Search results for: electro magnetic induction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2329

Search results for: electro magnetic induction

259 Intensity Modulated Radiotherapy of Nasopharyngeal Carcinomas: Patterns of Loco Regional Relapse

Authors: Omar Nouri, Wafa Mnejja, Nejla Fourati, Fatma Dhouib, Wicem Siala, Ilhem Charfeddine, Afef Khanfir, Jamel Daoud

Abstract:

Background and objective: Induction chemotherapy (IC) followed by concomitant chemo radiotherapy with intensity modulated radiation (IMRT) technique is actually the recommended treatment modality for locally advanced nasopharyngeal carcinomas (NPC). The aim of this study was to evaluate the prognostic factors predicting loco regional relapse with this new treatment protocol. Patients and methods: A retrospective study of 52 patients with NPC treated between June 2016 and July 2019. All patients received IC according to the protocol of the Head and Neck Radiotherapy Oncology Group (Gortec) NPC 2006 (3 TPF courses) followed by concomitant chemo radiotherapy with weekly cisplatin (40 mg / m2). Patients received IMRT with integrated simultaneous boost (SIB) of 33 daily fractions at a dose of 69.96 Gy for high-risk volume, 60 Gy for intermediate risk volume and 54 Gy for low-risk volume. Median age was 49 years (19-69) with a sex ratio of 3.3. Forty five tumors (86.5%) were classified as stages III - IV according to the 2017 UICC TNM classification. Loco regional relapse (LRR) was defined as a local and/or regional progression that occurs at least 6 months after the end of treatment. Survival analysis was performed according to Kaplan-Meier method and Log-rank test was used to compare anatomy clinical and therapeutic factors that may influence loco regional free survival (LRFS). Results: After a median follow up of 42 months, 6 patients (11.5%) experienced LRR. A metastatic relapse was also noted for 3 of these patients (50%). Target volumes coverage was optimal for all patient with LRR. Four relapses (66.6%) were in high-risk target volume and two (33.3%) were borderline. Three years LRFS was 85,9%. Four factors predicted loco regional relapses: histologic type other than undifferentiated (UCNT) (p=0.027), a macroscopic pre chemotherapy tumor volume exceeding 100 cm³ (p=0.005), a reduction in IC doses exceeding 20% (p=0.016) and a total cumulative cisplatin dose less than 380 mg/m² (p=0.0.34). TNM classification and response to IC did not impact loco regional relapses. Conclusion: For nasopharyngeal carcinoma, tumors with initial high volume and/or histologic type other than UCNT, have a higher risk of loco regional relapse. Therefore, they require a more aggressive therapeutic approaches and a suitable monitoring protocol.

Keywords: loco regional relapse, modulation intensity radiotherapy, nasopharyngeal carcinoma, prognostic factors

Procedia PDF Downloads 102
258 Characterization of a Lipolytic Enzyme of Pseudomonas nitroreducens Isolated from Mealworm's Gut

Authors: Jung-En Kuan, Whei-Fen Wu

Abstract:

In this study, a symbiotic bacteria from yellow mealworm's (Tenebrio molitor) mid-gut was isolated with characteristics of growth on minimal-tributyrin medium. After a PCR-amplification of its 16s rDNA, the resultant nucleotide sequences were then analyzed by schemes of the phylogeny trees. Accordingly, it was designated as Pseudomonas nitroreducens D-01. Next, by searching the lipolytic enzymes in its protein data bank, one of those potential lipolytic α/β hydrolases was identified, again using PCR-amplification and nucleotide-sequencing methods. To construct an expression of this lipolytic gene in plasmids, the target-gene primers were then designed, carrying the C-terminal his-tag sequences. Using the vector pET21a, a recombinant lipolytic hydrolase D gene with his-tag nucleotides was successfully cloned into it, of which the lipolytic D gene is under a control of the T7 promoter. After transformation of the resultant plasmids into Eescherichia coli BL21 (DE3), an IPTG inducer was used for the induction of the recombinant proteins. The protein products were then purified by metal-ion affinity column, and the purified proteins were found capable of forming a clear zone on tributyrin agar plate. Shortly, its enzyme activities were determined by degradation of p-nitrophenyl ester(s), and the substantial yellow end-product, p-nitrophenol, was measured at O.D.405 nm. Specifically, this lipolytic enzyme efficiently targets p-nitrophenyl butyrate. As well, it shows the most reactive activities at 40°C, pH 8 in potassium phosphate buffer. In thermal stability assays, the activities of this enzyme dramatically drop when the temperature is above 50°C. In metal ion assays, MgCl₂ and NH₄Cl induce the enzyme activities while MnSO₄, NiSO₄, CaCl₂, ZnSO₄, CoCl₂, CuSO₄, FeSO₄, and FeCl₃ reduce its activities. Besides, NaCl has no effects on its enzyme activities. Most organic solvents decrease the activities of this enzyme, such as hexane, methanol, ethanol, acetone, isopropanol, chloroform, and ethyl acetate. However, its enzyme activities increase when DMSO exists. All the surfactants like Triton X-100, Tween 80, Tween 20, and Brij35 decrease its lipolytic activities. Using Lineweaver-Burk double reciprocal methods, the function of the enzyme kinetics were determined such as Km = 0.488 (mM), Vmax = 0.0644 (mM/min), and kcat = 3.01x10³ (s⁻¹), as well the total efficiency of kcat/Km is 6.17 x10³ (mM⁻¹/s⁻¹). Afterwards, based on the phylogenetic analyses, this lipolytic protein is classified to type IV lipase by its homologous conserved region in this lipase family.

Keywords: enzyme, esterase, lipotic hydrolase, type IV

Procedia PDF Downloads 108
257 Green and Cost-Effective Biofabrication of Copper Oxide Nanoparticles: Exploring Antimicrobial and Anticancer Applications

Authors: Yemane Tadesse Gebreslassie, Fisseha Guesh Gebremeskel

Abstract:

Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an alternative approach for future therapeutic interventions against cancer and microbial infections.

Keywords: biological synthesis, copper oxide nanoparticles, microbial infection, nanotechnology

Procedia PDF Downloads 30
256 Drug-Based Nanoparticles: Comparative Study of the Effect Drug Type on Release Kinetics and Cell Viability

Authors: Chukwudalu C. Nwazojie, Wole W. Soboyejo, John Obayemi, Ali Salifu Azeko, Sandra M. Jusu, Chinyerem M. Onyekanne

Abstract:

The conventional methods for the diagnosis and treatment of breast cancer include bulk systematic mammography, ultrasound, dynamic contrast-enhanced fast 3D gradient-echo (GRE) magnetic resonance imaging (MRI), surgery, chemotherapy, and radiotherapy. However, nanoparticles and drug-loaded polymer microspheres for disease (cancer) targeting and treatment have enormous potential to enhance the approaches that are used today. The goal is to produce an implantable biomedical device for localized breast cancer drug delivery within Africa and the world. The main advantage of localized delivery is that it reduces the amount of drug that is needed to have a therapeutic effect. Polymer blends of poly (D,L-lactide-co-glycolide) (PLGA) and polycaprolactone (PCL), which are biodegradable, is used as a drug excipient. This work focuses on the development of PLGA-PCL (poly (D,L-lactide-co-glycolide) (PLGA) blended with based injectable drug microspheres and are loaded with anticancer drugs (prodigiosin (PG), and paclitaxel (PTX) control) and also the conjugated forms of the drug functionalized with LHRH (luteinizing hormone-releasing hormone) (PG-LHRH, and PTX- LHRH control), using a single-emulsion solvent evaporation technique. The encapsulation was done in the presence of PLGA-PCL (as a polymer matrix) and poly-(vinyl alcohol) (PVA) (as an emulsifier). Comparative study of the various drugs release kinetics and degradation mechanisms of the PLGA-PCL with an encapsulated drug is achieved, and the implication of this study is for the potential application of prodigiosin PLGA-PCL loaded microparticles for controlled delivery of cancer drug and treatment to prevent the regrowth or locoregional recurrence, following surgical resection of triple-negative breast tumor.

