange Evehe Bebandoue, Wilfred Fon Mbacham

Abstract:

Improving the catalytic performance of enzymes has been a long-standing theme of analytical biochemistry research. Induction of peroxidase activity by metals is a common reaction in higher plants. We thought that this increase in peroxidase activity may be due, on the one hand, to the stimulation of the gene expression of these enzymes but also to a modification of their chemical reactivity following the binding of some metal ions on their active site. We tested the effect of some metal salts (MgCl₂, MnCl₂, ZnCl₂, CaCl₂ and CuSO₄) on the activity and thermostability of peroxidase A6, a thermostable peroxidase that we discovered and purified in a previous study. The chromogenic substrate used was 3,3′,5,5′-tetramethylbenzidine. Of all the metals tested for their effect on A6, only magnesium and copper had a significant effect on the activity of the enzyme at room temperature. The Mann-Whitney test shows a slight inhibitory effect of activity by the magnesium salt (P = 0.043), while the activity of the enzyme is 5 times higher in the presence of the copper salt (P = 0.002). Moreover, the thermostability of peroxidase A6 is increased when calcium and copper salts are present. The activity in the presence of CaCl₂ is 8 times higher than the residual activity of the enzyme alone after incubation at 80°C for 10 min and 35 times higher in the presence of CuSO4 under the same conditions. In addition, manganese and zinc salts slightly reduce the thermostability of the enzyme. The activity and structural stability of peroxidase A6 can clearly be activated by Cu₂+, which therefore enhance the oxidation of 3,3′,5,5′-tetramethylbenzidine, which was used in this study as a chromogenic substrate. Ca₂+ likely has a more stabilizing function for the catalytic site.

Keywords: peroxidase activity, copper ions, calcium ions, thermostability

Procedia PDF Downloads 46
234 High Temperature Deformation Behavior of Al0.2CoCrFeNiMo0.5 High Entropy alloy

Authors: Yasam Palguna, Rajesh Korla

Abstract:

The efficiency of thermally operated systems can be improved by increasing the operating temperature, thereby decreasing the fuel consumption and carbon footprint. Hence, there is a continuous need for replacing the existing materials with new alloys with higher temperature working capabilities. During the last decade, multi principal element alloys, commonly known as high entropy alloys are getting more attention because of their superior high temperature strength along with good high temperature corrosion and oxidation resistance, The present work focused on the microstructure and high temperature tensile behavior of Al0.2CoCrFeNiMo0.5 high entropy alloy (HEA). Wrought Al0.2CoCrFeNiMo0.5 high entropy alloy, produced by vacuum induction melting followed by thermomechanical processing, is tested in the temperature range of 200 to 900oC. It is exhibiting very good resistance to softening with increasing temperature up to 700oC, and thereafter there is a rapid decrease in the strength, especially beyond 800oC, which may be due to simultaneous occurrence of recrystallization and precipitate coarsening. Further, it is exhibiting superplastic kind of behavior with a uniform elongation of ~ 275 % at 900 oC temperature and 1 x 10-3 s-1 strain rate, which may be due to the presence of fine stable equi-axed grains. Strain rate sensitivity of 0.3 was observed, suggesting that solute drag dislocation glide might be the active mechanism during superplastic kind of deformation. Post deformation microstructure suggesting that cavitation at the sigma phase-matrix interface is the failure mechanism during high temperature deformation. Finally, high temperature properties of the present alloy will be compared with the contemporary high temperature materials such as ferritic, austenitic steels, and superalloys.

Keywords: high entropy alloy, high temperature deformation, super plasticity, post-deformation microstructures

Procedia PDF Downloads 134
233 Non-Perturbative Vacuum Polarization Effects in One- and Two-Dimensional Supercritical Dirac-Coulomb System

Authors: Andrey Davydov, Konstantin Sveshnikov, Yulia Voronina

Abstract:

There is now a lot of interest to the non-perturbative QED-effects, caused by diving of discrete levels into the negative continuum in the supercritical static or adiabatically slowly varying Coulomb fields, that are created by the localized extended sources with Z > Z_cr. Such effects have attracted a considerable amount of theoretical and experimental activity, since in 3+1 QED for Z > Z_cr,1 ≈ 170 a non-perturbative reconstruction of the vacuum state is predicted, which should be accompanied by a number of nontrivial effects, including the vacuum positron emission. Similar in essence effects should be expected also in both 2+1 D (planar graphene-based hetero-structures) and 1+1 D (one-dimensional ‘hydrogen ion’). This report is devoted to the study of such essentially non-perturbative vacuum effects for the supercritical Dirac-Coulomb systems in 1+1D and 2+1D, with the main attention drawn to the vacuum polarization energy. Although the most of works considers the vacuum charge density as the main polarization observable, vacuum energy turns out to be not less informative and in many respects complementary to the vacuum density. Moreover, the main non-perturbative effects, which appear in vacuum polarization for supercritical fields due to the levels diving into the lower continuum, show up in the behavior of vacuum energy even more clear, demonstrating explicitly their possible role in the supercritical region. Both in 1+1D and 2+1D, we explore firstly the renormalized vacuum density in the supercritical region using the Wichmann-Kroll method. Thereafter, taking into account the results for the vacuum density, we formulate the renormalization procedure for the vacuum energy. To evaluate the latter explicitly, an original technique, based on a special combination of analytical methods, computer algebra tools and numerical calculations, is applied. It is shown that, for a wide range of the external source parameters (the charge Z and size R), in the supercritical region the renormalized vacuum energy could significantly deviate from the perturbative quadratic growth up to pronouncedly decreasing behavior with jumps by (-2 x mc^2), which occur each time, when the next discrete level dives into the negative continuum. In the considered range of variation of Z and R, the vacuum energy behaves like ~ -Z^2/R in 1+1D and ~ -Z^3/R in 2+1D, exceeding deeply negative values. Such behavior confirms the assumption of the neutral vacuum transmutation into the charged one, and thereby of the spontaneous positron emission, accompanying the emergence of the next vacuum shell due to the total charge conservation. To the end, we also note that the methods, developed for the vacuum energy evaluation in 2+1 D, with minimal complements could be carried over to the three-dimensional case, where the vacuum energy is expected to be ~ -Z^4/R and so could be competitive with the classical electrostatic energy of the Coulomb source.