Keywords: cancer, polymers, drug kinetics, nanoparticles

Procedia PDF Downloads 76
255 Ectoine: A Compatible Solute in Radio-Halophilic Stenotrophomonas sp. WMA-LM19 Strain to Prevent Ultraviolet-Induced Protein Damage

Authors: Wasim Sajjad, Manzoor Ahmad, Sundas Qadir, Muhammad Rafiq, Fariha Hasan, Richard Tehan, Kerry L. McPhail, Aamer Ali Shah

Abstract:

Aim: This study aims to investigate the possible radiation protective role of a compatible solute in the tolerance of radio-halophilic bacterium against stresses, like desiccation and exposure to ionizing radiation. Methods and Results: Nine different radio-resistant bacteria were isolated from desert soil, where strain WMA-LM19 was chosen for detailed studies on the basis of its high tolerance for ultraviolet radiation among all these isolates. 16S rRNA gene sequencing indicated that the bacterium was closely related to Stenotrophomonas sp. (KT008383). A bacterial milking strategy was applied for extraction of intracellular compatible solutes in 70% (v/v) ethanol, which were purified by high-performance liquid chromatography (HPLC). The compound was characterized as ectoine by 1H and 13C nuclear magnetic resonance (NMR), and mass spectrometry (MS). Ectoine demonstrated more efficient preventive activity (54.80%) to erythrocyte membranes and also inhibited oxidative damage to proteins and lipids in comparison to the standard ascorbic acid. Furthermore, a high level of ectoine-mediated protection of bovine serum albumin against ionizing radiation (1500-2000 Jm-2) was observed, as indicated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Conclusion: The results indicated that ectoine can be used as a potential mitigator and radio-protective agent to overcome radiation- and salinity-mediated oxidative damage in extreme environments. Significance and Impact of the Study: This study shows that ectoine from radio-halophiles can be used as a potential source in topical creams as sunscreen. The investigation of ectoine as UV protectant also changes the prospective that radiation resistance is specific only to molecular adaptation.

Keywords: ectoine, anti-oxidant, stenotrophomonas sp., ultraviolet radiation

Procedia PDF Downloads 185
254 Phytochemical Screening, Proximate Analysis, Lethality Studies and Anti-Tumor Potential of Annona muricata L. (Soursop) Fruit Extract in Rattus novergicus

Authors: O. C. Abbah, O. Obidoa, J. Omale

Abstract:

Prostate tumor is fast becoming a leading cause of morbidity and mortality in human male adults, with 50 percent of men aged 50 years and above having histological evidence of the benign tumor. The study was set out to undertake phytochemical screening and proximate analysis of the pulp of A. muricata fruit - soursop; to determine the acute toxicity of the fruit pulp extract and its effect on male albino Wistar rats with concurrent induction of experimental benign prostate hyperplasia (BPH). Eighteen rats (average weight of 100g) were used for the lethality studies and were orally administered graded doses of aqueous extracts of the fruit pulp up to 5000 mg/kg body weight. Twenty five rats weighing 150-200g were divided into five groups of five rats each for the tumor studies. The groups included four controls – Hormone control, HC, which took Testosterone, T; and Estradiol, E2 – only, in olive oil as vehicle; Vehicle control, VC; Soursop control, SC, which received the extract only; VS, Vehicle and Soursop – and the Test group, TG (500mg/kg b.w.). All rats were dosed orally. Tumor was induced with exogenous Testosterone propionate: Estradiol valerate at 300µg: 80µg/kg b.w. (respectively) in olive oil, administered subcutaneously in the inguinal region of the rats on alternate days for 21 days. Administration of the fruit pulp at graded doses up to 5000mg/kg resulted in no lethality even after 72 hours. Results from tumor studies revealed that the administration of the fruit extracts significantly (p < 0.05) reduced the relative prostate weight of the TG compared with the HC, with values of 006±0.001 and 0.010±0.003 respectively. Treatment with vehicle, soursop and vehicle with soursop caused no significant (p>0.05) change in prostate size, with their respective relative prostate weights being 0.002±0.001, 0.004±0.002 and 0.002±0.001 compared with TG. Also, treatment with A. muricata fruit extract significantly decreased (p < 0.05) serum prostate specific antigen, PSA, in TG compared with HC, with values 0.055±0.017 and 0.194±0.068 ng/ml respectively. Furthermore, A. muricata administration displayed Testosterone boosting, Estradiol lowering and consequently testosterone-estradiol ratio increasing potential at the end of the 21 days. The preventive property of soursop against experimental BPH was corroborated by histological evidence in this study. The study concludes that A. muricata fruit holds a great potential for benign prostate tumor prevention and, possibly, management.

Keywords: annona muricata, benign prostate tumor, hormone, preventive potential, soursop

Procedia PDF Downloads 284
253 Pelvic Floor Electrophysiology Patterns Associated with Obstructed Defecation

Authors: Emmanuel Kamal Aziz Saba, Gihan Abd El-Lateif Younis El-Tantawi, Mohammed Hamdy Zahran, Ibrahim Khalil Ibrahim, Mohammed Abd El-Salam Shehata, Hussein Al-Moghazy Sultan, Medhat

Abstract:

Pelvic floor electrophysiological tests are essential for assessment of patients with obstructed defecation. The present study was conducted to determine the different patterns of pelvic floor electrophysiology that are associated with obstructed defecation. The present cross sectional study included 25 patients with obstructed defecation. A control group of 20 apparently healthy subjects were included. All patients were subjected to history taking, clinical examination, proctosigmoidoscopy, lateral proctography (evacuation proctography), dynamic pelvic magnetic resonance imaging, anal manometry and electrophysiological studies. Electrophysiological studies were including pudendal nerve motor conduction study, pudendo-anal reflex, needle electromyography of external anal sphincter and puborectalis muscles, pudendal somatosensory evoked potential and tibial somatosensory evoked potential. The control group was subjected to electrophysiological studies which included pudendal nerve motor conduction study, pudendo-anal reflex, pudendal somatosensory evoked potential and tibial somatosensory evoked potential. The most common pelvic floor electrodiagnostic pattern characteristics of obstructed defecation was pudendal neuropathy, denervation and anismus of external anal sphincter and puborectalis with complete interference pattern of external anal sphincter and puborectalis at squeezing and cough and no localized defect in external anal sphincter. In conclusion, there were characteristic pelvic floor electrodiagnostic patterns associated with obstructed defecation.