Keywords: non-perturbative QED-effects, one- and two-dimensional Dirac-Coulomb systems, supercritical fields, vacuum polarization

Procedia PDF Downloads 184
232 Antioxidant Responses and Malondialdehyde Levels in African Cat Fish (Clarias gariepinus) from Eleyele River in Nigeria

Authors: Oluwatosin Adetola Arojojoye, Olajumoke Olufunlayo Alao, Philip Odigili

Abstract:

This study investigated the extent of pollution in Eleyele River in Oyo State, Nigeria by investigating the antioxidant status and malondialdehyde levels (index of lipid peroxidation) in the organs of African Catfish, Clarias gariepinus from the river. Clarias gariepinus weighing between 250g-400g were collected from Eleyele River (a suspected polluted river) and Clarias gariepinus from a clean fish farm (Durantee fisheries) were used as the control. Levels of malondialdehyde, glutathione concentration (GSH) and activities of antioxidant enzymes - superoxide dismutase, catalase and glutathione-S-transferase (GST) were evaluated in the post-mitochondrial fractions of the liver, kidney and gills of the fishes. From the results, there were increases in malondialdehyde level and GSH concentration in the liver, kidney and gills of Clarias gariepinus from Eleyele River when compared with control. Glutathione-S-transferase activity was induced in the liver and kidney of Clarias gariepinus from Eleyele River when compared with control. However, the activity of this enzyme was depleted in the gills of fishes from Eleyele River compared with control. Also there was an induction in SOD activity in the liver of Clarias gariepinus from Eleyele River when compared with control but there was a decrease in the activity of this enzyme in the kidney and gills of fishes from Eleyele River compared with control. Increase in lipid peroxidation and alterations in antioxidant system in Clarias gariepinus from Eleyele River show that the fishes were under oxidative stress. These suggest that the river is polluted probably as a result of industrial, domestic and agricultural wastes frequently discharged into the river. This could pose serious health risks to consumers of water and aquatic organisms from the river.

Keywords: antioxidant, lipid peroxidation, Clarias gariepinus, Eleyele River

Procedia PDF Downloads 499
231 Rebamipide Retards CCL4 Induced Hepatic Fibrosis: A Role of PGE2

Authors: Alaa E. El-sisi, Sherin Zakaria

Abstract:

Rebamipide is an antiulcer drug with unique properties such as anti-inflammatory action. It induces endogenous prostaglandin e2 (PGE2). PGE2 is considered as a potent physiological suppressor of liver fibrosis. Aim of study: This study investigated the effect of rebamipide on hepatic fibrosis. Material and Method: Hepatic fibrosis was induced by intraperitoneal injections (IP) injection of CCl4 (0.45 mL/kg) in corn oil 1:5 twice a week for 4 weeks. Rats were divided into four groups as follow: Group 1 treated with CCL4 only, group 2 and 3 treated with CCL4 and rebamipide 60 mg/kg/day (group2) or 100 mg/kg/day (group3), and the fourth group was considered as control group and treated with vehicles. ALT, AST, and Bilirubin were assayed in serum. Antioxidant markers such as malondialdhyde (MDA) and superoxide dismutase (SOD) and fibrotic markers such as hyaluronic acid (HA) and procollagen-III (procol-III) were evaluated in liver tissues. IL-10 as well as PGE2 were also assayed in liver tissues. Pathologic changes in the liver were detected by hematoxylin and eosin staining. Collagen precipitation in liver tissues was visualized using masson trichrom stain. Results: Rebamipide inhibit CCL4 induced increase in ALT and AST significantly (p < 0.05). Rebamipide exerted an antioxidant effect as it inhibits CCL4 induced increased MDA level and decreased SOD activity. Fibrotic markers assay revealed that repamipide (60 or 100 mg/kg/day) decreased the level of procol-III and HA compared to CCl4 (p < 0.05). Oral administration of Rebamipide was associated with a significant increase (p < 0.05) of PGE2 and IL-10. Rebamipide especially at the dose of (100 mg/kg/day) restores liver histology structure and abolish collagen precipitation in liver tissues. Conclusion: Rebamipide retards hepatic fibrosis induced by CCL4 may be through the induction of PGE2 level.