Keywords: obstructed defecation, pudendal nerve terminal motor latency, pudendoanal reflex, sphincter electromyography

Procedia PDF Downloads 409
252 Enhancement of Critical Current Density of Liquid Infiltration Processed Y-Ba-Cu-O Bulk Superconductors Used for Flywheel Energy Storage System

Authors: Asif Mahmood, Yousef Alzeghayer

Abstract:

The size effects of a precursor Y2BaCuO5 (Y211) powder on the microstructure and critical current density (Jc) of liquid infiltration growth (LIG)-processed YBa2Cu3O7-y (Y123) bulk superconductors were investigated in terms of milling time (t). YBCO bulk samples having high Jc values have been selected for the flywheel energy storage system. Y211 powders were attrition-milled for 0-10 h in 2 h increments at a fixed rotation speed of 400 RPM. Y211 pre-forms were made by pelletizing the milled Y211 powders followed by subsequent sintering, after which an LIG process with top seeding was applied to the Y211/Ba3Cu5O8 (Y035) pre-forms. Spherical pores were observed in all LIG-processed Y123 samples, and the pore density gradually decreased as t increased from 0 h to 8 h. In addition to the reduced pore density, the Y211 particle size in the final Y123 products also decreased with increasing t. As t increased further to 10 h, unexpected Y211 coarsening and large pore evolutions were observed. The magnetic susceptibility-temperature curves showed that the onset superconducting transition temperature (Tc, onset) of all samples was the same (91.5 K), but the transition width became greater as t increased. The Jc of the Y123 bulk superconductors fabricated in this study was observed to correlate well with t of the Y211 precursor powder. The maximum Jc of 1.0×105 A cm-2 (at 77 K, 0 T) was achieved at t = 8 h, which is attributed to the reduction in pore density and Y211 particle size. The prolonged milling time of t = 10 h decreased the Jc of the LIG-processed Y123 superconductor owing to the evolution of large pores and exaggerated Y211 growth. YBCO bulk samples having high Jc (samples prepared using 8 h milled powders) have been used for the energy storage system in flywheel energy storage system.

Keywords: critical current, bulk superconductor, liquid infiltration, bioinformatics

Procedia PDF Downloads 187
251 Effect of Sodium Arsenite Exposure on Pharmacodynamic of Meloxicam in Male Wistar Rats

Authors: Prashantkumar Waghe, N. Prakash, N. D. Prasada, L. V. Lokesh, M. Vijay Kumar, Vinay Tikare

Abstract:

Arsenic is a naturally occurring metalloid with potent toxic effects. It is ubiquitous in the environment and released from both natural and anthropogenic sources. It has the potential to cause various health hazards in exposed populations. Arsenic exposure through drinking water is considered as one of the most serious global environmental threats including Southeast Asia. The aim of present study was to evaluate the modulatory role of subacute exposure to sodium (meta) arsenite on the antinociceptive, anti-inflammatory and antipyretic responses mediated by meloxicam in rats. Rats were exposed to arsenic as sodium arsenite through drinking water for 28 days. A single dose of meloxicam (2 mg/kg b. wt.) was administered by oral gavage on the 29th day. The exact time of meloxicam administration depended on the type of test. Rats were divided randomly into 5 groups (n=6). Group I served as normal control and received arsenic free drinking water, while rats in group II were maintained similar to Group I but received meloxicam on 29th day. Groups III, IV and V were pre-exposed to arsenic through drinking water at 0.5, 5.0 and 50 ppm, respectively, for 28 days and was administered meloxicam next day and; pain and inflammation carried out by using formalin-induced nociception and carrageenan-induced inflammatory model(s), respectively by using standard protocol. For assessment of antipyretic effects, one more additional group (Group VI) was taken and given LPS @ 1.8 mg/kg b. wt. for induction of pyrexia (LPS control). Higher dose of arsenic inhibited the meloxicam mediated antinociceptive, anti-inflammatory and antipyretic responses. Further, meloxicam inhibited the arsenic induced level of tumor necrosis factor-α, inetrleukin-1β, interleukin -6 and COX2 mediated prostaglandin E2 in hind paw muscle. These results suggest a functional antagonism of meloxicam by arsenic. This may relate to arsenic mediated local release of tumor necrosis factor-α, inetrleukin-1β, interleukin -6 releases COX2 mediated prostaglandin E2. Based on the experimental study, it is concluded that sub-acute exposure to arsenic through drinking water aggravate pyrexia, inflammation and pain at environment relevant concentration and decrease the therapeutic efficacy of meloxicam at higher level of arsenite exposure. Thus, the observation made has clinical relevance in situations where animals are exposed to arsenite epidemic geographical locations.

Keywords: arsenic, analgesic activity, meloxicam, Wistar rats

Procedia PDF Downloads 160
250 Quantification and Evaluation of Tumors Heterogeneity Utilizing Multimodality Imaging

Authors: Ramin Ghasemi Shayan, Morteza Janebifam

Abstract:

Tumors are regularly inhomogeneous. Provincial varieties in death, metabolic action, multiplication and body part are watched. There’s expanding proof that strong tumors may contain subpopulations of cells with various genotypes and phenotypes. These unmistakable populaces of malignancy cells can connect during a serious way and may contrast in affectability to medications. Most tumors show organic heterogeneity1–3 remembering heterogeneity for genomic subtypes, varieties inside the statement of development variables and genius, and hostile to angiogenic factors4–9 and varieties inside the tumoural microenvironment. These can present as contrasts between tumors in a few people. for instance, O6-methylguanine-DNA methyltransferase, a DNA fix compound, is hushed by methylation of the quality advertiser in half of glioblastoma (GBM), adding to chemosensitivity, and improved endurance. From the outset, there includes been specific enthusiasm inside the usage of dissemination weighted imaging (DWI) and dynamic complexity upgraded MRI (DCE-MRI). DWI sharpens MRI to water dispersion inside the extravascular extracellular space (EES) and is wiped out with the size and setup of the cell populace. Additionally, DCE-MRI utilizes dynamic obtaining of pictures during and after the infusion of intravenous complexity operator. Signal changes are additionally changed to outright grouping of differentiation permitting examination utilizing pharmacokinetic models. PET scan modality gives one of a kind natural particularity, permitting dynamic or static imaging of organic atoms marked with positron emanating isotopes (for example, 15O, 18F, 11C). The strategy is explained to a colossal radiation portion, which points of confinement rehashed estimations, particularly when utilized together with PC tomography (CT). At long last, it's of incredible enthusiasm to quantify territorial hemoglobin state, which could be joined with DCE-CT vascular physiology estimation to create significant experiences for understanding tumor hypoxia.

Keywords: heterogeneity, computerized tomography scan, magnetic resonance imaging, PET

Procedia PDF Downloads 109
249 Modeling and System Identification of a Variable Excited Linear Direct Drive

Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke

Abstract:

Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.

Keywords: force variations, linear direct drive, modeling and system identification, variable excitation flux

Procedia PDF Downloads 342
248 The Balancing of the Parental Responsibilities and Right and the Best Interest of the Child within the Parent-Child Relationship

Authors: R. Prinsloo

Abstract:

Amniotic fluid stem cells (AFSC) have been shown to contribute towards the amelioration of Acute Renal Failure (ARF), but the mechanisms underlying the renoprotective effect are largely unknown. Therefore, the main goal of the current study was to evaluate the therapeutic efficacy of AFSC in a cisplatin-induced rat model of ARF and to investigate the underlying mechanisms responsible for its renoprotective effect. To study the therapeutic efficacy of AFSC, ARF was induced in Wistar rats by an intra-peritoneal injection of cisplatin, and five days after administration, the rats were randomized into two groups and injected with either AFSC or normal saline intravenously. On day 8 and 12 after cisplatin injection, i.e., day 3 and day7 post-therapy respectively, the blood biochemical parameters, histopathological changes, apoptosis, and expression of pro-apoptotic, anti-apoptotic and autophagy-related proteins in renal tissues were studied in both groups of rats. Administration of AFSC in ARF rats resulted in improvement of renal function and attenuation of renal damage as reflected by significant decrease in blood urea nitrogen, serum creatinine levels, tubular cell apoptosis as assessed by Bax/Bcl2 ratio, and expression of the pro-apoptotic proteins viz. PUMA, Bax, cleaved caspase-3 and cleaved caspase-9 as compared to saline-treated group. Furthermore, in the AFSC-treated group as compared to saline-treated group, there was a significant increase in the activation of autophagy as evident by increased expression of LC3-II, ATG5, ATG7, Beclin1 and phospho-AMPK levels with a concomitant decrease in phospho-p70S6K and p62 expression levels. To further confirm whether the protective effects of AFSC on cisplatin-induced apoptosis were dependent on autophagy, chloroquine, an autophagy inhibitor was administered by the intra-peritoneal route. Chloroquine administration led to significant reduction in the anti-apoptotic effects of the AFSC therapy and further deterioration in the renal structure and function caused by cisplatin. Collectively, our results put forth that AFSC ameliorates cisplatin-induced ARF through induction of autophagy and inhibition of apoptosis. Furthermore, the protective effects of AFSC were blunted by chloroquine, highlighting that activation of autophagy is an important mechanism of action for the protective role of AFSC in cisplatin-induced renal injury.

Keywords: best interest of the child, children's rights, parent and child relationship, parental responsibilities and rights

Procedia PDF Downloads 79
247 Risk-taking and Avoidance Decisions in Pandemic Agriculture in Georgia

Authors: Nino Damenia

Abstract:

The paper discusses the risks arising in agriculture in Georgia, the possibilities of their acceptance and prevention, the threat created by the pandemic crisis, and the state programs for overcoming them. The share of agriculture in the country's GDP is 8.3%. Over the past five years, Georgia has imported $ 5.9 billion worth of agri-food products. Despite these figures, agriculture has become an important sector for the Georgian government since 2012, as evidenced by the more than 1.5 billion GEL spent from the 2012-2020 budget for agricultural development. Any field of agriculture, be it poultry, livestock, cereals, fruits, or vegetables, is very sensitive to various climatic and viral risks. Avoiding these risks requires additional investment. It is noteworthy that small farms are mainly affected by the risks, while relatively large farms face fewer problems because they are relatively prepared to face the problems and can avoid them more easily. An example of viral risk in the article is the export of hazelnuts, which has quite a lot of potential. Due to the spoilage of the crop caused by Brown Marmorated Stink Bug (BMSB), hazelnut exports have declined considerably over the years. If the volume of hazelnuts exported in 2016 was 179 378 thousand USD, due to the deficit caused by Brown Marmorated Stink Bug (BMSB) in 2018, it became 57 124 thousand USD. And after the situation was relatively settled, hazelnut seedlings were poisoned. By 2020, this figure improved to 91,088 thousand US dollars. The development of the agricultural sector and the reduction of risks require technological development, investor interest, and even more state support to enable more small farms to have the potential for greater production and sustainable development. The aim of the study is to identify the risks arising in the agricultural sector of Georgia before and after the pandemic, to evaluate them, compare them with the agriculture of some European countries, and to develop the necessary recommendations to avoid the emerging risks. The research uses methods of analysis and synthesis, observation, induction, deduction, and analysis of statistics. The paper is based on both Georgian and foreign scientific research, as well as state-published documentation on agricultural assistance programs. The research is based on the analysis of data published by the European Statistics Office, the National Statistics Office of Georgia, and many other organizations. The results of the study and the recommendations will help reduce the risks in agriculture in Georgia and, in general, to identify the existing potential and the development of the sector as a whole.

Keywords: risk, agriculture, pandemi, brown marmorated stink bug (BMSB)

Procedia PDF Downloads 98
246 Growth and Yield Response of an Indian Wheat Cultivar (HD 2967) to Ozone and Water Stress in Open-Top Chambers with Emphasis on Its Antioxidant Status, Photosynthesis and Nutrient Allocation

Authors: Annesha Ghosh, S. B. Agrawal

Abstract:

Agricultural sector is facing a serious threat due to climate change and exacerbation of different atmospheric pollutants. Tropospheric ozone (O₃) is considered as a dynamic air pollutant imposing substantial phytotoxicity to natural vegetations and agriculture worldwide. Naturally, plants are exposed to different environmental factors and their interactions. Amongst such interactions, studies related to O₃ and water stress are still rare. In the present experiment, wheat cultivar HD2967 were grown in open top chambers (OTC) under two O₃ concentration; ambient O₃ level (A) and elevated O₃ (E) (ambient + 20 ppb O₃) along with two different water supply; well-watered (W) and 50% water stress conditions (WS), with an aim to assess the individual and interactive effect of two most prevailing stress factors in Indo-Gangetic Plains of India. Exposure to elevated O₃ dose caused early senescence symptoms and reduction in growth and biomass of the test cultivar. The adversity was more pronounced under the combined effect of EWS. Significant reduction of stomatal conductance (gs) and assimilation rate were observed under combined stress condition compared to the control (AW). However, plants grown under individual stress conditions displayed higher gs, biomass, and antioxidant defense mechanism compared to the plants grown under the presence of combined stresses. Higher induction in most of the enzyme activities of catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), peroxidase (POD) and superoxide dismutase (SOD) was displayed by HD 2967 under EW while, under the presence of combined stresses (EWS), a moderate increment of APX and CAT activity was observed only at its vegetative phase. Furthermore, variations in nutrient uptake and redistribution to different plants parts were also observed in the present study. Reduction in water availability has checked nutrient uptake (N, K, P, Ca, Cu, Mg, Zn) in above-ground parts (leaf) and below-ground parts (root). On the other hand, carbon (C) accumulation with subsequent C-N ratio was observed to be higher in the leaves under EWS. Such major nutrient check and limitation in carbon fixation due to lower gs under combined stress conditions might have weakened the defense mechanisms of the test cultivar. Grain yield was significantly reduced under EWS followed by AWS and EW as compared to their control, exhibiting an additive effect on the grain yield.

Keywords: antioxidants, open-top chambers, ozone, water stress, wheat, yield

Procedia PDF Downloads 89
245 A Comparative Study of Linearly Graded and without Graded Photonic Crystal Structure

Authors: Rajeev Kumar, Angad Singh Kushwaha, Amritanshu Pandey, S. K. Srivastava

Abstract:

Photonic crystals (PCs) have attracted much attention due to its electromagnetic properties and potential applications. In PCs, there is certain range of wavelength where electromagnetic waves are not allowed to pass are called photonic band gap (PBG). A localized defect mode will appear within PBG, due to change in the interference behavior of light, when we create a defect in the periodic structure. We can also create different types of defect structures by inserting or removing a layer from the periodic layered structure in two and three-dimensional PCs. We can design microcavity, waveguide, and perfect mirror by creating a point defect, line defect, and palanar defect in two and three- dimensional PC structure. One-dimensional and two-dimensional PCs with defects were reported theoretically and experimentally by Smith et al.. in conventional photonic band gap structure. In the present paper, we have presented the defect mode tunability in tilted non-graded photonic crystal (NGPC) and linearly graded photonic crystal (LGPC) using lead sulphide (PbS) and titanium dioxide (TiO2) in the infrared region. A birefringent defect layer is created in NGPC and LGPC using potassium titany phosphate (KTP). With the help of transfer matrix method, the transmission properties of proposed structure is investigated for transverse electric (TE) and transverse magnetic (TM) polarization. NGPC and LGPC without defect layer is also investigated. We have found that a photonic band gap (PBG) arises in the infrared region. An additional defect layer of KTP is created in NGPC and LGPC structure. We have seen that an additional transmission mode appers in PBG region. It is due to the addition of defect layer. We have also seen the effect, linear gradation in thickness, angle of incidence, tilt angle, and thickness of defect layer, on PBG and additional transmission mode. We have observed that the additional transmission mode and PBG can be tuned by changing the above parameters. The proposed structure may be used as channeled filter, optical switches, monochromator, and broadband optical reflector.