Keywords: fibrotic markers, hepatic fibrosis, PGE2, rebamipide

Procedia PDF Downloads 459
230 Theoretical Study of Gas Adsorption in Zirconium Clusters

Authors: Rasha Al-Saedi, Anthony Meijer

Abstract:

The progress of new porous materials has increased rapidly over the past decade for use in applications such as catalysis, gas storage and removal of environmentally unfriendly species due to their high surface area and high thermal stability. In this work, a theoretical study of the zirconium-based metal organic framework (MOFs) were examined in order to determine their potential for gas adsorption of various guest molecules: CO2, N2, CH4 and H2. The zirconium cluster consists of an inner Zr6O4(OH)4 core in which the triangular faces of the Zr6- octahedron are alternatively capped by O and OH groups which bound to nine formate groups and three benzoate groups linkers. General formula is [Zr(μ-O)4(μ-OH)4(HCOO)9((phyO2C)3X))] where X= CH2OH, CH2NH2, CH2CONH2, n(NH2); (n = 1-3). Three types of adsorption sites on the Zr metal center have been studied, named according to capped chemical groups as the ‘−O site’; the H of (μ-OH) site removed and added to (μ-O) site, ‘–OH site’; (μ-OH) site removed, the ‘void site’ where H2O molecule removed; (μ-OH) from one site and H from other (μ-OH) site, in addition to no defect versions. A series of investigations have been performed aiming to address this important issue. First, density functional theory DFT-B3LYP method with 6-311G(d,p) basis set was employed using Gaussian 09 package in order to evaluate the gas adsorption performance of missing-linker defects in zirconium cluster. Next, study the gas adsorption behaviour on different functionalised zirconium clusters. Those functional groups as mentioned above include: amines, alcohol, amide, in comparison with non-substitution clusters. Then, dispersion-corrected density functional theory (DFT-D) calculations were performed to further understand the enhanced gas binding on zirconium clusters. Finally, study the water effect on CO2 and N2 adsorption. The small functionalized Zr clusters were found to result in good CO2 adsorption over N2, CH4, and H2 due to the quadrupole moment of CO2 while N2, CH4 and H2 weakly polar or non-polar. The adsorption efficiency was determined using the dispersion method where the adsorption binding improved as most of the interactions, for example, van der Waals interactions are missing with the conventional DFT method. The calculated gas binding strengths on the no defect site are higher than those on the −O site, −OH site and the void site, this difference is especially notable for CO2. It has been stated that the enhanced affinity of CO2 of no defect versions is most likely due to the electrostatic interactions between the negatively charged O of CO2 and the positively charged H of (μ-OH) metal site. The uptake of the gas molecule does not enhance in presence of water as the latter binds to Zr clusters more strongly than gas species which attributed to the competition on adsorption sites.

Keywords: density functional theory, gas adsorption, metal- organic frameworks, molecular simulation, porous materials, theoretical chemistry

Procedia PDF Downloads 156
229 DUSP16 Inhibition Rescues Neurogenic and Cognitive Deficits in Alzheimer's Disease Mice Models

Authors: Huimin Zhao, Xiaoquan Liu, Haochen Liu

Abstract:

The major challenge facing Alzheimer's Disease (AD) drug development is how to effectively improve cognitive function in clinical practice. Growing evidence indicates that stimulating hippocampal neurogenesis is a strategy for restoring cognition in animal models of AD. The mitogen-activated protein kinase (MAPK) pathway is a crucial factor in neurogenesis, which is negatively regulated by Dual-specificity phosphatase 16 (DUSP16). Transcriptome analysis of post-mortem brain tissue revealed up-regulation of DUSP16 expression in AD patients. Additionally, DUSP16 was involved in regulating the proliferation and neural differentiation of neural progenitor cells (NPCs). Nevertheless, whether the effect of DUSP16 on ameliorating cognitive disorders by influencing NPCs differentiation in AD mice remains unclear. Our study demonstrates an association between DUSP16 SNPs and clinical progression in individuals with mild cognitive impairment (MCI). Besides, we found that increased DUSP16 expression in both 3×Tg and SAMP8 models of AD led to NPC differentiation impairments. By silencing DUSP16, cognitive benefits, the induction of AHN and synaptic plasticity, were observed in AD mice. Furthermore, we found that DUSP16 is involved in the process of NPC differentiation by regulating c-Jun N-terminal kinase (JNK) phosphorylation. Moreover, the increased DUSP16 may be regulated by the ETS transcription factor (ELK1), which binds to the promoter region of DUSP16. Loss of ELK1 resulted in decreased DUSP16 mRNA and protein levels. Our data uncover a potential regulatory role for DUSP16 in adult hippocampal neurogenesis and provide a possibility to find the target of AD intervention.