Keywords: defect modes, graded photonic crystal, photonic crystal, tilt angle

Procedia PDF Downloads 348
244 Computational Insight into a Mechanistic Overview of Water Exchange Kinetics and Thermodynamic Stabilities of Bis and Tris-Aquated Complexes of Lanthanides

Authors: Niharika Keot, Manabendra Sarma

Abstract:

A thorough investigation of Ln3+ complexes with more than one inner-sphere water molecule is crucial for designing high relaxivity contrast agents (CAs) used in magnetic resonance imaging (MRI). This study accomplished a comparative stability analysis of two hexadentate (H3cbda and H3dpaa) and two heptadentate (H4peada and H3tpaa) ligands with Ln3+ ions. The higher stability of the hexadentate H3cbda and heptadentate H4peada ligands has been confirmed by the binding affinity and Gibbs free energy analysis in aqueous solution. In addition, energy decomposition analysis (EDA) reveals the higher binding affinity of the peada4− ligand than the cbda3− ligand towards Ln3+ ions due to the higher charge density of the peada4− ligand. Moreover, a mechanistic overview of water exchange kinetics has been carried out based on the strength of the metal–water bond. The strength of the metal–water bond follows the trend Gd–O47 (w) > Gd–O39 (w) > Gd–O36 (w) in the case of the tris-aquated [Gd(cbda)(H2O)3] and Gd–O43 (w) > Gd–O40 (w) for the bis-aquated [Gd(peada)(H2O)2]− complex, which was confirmed by bond length, electron density (ρ), and electron localization function (ELF) at the corresponding bond critical points. Our analysis also predicts that the activation energy barrier decreases with the decrease in bond strength; hence kex increases. The 17O and 1H hyperfine coupling constant values of all the coordinated water molecules were different, calculated by using the second-order Douglas–Kroll–Hess (DKH2) approach. Furthermore, the ionic nature of the bonding in the metal–ligand (M–L) bond was confirmed by the Quantum Theory of Atoms-In-Molecules (QTAIM) and ELF along with energy decomposition analysis (EDA). We hope that the results can be used as a basis for the design of highly efficient Gd(III)-based high relaxivity MRI contrast agents for medical applications.

Keywords: MRI contrast agents, lanthanide chemistry, thermodynamic stability, water exchange kinetics

Procedia PDF Downloads 50
243 MicroRNA-1246 Expression Associated with Resistance to Oncogenic BRAF Inhibitors in Mutant BRAF Melanoma Cells

Authors: Jae-Hyeon Kim, Michael Lee

Abstract:

Intrinsic and acquired resistance limits the therapeutic benefits of oncogenic BRAF inhibitors in melanoma. MicroRNAs (miRNA) regulate the expression of target mRNAs by repressing their translation. Thus, we investigated miRNA expression patterns in melanoma cell lines to identify candidate biomarkers for acquired resistance to BRAF inhibitor. Here, we used Affymetrix miRNA V3.0 microarray profiling platform to compare miRNA expression levels in three cell lines containing BRAF inhibitor-sensitive A375P BRAF V600E cells, their BRAF inhibitor-resistant counterparts (A375P/Mdr), and SK-MEL-2 BRAF-WT cells with intrinsic resistance to BRAF inhibitor. The miRNAs with at least a two-fold change in expression between BRAF inhibitor-sensitive and –resistant cell lines, were identified as differentially expressed. Averaged intensity measurements identified 138 and 217 miRNAs that were differentially expressed by 2 fold or more between: 1) A375P and A375P/Mdr; 2) A375P and SK-MEL-2, respectively. The hierarchical clustering revealed differences in miRNA expression profiles between BRAF inhibitor-sensitive and –resistant cell lines for miRNAs involved in intrinsic and acquired resistance to BRAF inhibitor. In particular, 43 miRNAs were identified whose expression was consistently altered in two BRAF inhibitor-resistant cell lines, regardless of intrinsic and acquired resistance. Twenty five miRNAs were consistently upregulated and 18 downregulated more than 2-fold. Although some discrepancies were detected when miRNA microarray data were compared with qPCR-measured expression levels, qRT-PCR for five miRNAs (miR-3617, miR-92a1, miR-1246, miR-1936-3p, and miR-17-3p) results showed excellent agreement with microarray experiments. To further investigate cellular functions of miRNAs, we examined effects on cell proliferation. Synthetic oligonucleotide miRNA mimics were transfected into three cell lines, and proliferation was quantified using a colorimetric assay. Of the 5 miRNAs tested, only miR-1246 altered cell proliferation of A375P/Mdr cells. The transfection of miR-1246 mimic strongly conferred PLX-4720 resistance to A375P/Mdr cells, implying that miR-1246 upregulation confers acquired resistance to BRAF inhibition. We also found that PLX-4720 caused much greater G2/M arrest in A375P/Mdr cells transfected with miR-1246mimic than that seen in scrambled RNA-transfected cells. Additionally, miR-1246 mimic partially caused a resistance to autophagy induction by PLX-4720. These results indicate that autophagy does play an essential death-promoting role inPLX-4720-induced cell death. Taken together, these results suggest that miRNA expression profiling in melanoma cells can provide valuable information for a network of BRAF inhibitor resistance-associated miRNAs.

Keywords: microRNA, BRAF inhibitor, drug resistance, autophagy

Procedia PDF Downloads 294
242 Development of a Computer Aided Diagnosis Tool for Brain Tumor Extraction and Classification

Authors: Fathi Kallel, Abdulelah Alabd Uljabbar, Abdulrahman Aldukhail, Abdulaziz Alomran

Abstract:

The brain is an important organ in our body since it is responsible about the majority actions such as vision, memory, etc. However, different diseases such as Alzheimer and tumors could affect the brain and conduct to a partial or full disorder. Regular diagnosis are necessary as a preventive measure and could help doctors to early detect a possible trouble and therefore taking the appropriate treatment, especially in the case of brain tumors. Different imaging modalities are proposed for diagnosis of brain tumor. The powerful and most used modality is the Magnetic Resonance Imaging (MRI). MRI images are analyzed by doctor in order to locate eventual tumor in the brain and describe the appropriate and needed treatment. Diverse image processing methods are also proposed for helping doctors in identifying and analyzing the tumor. In fact, a large Computer Aided Diagnostic (CAD) tools including developed image processing algorithms are proposed and exploited by doctors as a second opinion to analyze and identify the brain tumors. In this paper, we proposed a new advanced CAD for brain tumor identification, classification and feature extraction. Our proposed CAD includes three main parts. Firstly, we load the brain MRI. Secondly, a robust technique for brain tumor extraction is proposed. This technique is based on both Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). DWT is characterized by its multiresolution analytic property, that’s why it was applied on MRI images with different decomposition levels for feature extraction. Nevertheless, this technique suffers from a main drawback since it necessitates a huge storage and is computationally expensive. To decrease the dimensions of the feature vector and the computing time, PCA technique is considered. In the last stage, according to different extracted features, the brain tumor is classified into either benign or malignant tumor using Support Vector Machine (SVM) algorithm. A CAD tool for brain tumor detection and classification, including all above-mentioned stages, is designed and developed using MATLAB guide user interface.

Keywords: MRI, brain tumor, CAD, feature extraction, DWT, PCA, classification, SVM

Procedia PDF Downloads 222
241 Dynamic Contrast-Enhanced Breast MRI Examinations: Clinical Use and Technical Challenges

Authors: Janet Wing-Chong Wai, Alex Chiu-Wing Lee, Hailey Hoi-Ching Tsang, Jeffrey Chiu, Kwok-Wing Tang

Abstract:

Background: Mammography has limited sensitivity and specificity though it is the primary imaging technique for detection of early breast cancer. Ultrasound imaging and contrast-enhanced MRI are useful adjunct tools to mammography. The advantage of breast MRI is high sensitivity for invasive breast cancer. Therefore, indications for and use of breast magnetic resonance imaging have increased over the past decade. Objectives: 1. Cases demonstration on different indications for breast MR imaging. 2. To review of the common artifacts and pitfalls in breast MR imaging. Materials and Methods: This is a retrospective study including all patients underwent dynamic contrast-enhanced breast MRI examination in our centre, performed from Jan 2011 to Dec 2017. The clinical data and radiological images were retrieved from the EPR (electronic patient record), RIS (Radiology Information System) and PACS (Picture Archiving and Communication System). Results and Discussion: Cases including (1) Screening of the contralateral breast in patient with a new breast malignancy (2) Breast augmentation with free injection of unknown foreign materials (3) Finding of axillary adenopathy with an unknown site of primary malignancy (4) Neo-adjuvant chemotherapy: before, during, and after chemotherapy to evaluate treatment response and extent of residual disease prior to operation. Relevant images will be included and illustrated in the presentation. As with other types of MR imaging, there are different artifacts and pitfalls that can potentially limit interpretation of the images. Because of the coils and software specific to breast MR imaging, there are some other technical considerations that are unique to MR imaging of breast regions. Case demonstration images will be available in presentation. Conclusion: Breast MR imaging is a highly sensitive and reasonably specific method for the detection of breast cancer. Adherent to appropriate clinical indications and technical optimization are crucial for achieving satisfactory images for interpretation.

Keywords: MRI, breast, clinical, cancer

Procedia PDF Downloads 211
240 Characteristics of Plasma Synthetic Jet Actuator in Repetitive Working Mode

Authors: Haohua Zong, Marios Kotsonis

Abstract:

Plasma synthetic jet actuator (PSJA) is a new concept of zero net mass flow actuator which utilizes pulsed arc/spark discharge to rapidly pressurize gas in a small cavity under constant-volume conditions. The unique combination of high exit jet velocity (>400 m/s) and high actuation frequency (>5 kHz) provides a promising solution for high-speed high-Reynolds-number flow control. This paper focuses on the performance of PSJA in repetitive working mode which is more relevant to future flow control applications. A two-electrodes PSJA (cavity volume: 424 mm3, orifice diameter: 2 mm) together with a capacitive discharge circuit (discharge energy: 50 mJ-110 mJ) is designed to enable repetitive operation. Time-Resolved Particle Imaging Velocimetry (TR-PIV) system working at 10 kHz is exploited to investigate the influence of discharge frequency on performance of PSJA. In total, seven cases are tested, covering a wide range of discharge frequencies (20 Hz-560 Hz). The pertinent flow features (shock wave, vortex ring and jet) remain the same for single shot mode and repetitive working mode. Shock wave is issued prior to jet eruption. Two distinct vortex rings are formed in one cycle. The first one is produced by the starting jet whereas the second one is related with the shock wave reflection in cavity. A sudden pressure rise is induced at the throat inlet by the reflection of primary shock wave, promoting the shedding of second vortex ring. In one cycle, jet exit velocity first increases sharply, then decreases almost linearly. Afterwards, an alternate occurrence of multiple jet stages and refresh stages is observed. By monitoring the dynamic evolution of exit velocity in one cycle, some integral performance parameters of PSJA can be deduced. As frequency increases, the jet intensity in steady phase decreases monotonically. In the investigated frequency range, jet duration time drops from 250 µs to 210 µs and peak jet velocity decreases from 53 m/s to approximately 39 m/s. The jet impulse and the expelled gas mass (0.69 µN∙s and 0.027 mg at 20 Hz) decline by 48% and 40%, respectively. However, the electro-mechanical efficiency of PSJA defined by the ratio of jet mechanical energy to capacitor energy doesn’t show significant difference (o(0.01%)). Fourier transformation of the temporal exit velocity signal indicates two dominant frequencies. One corresponds to the discharge frequency, while the other accounts for the alternation frequency of jet stage and refresh stage in one cycle. The alternation period (300 µs approximately) is independent of discharge frequency, and possibly determined intrinsically by the actuator geometry. A simple analytical model is established to interpret the alternation of jet stage and refresh stage. Results show that the dynamic response of exit velocity to a small-scale disturbance (jump in cavity pressure) can be treated as a second-order under-damping system. Oscillation frequency of the exit velocity, namely alternation frequency, is positively proportional to exit area, but inversely proportional to cavity volume and throat length. Theoretical value of alternation period (305 µs) agrees well with the experimental value.

Keywords: plasma, synthetic jet, actuator, frequency effect

Procedia PDF Downloads 226
239 A Comparative Analysis of Liberation and Contemplation in Sankara and Aquinas

Authors: Zeite Shumneiyang Koireng

Abstract:

Liberation is the act of liberating or the state of being liberated. Indian philosophy, in general, understands liberation as moksa, which etymological is derived from the Sanskrit root muc+ktin meaning to loose, set free, to let go, discharge, release, liberate, deliver, etc. According to Indian schools of thought, moksa is the highest value on realizing which nothing remains to be realized. It is the cessation of birth and death, all kinds of pain and at the same time, it is the realization of one’s own self. Sankara’s Advaita philosophy is based on the following propositions: Brahman is the only Reality; the world has apparent reality, and the soul is not different from Brahman. According to Sankara, Brahman is the basis on which the world form appears; it is the sustaining ground of all various modification. It is the highest self and the self of all reveals himself by dividing himself [ as it was in the form of various objects] in multiple ways. The whole world is the manifestation of the Supreme Being. Brahman modifying itself into the Atman or internal self of all things is the world. Since Brahman is the Upadhana karana of the world, the sruti speaks of the world as the modification of Brahman into the Atman of the effect. Contemplation as the fulfillment of man finds a radical foundation in Aquinas teaching concerning the natural end or as he also referred to it, natural desire. The third book of the Summa Contra Gentiles begins the study of happiness with a consideration of natural desire. According to him, all creatures, even those devoid of understanding are ordered to God as an ultimate end. Intrinsically, a part of every nature is a tendency or inclination, originating in the natural form and tendency toward the end for which the possessor of nature exists. It is the study of the nature and finality of inclination that Aquinas establishes through an argument of induction man’s Contemplation of God as the fulfillment of his nature. The present paper is attempted to critically approach two important, seminal and originated thought, representing Indian and Western traditions which mark on the thinking of their respective times. Both these thoughts- Advaitic concept of Liberation in the Indian tradition and the concept of Contemplation in Thomas Aquinas’ Summa Contra Gentiles’- confront directly the question of the ultimate meaning of human existence. According to Sankara, it is knowledge and knowledge alone which is the means of moksa and the highest knowledge is moksa itself. Liberation in Sankara Vedanta is attained as a process of purification of self, which gradually and increasingly turns into purer and purer intentional construction. Man’s inner natural tendency for Aquinas is towards knowledge. The human subject is driven to know more and more about reality and in particular about the highest reality. Contemplation of this highest reality is fulfillment in the philosophy of Aquinas. Rather, Contemplation is the perfect activity in man’s present state of existence.