Keywords: alzheimer's disease, cognitive function, DUSP16, hippocampal neurogenesis

Procedia PDF Downloads 51
228 Potential Therapeutic Effect of Obestatin in Oral Mucositis

Authors: Agnieszka Stempniewicz, Piotr Ceranowicz, Wojciech Macyk, Jakub Cieszkowski, Beata Kuśnierz-Cabała, Katarzyna Gałązka, Zygmunt Warzecha

Abstract:

Objectives: There are numerous strategies for the prevention or treatment of oral mucositis. However, their effectiveness is limited and does not correspond to expectations. Recent studies have shown that obestatin exhibits a protective effect and accelerates the healing of gastrointestinal mucosa. The aim of the present study was to examine the influence of obestatin administration on oral ulcers in rats. Methods: lingual ulcers were induced by the use of acetic acid. Rats were treated twice a day intraperitoneally with saline or obestatin(4, 8, or 16 nmol/kg/dose) for five days. The study determined: lingual mucosa morphology, cell proliferation, mucosal blood flow, and mucosal pro-inflammatory interleukin-1β level(IL-1β). Results: In animals without induction of oral ulcers, treatment with obestatin was without any effect. Obestatin administration in rats with lingual ulcers increased the healing rate of these ulcers. Obestatin given at the dose of 8 or 16 nmol/kg/dose caused the strongest and similar therapeutic effect. This result was associated with a significant increase in blood flow and cell proliferation in gingival mucosa, as well as a significant decrease in IL-1β level. Conclusions: Obestatin accelerates the healing of lingual ulcers in rats. This therapeutic effect is well-correlated with an increase in blood flow and cell proliferation in oral mucosa, as well as a decrease in pro-inflammatory IL-1β levels. Obestatin is a potentially useful candidate for the prevention and treatment of oral mucositis. Acknowledgment: Agnieszka Stempniewicz acknowledges the support of InterDokMed project no. POWR.03.02.00- 00-I013/16.

Keywords: oral mucositis, ulcers, obestatin, lingual mucosa

Procedia PDF Downloads 44
227 An Energy Integration Study While Utilizing Heat of Flue Gas: Sponge Iron Process

Authors: Venkata Ramanaiah, Shabina Khanam

Abstract:

Enormous potential for saving energy is available in coal-based sponge iron plants as these are associated with the high percentage of energy wastage per unit sponge iron production. An energy integration option is proposed, in the present paper, to a coal based sponge iron plant of 100 tonnes per day production capacity, being operated in India using SL/RN (Stelco-Lurgi/Republic Steel-National Lead) process. It consists of the rotary kiln, rotary cooler, dust settling chamber, after burning chamber, evaporating cooler, electrostatic precipitator (ESP), wet scrapper and chimney as important equipment. Principles of process integration are used in the proposed option. It accounts for preheating kiln inlet streams like kiln feed and slinger coal up to 170ᴼC using waste gas exiting ESP. Further, kiln outlet stream is cooled from 1020ᴼC to 110ᴼC using kiln air. The working areas in the plant where energy is being lost and can be conserved are identified. Detailed material and energy balances are carried out around the sponge iron plant, and a modified model is developed, to find coal requirement of proposed option, based on hot utility, heat of reactions, kiln feed and air preheating, radiation losses, dolomite decomposition, the heat required to vaporize the coal volatiles, etc. As coal is used as utility and process stream, an iterative approach is used in solution methodology to compute coal consumption. Further, water consumption, operating cost, capital investment, waste gas generation, profit, and payback period of the modification are computed. Along with these, operational aspects of the proposed design are also discussed. To recover and integrate waste heat available in the plant, three gas-solid heat exchangers and four insulated ducts with one FD fan for each are installed additionally. Thus, the proposed option requires total capital investment of $0.84 million. Preheating of kiln feed, slinger coal and kiln air streams reduce coal consumption by 24.63% which in turn reduces waste gas generation by 25.2% in comparison to the existing process. Moreover, 96% reduction in water is also observed, which is the added advantage of the modification. Consequently, total profit is found as $2.06 million/year with payback period of 4.97 months only. The energy efficient factor (EEF), which is the % of the maximum energy that can be saved through design, is found to be 56.7%. Results of the proposed option are also compared with literature and found in good agreement.

Keywords: coal consumption, energy conservation, process integration, sponge iron plant

Procedia PDF Downloads 123
226 The Effect of Jujube Extract and Resistance Training on the Reduction of Complications Caused by the Induction of Anabolic Steroid Boldenone on the Histopathological Changes of Pancreatic Tissue of Male Wistar Rats

Authors: Sayyed-javad Ziaolhagh, Ali-Reza Saadatifar

Abstract:

Introduction: Athletes frequently perform anabolic steroid resistance exercise, but the effects of medical doses and abuse along with resistance exercise on structural damage to the Pancreases and also jujube extract are unknown. The aim of this study was to investigate the effects of resistance training on body weight and hip fractures induced by boldenone injection in male rats. Materials and methods: In this experimental study, 30 male Wistar rats aged 8-12 weeks (weight 202±9.34 g) were randomly divided into five groups: control, boldenone, extract of iujuba+boldenone, boldenone+resistance training and boldenone+resistance training +extract of jujuba. The resistance training program included climbing the ladder for 8 weeks, 3 days a week, 1 session training in a day and each session consisted of the 3 sets and 5 repetitions. Injection was conducted in depth in the hamstring once a week on an appointed day. After anesthesia, autopsy was performed, and the cardiac tissue was isolated. Results: Results showed that boldenone caused tissue damage, congestion, and nuclei unclear and diffuse. In the group "resistance + Boldenone," The Pancreases tissue showed a high degree of hyperemia, and the muscle cells were somewhat abnormal. In boldenone + jujube, the appearance of the tissue was normal, and the rejuvenating effect was visible. Conclusion: Boldenone appears to cause structural damage to the Pancreases tissue. Strength training with Jujube Extract can reduce part of the pancreatic system disorders (necrosis and inflammation) caused by anabolic steroid use.