Keywords: liberation, Brahman, contemplation, fulfillment

Procedia PDF Downloads 164
238 Organic Carbon Pools Fractionation of Lacustrine Sediment with a Stepwise Chemical Procedure

Authors: Xiaoqing Liu, Kurt Friese, Karsten Rinke

Abstract:

Lacustrine sediment archives rich paleoenvironmental information in lake and surrounding environment. Additionally, modern sediment is used as an effective medium for the monitoring of lake. Organic carbon in sediment is a heterogeneous mixture with varying turnover times and qualities which result from the different biogeochemical processes in the deposition of organic material. Therefore, the isolation of different carbon pools is important for the research of lacustrine condition in the lake. However, the numeric available fractionation procedures can hardly yield homogeneous carbon pools on terms of stability and age. In this work, a multi-step fractionation protocol that treated sediment with hot water, HCl, H2O2 and Na2S2O8 in sequence was adopted, the treated sediment from each step were analyzed for the isotopic and structural compositions with Isotope Ratio Mass Spectrometer coupled with element analyzer (IRMS-EA) and Solid-state 13C Nuclear Magnetic Resonance (NMR), respectively. The sequential extractions with hot-water, HCl, and H2O2 yielded a more homogeneous and C3 plant-originating OC fraction, which was characterized with an atomic C/N ratio shift from 12.0 to 20.8, and 13C and 15N isotopic signatures were 0.9‰ and 1.9‰ more depleted than the original bulk sediment, respectively. Additionally, the H2O2- resistant residue was dominated with stable components, such as the lignins, waxes, cutans, tannins, steroids and aliphatic proteins and complex carbohydrates. 6M HCl in the acid hydrolysis step was much more effective than 1M HCl to isolate a sedimentary OC fraction with higher degree of homogeneity. Owing to the extremely high removal rate of organic matter, the step of a Na2S2O8 oxidation is only suggested if the isolation of the most refractory OC pool is mandatory. We conclude that this multi-step chemical fractionation procedure is effective to isolate more homogeneous OC pools in terms of stability and functional structure, and it can be used as a promising method for OC pools fractionation of sediment or soil in future lake research.

Keywords: 13C-CPMAS-NMR, 13C signature, lake sediment, OC fractionation

Procedia PDF Downloads 277
237 Resting-State Functional Connectivity Analysis Using an Independent Component Approach

Authors: Eric Jacob Bacon, Chaoyang Jin, Dianning He, Shuaishuai Hu, Lanbo Wang, Han Li, Shouliang Qi

Abstract:

Objective: Refractory epilepsy is a complicated type of epilepsy that can be difficult to diagnose. Recent technological advancements have made resting-state functional magnetic resonance (rsfMRI) a vital technique for studying brain activity. However, there is still much to learn about rsfMRI. Investigating rsfMRI connectivity may aid in the detection of abnormal activities. In this paper, we propose studying the functional connectivity of rsfMRI candidates to diagnose epilepsy. Methods: 45 rsfMRI candidates, comprising 26 with refractory epilepsy and 19 healthy controls, were enrolled in this study. A data-driven approach known as independent component analysis (ICA) was used to achieve our goal. First, rsfMRI data from both patients and healthy controls were analyzed using group ICA. The components that were obtained were then spatially sorted to find and select meaningful ones. A two-sample t-test was also used to identify abnormal networks in patients and healthy controls. Finally, based on the fractional amplitude of low-frequency fluctuations (fALFF), a chi-square statistic test was used to distinguish the network properties of the patient and healthy control groups. Results: The two-sample t-test analysis yielded abnormal in the default mode network, including the left superior temporal lobe and the left supramarginal. The right precuneus was found to be abnormal in the dorsal attention network. In addition, the frontal cortex showed an abnormal cluster in the medial temporal gyrus. In contrast, the temporal cortex showed an abnormal cluster in the right middle temporal gyrus and the right fronto-operculum gyrus. Finally, the chi-square statistic test was significant, producing a p-value of 0.001 for the analysis. Conclusion: This study offers evidence that investigating rsfMRI connectivity provides an excellent diagnosis option for refractory epilepsy.

Keywords: ICA, RSN, refractory epilepsy, rsfMRI

Procedia PDF Downloads 43
236 Using the World Cafe Discussion Method to Practice Professional Ethics Courses: Taking Life Education as an Example

Authors: Li-Jia Chiu

Abstract:

The purpose of this study is to integrate the content of professional ethics curriculum into life education. This course is a required course for the third-year students of the university. The curriculum is based on professional ethics, which can help students gain insights into a conceptual understanding of professional theory, learning the meaning and the value of life. This study enhances students' attitude toward learning through multi-teaching methods. It takes ‘professionalism’ as the subject of discussion. Additionally, the course combines the connotation and issues of the student's career development. Using the world cafe discussion method, students can think about the role of the future career, and inspire students to integrate their career development and life value reflection and connection. This study recruited the third-year undergraduate students as samples to collect data. This study was conducted in the course of the fall semester in 2016 for thematic discussions, classroom observations, course study forms, coursework, and results in publication reports, etc. The researcher conducted induction data analysis to reflect the practice and reflection of the course. The subjects included 117 students from two classes, including 54 male and 63 female students. The findings of this study comprised the following two parts: the student’s learning and teacher’s teaching reflection. The students’ gains were that: 1) The curriculum design is different from that of other subjects; 2) The curriculum is highly interactive with teachers and classmates; 3) These students are willing to actively participate and share ideas in group discussions; 4 ) They thought the possibility of further discussions with other groups of students through table-to-table discussions; 5) They experienced the respect from other students in the learning process and their appreciation of other students in the same group. The instruction reflections were as follows: 1) Students learned to get link to the value of life and future development through topical discussions; 2) After the main course design guided through gradual guidance, the students’ psychology reached a certain degree of cognition, and further themes then added would cause more sensuous learning effects; 3) Combining students’ expertise in drawing in this department (digital media design department) into curriculum design is effective in stimulating learning motivation and sense of accomplishment; 4) In order to compare and explore learning benefits, future researches are recommended to conduct the similar studies with different departments. Finally, the researcher looks forward to providing research results and findings to the related curriculum teachers as a reference for practical curriculum planning and teaching methods.