Keywords: boldenone, Jujube extract, pancreases tissue, resistance training

Procedia PDF Downloads 51
225 Linking Metabolism, Pluripotency and Epigenetic Changes during Early Differentiation of Embryonic Stem Cells

Authors: Arieh Moussaieff, Bénédicte Elena-Herrmann, Yaakov Nahmias, Daniel Aberdam

Abstract:

Differentiation of pluripotent stem cells is a slow process, marked by the gradual loss of pluripotency factors over days in culture. While the first few days of differentiation show minor changes in the cellular transcriptome, intracellular signaling pathways remain largely unknown. Recently, several groups demonstrated that the metabolism of pluripotent mouse and human cells is different from that of somatic cells, showing a marked increase in glycolysis previously identified in cancer as the Warburg effect. Here, we sought to identify the earliest metabolic changes induced at the first hours of differentiation. High-resolution NMR analysis identified 35 metabolites and a distinct, gradual transition in metabolism during early differentiation. Metabolic and transcriptional analyses showed the induction of glycolysis toward acetate and acetyl-coA in pluripotent cells, and an increase in cholesterol biosynthesis during early differentiation. Importantly, this metabolic pathway regulated differentiation of human and mouse embryonic stem cells. Acetate delayed differentiation preventing differentiation-induced histone de-acetylation in a dose-dependent manner. Glycolytic inhibitors upstream of acetate caused differentiation of pluripotent cells, while those downstream delayed differentiation. Our data suggests that a rapid loss of glycolysis in early differentiation down-regulates acetate and acetyl-coA production, causing a loss of histone acetylation and concomitant loss of pluripotency. It demonstrate that pluripotent stem cells utilize a novel metabolism pathway to maintain pluripotency through acetate/acetyl-coA and highlights the important role metabolism plays in pluripotency and early differentiation of stem cells.

Keywords: pluripotency, metabolomics, epigenetics, acetyl-coA

Procedia PDF Downloads 442
224 Evaluation of Chemopreventive Activity of Medicinal Plant, Gromwell Seed against Tumor Promoting Stage

Authors: Harukuni Tokuda, Takanari Arai, Xu FengHao, Nobutaka Suzuki

Abstract:

In our continuous search for anti-tumor promoting, chemopreventive active potency from natural source material, a kind of healthy tea, Gromwell seed (Coix lachryma-jobi) ext., and including compounds Monoolein and Trilinolein have been screened using the in vitro synergistic assay indicated by inhibitory effects on the induction of Epstein-Barr virus early antigen (EBV-EA) by TPA. In assay, Gromwell seed aqueous extract and hot aqueous extract exhibited the potential inhibitory effects on EBV-EA activation without strong cytotoxicity on Raji cells. In our experimental system, the inhibitory effects of both Gromwell extracts and compounds were greater than that of beta-carotene, which is known anti-tumor promoting agent and/or chemopreventive agent. These compounds were evaluated for their in vitro inhibitory effect on EBV-EA activation induced by TPA. The percentages of the inhibition of TPA-induced EBV-EA activation for these materials were 60% and 30% at concentration 100 μg. Based on the results obtained in vitro, we studied the inhibitory effect of compounds, in an in vivo two-stage carcinogenesis test of mouse skin papilloma using DMBA as an initiator and TPA as a potential promoter. The control animals showed a 100% incidence of papilloma at 20 weeks after DMBA-TPA tumor promotion, while treatment with compounds reduced the percentage of number of tumor to 60 % after 20 weeks. Results from in vitro and in vivo studies showing chemopreventive activity against TPA promoting stage and these data support the effective potency of carcinogenic stage in clinical evaluation of integrative oncology.

Keywords: gromwell seed, medicinal plant, chemoprevention, pharmaceutical medicine

Procedia PDF Downloads 380
223 Effect of High Intensity Ultrasonic Treatment on the Micro Structure, Corrosion and Mechanical Behavior of ac4c Aluminium Alloy

Authors: A.Farrag Farrag, A. M. El-Aziz Abdel Aziz, W. Khlifa Khlifa

Abstract:

Ultrasonic treatment is a promising process nowadays in the engineering field due to its high efficiency and it is a low-cost process. It enhances mechanical properties, corrosion resistance, and homogeneity of the microstructure. In this study, the effect of ultrasonic treatment and several casting conditions on microstructure, hardness and corrosion behavior of AC4C aluminum alloy was examined. Various ultrasonic treatments of the AC4C alloys were carried out to prepare billets for thixocasting process. Treatment temperatures varied from about 630oC and cooled down to under ultrasonic field. Treatment time was about 90s. A 600-watts ultrasonic system with 19.5 kHz and intensity of 170 W/cm2 was used. Billets were reheated to semisolid state and held for 5 minutes at 582 oC and temperatures (soaking) using high-frequency induction system, then thixocasted using a die casting machine. Microstructures of the thixocast parts were studied using optical and SEM microscopes. On the other hand, two samples were conventionally cast and poured at 634 oC and 750 oC. The microstructure showed a globular none dendritic grains for AC4C with the application of UST at 630-582 oC, Less dendritic grains when the sample was conventionally cast without the application of UST and poured at 624 oC and a fully dendritic microstructure When the sample was cast and poured at 750 oC without UST .The ultrasonic treatment during solidification proved that it has a positive influence on the microstructure as it produced the finest and globular grains thus it is expected to increase the mechanical properties of the alloy. Higher values of corrosion resistance and hardness were recorded for the ultrasound-treated sample in comparison to cast one.

Keywords: ultrasonic treatment, aluminum alloys, corrosion behaviour, mechanical behaviour, microstructure

Procedia PDF Downloads 326
222 Mediation Role of Teachers’ Surface Acting and Deep Acting on the Relationship between Calling Orientation and Work Engagement

Authors: Yohannes Bisa Biramo

Abstract:

This study examined the meditational role of surface acting and deep acting on the relationship between calling orientation and work engagement of teachers in secondary schools of Wolaita Zone, Wolaita, Ethiopia. A predictive non-experimental correlational design was performed among 300 secondary school teachers. Stratified random sampling followed by a systematic random sampling technique was used as the basis for selecting samples from the target population. To analyze the data, Structural Equation Modeling (SEM) was used to test the association between the independent variables and the dependent variables. Furthermore, the goodness of fit of the study variables was tested using SEM to see and explain the path influence of the independent variable on the dependent variable. Confirmatory factor analysis (CFA) was conducted to test the validity of the scales in the study and to assess the measurement model fit indices. The analysis result revealed that calling was significantly and positively correlated with surface acting, deep acting and work engagement. Similarly, surface acting was significantly and positively correlated with deep acting and work engagement. And also, deep acting was significantly and positively correlated with work engagement. With respect to mediation analysis, the result revealed that surface acting mediated the relationship between calling and work engagement and also deep acting mediated the relationship between calling and work engagement. Besides, by using the model of the present study, the school leaders and practitioners can identify a core area to be considered in recruiting and letting teachers teach, in giving induction training for newly employed teachers and in performance appraisal.

Keywords: calling, surface acting, deep acting, work engagement, mediation, teachers

Procedia PDF Downloads 53
221 CP-96345 Rregulates Hydrogen Sulphide Induced TLR4 Signaling Pathway Adhesion Molecules in Caerulein Treated Pancreatic Acinar Cells

Authors: Ramasamy Tamizhselvi, Leema George, Madhav Bhatia

Abstract:

We have earlier shown that mouse pancreatic acinar cells produce hydrogen sulfide (H2S) and play a role in the pathogenesis of acute pancreatitis. This study is to determine the effect of H2S on TLR4 mediated innate immune signaling in acute pancreatitis via substance P (SP). Male Swiss mice were treated with hourly intraperitoneal injection of caerulein (50μg/kg) for 10 hour. DL-propargylglycine (PAG) (100 mg/kg i.p.), an inhibitor of H2S formation was administered 1h after the induction of acute pancreatitis. Pancreatic acinar cells from male Swiss mice were incubated with or without caerulein (10–7 M for 60 min) and CP-96345 (NK1R inhibitor). To better understand the effect of H2S in inflammation, acinar cells were stimulated with caerulein after addition of H2S donor, NaHS. In addition, caerulein treated pancreatic acinar cells were pretreated with PAG (30 µM), for 1h. H2S inhibitor, PAG, eliminated TLR4, IRAK4, TRAF6 and NF-kB levels in an in vitro and in vivo model of caerulein-induced acute pancreatitis. PPTA gene deletion reduced TLR4, MyD88, IRAK4, TRAF6, adhesion molecules and NF-kB in caerulein treated pancreatic acinar cells whereas administration of NaHS resulted in further rise in TLR4 and NF-kB levels in caerulein treated pancreatic acinar cells. In addition, acini isolated from mice and treated with PPTA gene receptor NK1R antagonist CP96345 did not exhibit further increase in TLR4, IRAK4, TRAF6, adhesion molecules and NF-kB levels after NaHS pretreatment. The present findings show for the first time that in acute pancreatitis, H2S up-regulates TLR4 pathway and NF-kB via substance P.

Keywords: preprotachykinin-A gene, H2S, TLR4, acute pancreatitis

Procedia PDF Downloads 251
220 Albendazole Ameliorates Inflammatory Response in a Rat Model of Acute Mesenteric Ischemia Reperfusion Injury

Authors: Kamyar Moradi

Abstract:

Background: Acute mesenteric ischemia is known as a life-threatening condition. Re-establishment of blood flow in this condition can lead to mesenteric ischemia reperfusion (MIR) injury, which is accompanied by inflammatory response. Still, clear blueprint of inflammatory mechanism underlying MIR injury has not been provided. Interestingly, Albendazole has exhibited notable effects on inflammation and cytokine production. In this study, we aimed to evaluate outcomes of MIR injury following pretreatment with Albendazole with respect to assessment of mesenteric inflammation and ischemia threshold. Methods: Male rats were randomly divided into sham operated, vehicle treated, Albendazole 100 mg/kg, and Albendazole 200 mg/kg groups. MIR injury was induced by occlusion of superior mesenteric artery for 30 minutes followed by 120 minutes of reperfusion. Samples were utilized for assessment of epithelial survival and villous height. Immunohistochemistry study revealed intestinal expression of TNF-α and HIF-1-α. Gene expression of NF-κB/TLR4/TNF-α/IL-6 was measured using RTPCR. Also, protein levels of inflammatory cytokines in serum and intestine were assessed by ELISA method. Results: Histopathological study demonstrated that pretreatment with Albendazole could ameliorate decline in villous height and epithelial survival following MIR injury. Also, systemic inflammation was suppressed after administration of Albendazole. Analysis of possible participating inflammatory pathway could demonstrate that intestinal expression of NF-κB/TLR4/TNF-α/IL-6 is significantly attenuated in treated groups. Eventually, IHC study illustrated concordant decline in mesenteric expression of HIF-1-α/TNF-α. Conclusion: Single dose pretreatment with Albendazole could ameliorate inflammatory response and enhance ischemia threshold following induction of MIR injury. Still, more studies would clarify existing causality in this phenomenon.

Keywords: albendazole, ischemia reperfusion injury, inflammation, mesenteric ischemia

Procedia PDF Downloads 145
219 Induction of G1 Arrest and Apoptosis in Human Cancer Cells by Panaxydol

Authors: Dong-Gyu Leem, Ji-Sun Shin, Sang Yoon Choi, Kyung-Tae Lee

Abstract:

In this study, we focused on the anti-proliferative effects of panaxydol, a C17 polyacetylenic compound derived from Panax ginseng roots, against various human cancer cells. We treated with panaxydol to various cancer cells and panaxydol treatment was found to significantly inhibit the proliferation of human lung cancer cells (A549) and human pancreatic cancer cells (AsPC-1 and MIA PaCa-2), of which AsPC-1 cells were most sensitive to its treatment. DNA flow cytometric analysis indicated that panaxydol blocked cell cycle progression at the G1 phase in A549 cells, which accompanied by a parallel reduction of protein expression of cyclin-dependent kinase (CDK) 2, CDK4, CDK6, cyclin D1 and cyclin E. CDK inhibitors (CDKIs), such as p21CIP1/WAF1 and p27KIP1, were gradually upregulated after panaxydol treatment at the protein levels. Furthermore, panaxydol induced the activation of p53 in A549 cells. In addition, panaxydol also induced apoptosis of AsPC-1 and MIA PaCa-2 cells, as shown by accumulation of subG1 and apoptotic cell populations. Panaxydol triggered the activation of caspase-3, -8, -9 and the cleavage of poly (ADP-ribose) polymerase (PARP). Reduction of mitochondrial transmembrane potential by panaxydol was determined by staining with dihexyloxacarbocyanine iodide. Furthermore, panaxydol suppressed the levels of anti-apoptotic proteins, XIAP and Bcl-2, and increased the levels of proapoptotic proteins, Bax and Bad. In addition, panaxydol inhibited the activation of Akt and extracellular signal-regulated kinase (ERK) and activated the p38 mitogen-activated protein kinase kinase (MAPK). Our results suggest that panaxydol is an anti-tumor compound that causes p53-mediated cell cycle arrest and apoptosis via mitochondrial apoptotic pathway in various cancer cells.

Keywords: apoptosis, cancer, G1 arrest, panaxydol

Procedia PDF Downloads 294
218 Investigation of Free Vibrations of Opened Shells from Alloy D19: Assistance of the Associated Mass System

Authors: Oleg Ye Sysoyev, Artem Yu Dobryshkin, Nyein Sitt Naing

Abstract:

Cylindrical shells are widely used in the construction of buildings and structures, as well as in the air structure. Thin-walled casings made of aluminum alloys are an effective substitute for reinforced concrete and steel structures in construction. The correspondence of theoretical calculations and the actual behavior of aluminum alloy structures is to ensure their trouble-free operation. In the laboratory of our university, "Building Constructions" conducted an experimental study to determine the effect of the system of attached masses on the natural oscillations of shallow cylindrical shells of aluminum alloys, the results of which were compared with theoretical calculations. The purpose of the experiment is to measure the free oscillations of an open, sloping cylindrical shell for various variations of the attached masses. Oscillations of an open, slender, thin-walled cylindrical shell, rectangular in plan, were measured using induction accelerometers. The theoretical calculation of the shell was carried out on the basis of the equations of motion of the theory of shallow shells, using the Bubnov-Galerkin method. A significant splitting of the flexural frequency spectrum is found, influenced not only by the systems of attached маsses but also by the values of the wave formation parameters, which depend on the relative geometric dimensions of the shell. The correspondence of analytical and experimental data is found, using the example of an open shell of alloy D19, which allows us to speak about the high quality of the study. A qualitative new analytical solution of the problem of determining the value of the oscillation frequency of the shell, carrying a system of attached masses is shown.

Keywords: open hollow shell, nonlinear oscillations, associated mass, frequency

Procedia PDF Downloads 255
217 New Teaching Tools for a Modern Representation of Chemical Bond in the Course of Food Science

Authors: Nicola G. G. Cecca

Abstract:

In Italian IPSSEOAs, high schools that give a vocational education to students that will work in the field of Enogastronomy and Hotel Management, the course of Food Science allows the students to start and see food as a mixture of substances that they will transform during their profession. These substances are characterized not only by a chemical composition but also by a molecular structure that makes them nutritionally active. But the increasing number of new products proposed by Food Industry, the modern techniques of production and transformation, the innovative preparations required by customers have made many information reported in the most wide spread Food Science textbooks not up-to-date or too poor for the people who will work in catering sector. Often Authors offer information aged to Bohr’s Atomic Model and to the ‘Octet Rule’ proposed by G.N. Lewis to describe the Chemical Bond, without giving any reference to new as Orbital Atomic Model and Molecular Orbital Theory that, in the meantime, start to be old themselves. Furthermore, this antiquated information precludes an easy understanding of a wide range of properties of nutritive substances and many reactions in which the food constituents are involved. In this paper, our attention is pointed out to use GEOMAG™ to represent the dynamics with which the chemical bond is formed during the synthesis of the molecules. GEOMAG™ is a toy, produced by the Swiss Company Geomagword S.A., pointed to stimulate in children, aged between 6-10 years, their fantasy and their handling ability and constituted by metallic spheres and metallic magnetic bars coated by coloured plastic materials. The simulation carried out with GEOMAG™ is based on the similitude existing between the Coulomb’s force and the magnetic attraction’s force and in particular between the formulae with which they are calculated. The electrostatic force (F in Newton) that allows the formation of the chemical bond can be calculated by mean Fc = kc q1 q2/d2 where: q1 e q2 are the charge of particles [in Coulomb], d is the distance between the particles [in meters] and kc is the Coulomb’s constant. It is surprising to observe that the attraction’s force (Fm) acting between the magnetic extremities of GEOMAG™ used to simulate the chemical bond can be calculated in the same way by using the formula Fm = km m1 m2/d2 where: m1 e m2 represent the strength of the poles [A•m], d is the distance between the particles [m], km = μ/4π in which μ is the magnetic permeability of medium [N•A-2]. The magnetic attraction can be tested by students by trying to keep the magnetic elements of GEOMAG™ separate by hands or trying to measure by mean an appropriate dynamometric system. Furthermore, by using a dynamometric system to measure the magnetic attraction between the GEOMAG™ elements is possible draw a graphic F=f(d) to verify that the curve obtained during the simulation is very similar to that one hypnotized, around the 1920’s by Linus Pauling to describe the formation of H2+ in according with Molecular Orbital Theory.

Keywords: chemical bond, molecular orbital theory, magnetic attraction force, GEOMAG™

Procedia PDF Downloads 235
216 Deubiquitinase USP35 Regulates Mitosis Progression by Blocking CDH1-Mediated Degradation of Aurora B.

Authors: Jinyoung Park, Eun Joo Song

Abstract:

Introduction: Deubiquitinating enzymes (DUBs) are proteases that cleave ubiquitin or ubiquitin-like modifications on substrates. Deubiquitination could regulate cellular physiology, such as signal transduction, DNA damage and repair, and cell cycle progression. Although more than 100 DUBs are encoded in the human and the importance of DUBs has been realized, the functions of most DUBs are unknown. This study aims to identify the molecular mechanism by which deubiquitinating enzyme USP35 regulates cell cycle progression for the first time. Methods: USP35 RNAi was mainly used to identify the function of USP35 in cell cycle progression. To find substrates of USP35, we analyzed protein-protein interaction using LC-MS. Several biological methods, such as ubiquitination assay, cell synchronization, immunofluorescence, and immunoprecipitation assay were used to investigate the exact mechanism by which USP35 affects successful completion of mitosis. Results: USP35 knockdown caused not only reduction of mitotic cell number but also induction of mitotic cells with abnormal spindle formation. Actually, cell proliferation was decreased by USP35 knockdown. Interestingly, we found that loss of USP35 decreased the stability and expression of Aurora B, a member of chromosomal passenger complex (CPC), and the phosphorylation of its substrate. Indeed, USP35 interacted with Aurora B and deubiquitinated it. In addition, USP35 knockdown induced abnormal localization of Aurora B in mitotic cells. Finally, CDH1-mediated ubiquitination of Aurora B level was rescued by USP35 overexpression, but not inactive form of USP35, USP35 C450A. Discussion: Our findings suggest that USP35 regulates Aurora B-mediated mitotic spindle assembly and G2-M transition by blocking CDH1-induced degradation of Aurora B.

Keywords: USP35, HSP90, Aurora B, cell cycle progression

Procedia PDF Downloads 339