Keywords: life education, World Cafe, professional ethics, professionalism

Procedia PDF Downloads 113
235 The Effects of High-frequency rTMS Targeting the Mirror Neurons on Improving Social Awareness in ASD, the Preliminary Analysis of a Pilot Study

Authors: Mitra Assadi, Md. Faan

Abstract:

Background: Autism Spectrum Disorder (ASD) in a common neurodevelopmental disorder with limited pharmacological interventions. Transcranial Magnetic Stimulation (rTMS) has produced promising results in ASD, although there is no consensus regarding optimal targets or stimulation paradigms. A prevailing theory in ASD attributes the core deficits to dysfunction of the mirror neurons located in the inferior parietal lobule (IPL) and inferior frontal gyrus (IFG). Methods: Thus far, 11 subjects with ASD, 10 boys and 1 girl with the mean age of 13.36 years have completed the study by receiving 10 session of high frequency rTMS to the IPL. The subjects were randomized to receive stimulation on the left or right IPL and sham stimulation to the opposite side. The outcome measures included the Social Responsiveness Scale – Second Edition (SRS-2) and Delis-Kaplan Executive Function System (D-KEFS) Verbal Fluency task. Results: None of the 11 subjects experienced any adverse effects. The rTMS did not produce any improvement in verbal fluency, nor there was any statistically significant difference between the right versus left sided stimulation. Analysis of social awareness on SRS-2 (SRS-AWR) indicated a close to significant effect of the treatment with a small to medium effect size. After removing a single subject with Level 3 ASD, we demonstrated a close to significant improvement on SRS-AWR with a large effect size. The analysis of the data 3-month post TMS demonstrated return of the SRS-AWR values to baseline. Conclusion: This preliminary analysis of the 11 subjects who have completed our study thus far shows a favorable response to high frequency rTMS stimulation of the mirror neurons/IPL on social awareness. While the decay of the response noted during the 3-month follow-up may be considered a limitation of rTMS, the presence of the improvement, especially the effect size despite the small sample size, is indicative of the efficacy of this technique.

Keywords: rTMS, autism, scoial cognition, mirror neurons

Procedia PDF Downloads 43
234 Collagen Hydrogels Cross-Linked by Squaric Acid

Authors: Joanna Skopinska-Wisniewska, Anna Bajek, Marta Ziegler-Borowska, Alina Sionkowska

Abstract:

Hydrogels are a class of materials widely used in medicine for many years. Proteins, such as collagen, due to the presence of a large number of functional groups are easily wettable by polar solvents and can create hydrogels. The supramolecular network capable to swelling is created by cross-linking of the biopolymers using various reagents. Many cross-linking agents has been tested for last years, however, researchers still are looking for a new, more secure reactants. Squaric acid, 3,4-dihydroxy 3-cyclobutene 1,2- dione, is a very strong acid, which possess flat and rigid structure. Due to the presence of two carboxyl groups the squaric acid willingly reacts with amino groups of collagen. The main purpose of this study was to investigate the influence of addition of squaric acid on the chemical, physical and biological properties of collagen materials. The collagen type I was extracted from rat tail tendons and 1% solution in 0.1M acetic acid was prepared. The samples were cross-linked by the addition of 5%, 10% and 20% of squaric acid. The mixtures of all reagents were incubated 30 min on magnetic stirrer and then dialyzed against deionized water. The FTIR spectra show that the collagen structure is not changed by cross-linking by squaric acid. Although the mechanical properties of the collagen material deteriorate, the temperature of thermal denaturation of collagen increases after cross-linking, what indicates that the protein network was created. The lyophilized collagen gels exhibit porous structure and the pore size decreases with the higher addition of squaric acid. Also the swelling ability is lower after the cross-linking. The in vitro study demonstrates that the materials are attractive for 3T3 cells. The addition of squaric acid causes formation of cross-ling bonds in the collagen materials and the transparent, stiff hydrogels are obtained. The changes of physicochemical properties of the material are typical for cross-linking process, except mechanical properties – it requires further experiments. However, the results let us to conclude that squaric acid is a suitable cross-linker for protein materials for medicine and tissue engineering.

Keywords: collagen, squaric acid, cross-linking, hydrogel

Procedia PDF Downloads 360
233 Effect of Citric Acid on Hydrogen-Bond Interactions and Tensile Retention Properties of Citric Acid Modified Thermoplastic Starch Biocomposites

Authors: Da-Wei Wang, Liang Yang, Xuan-Long Peng, Mei-Chuan Kuo, Jen-Taut Yeh

Abstract:

The tensile retention and waterproof properties of thermoplastic starch (TPS) resins were significantly enhanced by modifying with proper amounts of citric acid (CA) and by melt-blending with poly(lactic acid) (PLA), although no distinguished chemical reaction occurred between CA and starch molecules. As evidenced by Fourier transform infrared spectroscopy and Solid-state 13C Nuclear Magnetic Resonance analyses, disruption of intra and interhydrogen-bondings within starch molecules did occur during the modification processes of CA modified TPS (i.e. TPS100CAx) specimens. The tensile strength (σf) retention values of TPS specimens reduced rapidly from 27.8 to 20.5 and 0.4 MPa, respectively, as the conditioning time at 20°C/50% relative humidity (RH) increased from 0 to 7 and 70 days, respectively. While the elongation at break (εf) retention values of TPS specimens increased rapidly from 5.9 to 6.5 and 34.8%, respectively, as the conditioning time increased from 0 to 7 and 70 days. After conditioning at 20°C/50% RH for 70 days, the σf and εf retention values of the best prepared (TPS100CA0.1)30PLA70 specimen are equivalent to 85% and 167% of its initial σf and εf values, respectively, and are more than 105 times higher but 48% lower than those of TPS specimens conditioned at 20°C/50% RH for the same amount of time. Demarcated diffraction peaks, new melting endotherms of recrystallized starch crystals and distinguished ductile characteristics with drawn debris were found for many conditioned TPS specimens, however, only slight retrogradation effect and much less drawn debris was found for most conditioned TPS100CAx and/or (TPS100CA0.1)xPLAy specimens. The significantly improved water proof, tensile retention properties and relatively unchanged in retrogradation effect found for most conditioned TPS100CAx and/or (TPS100CA0.1)xPLAy specimens are apparently due to the efficient blocking of the moisture-absorbing hydroxyl groups (free or hydrogen bonded) by hydrogen-bonding CA with starch molecules during their modification processes.

Keywords: thermoplastic starch, hydrogen-bonding, water proof, strength retention

Procedia PDF Downloads 284
232 TNF-Alpha and MDA Levels in Hearts of Cholesterol-Fed Rats Supplemented with Extra Virgin Olive Oil or Sunflower Oil, in Either Commercial or Modified Forms

Authors: Ageliki I. Katsarou, Andriana C. Kaliora, Antonia Chiou, Apostolos Papalois, Nick Kalogeropoulos, Nikolaos K. Andrikopoulos

Abstract:

Oxidative stress is a major mechanism underlying CVDs while inflammation, an intertwined process with oxidative stress, is also linked to CVDs. Extra virgin olive oil (EVOO) is widely known to play a pivotal role in CVD prevention and CVD reduction. However, in most studies, olive oil constituents are evaluated individually and not as part of the native food, hence potential synergistic effects as drivers of EVOO beneficial properties may be underestimated. In this study, EVOO lipidic and polar phenolics fractions were evaluated for their effect on inflammatory (TNF-alpha) and oxidation (malondialdehyde/MDA) markers, in cholesterol-fed rats. Thereat, oils with discernible lipidic profile and polar phenolic content were used. Wistar rats were fed on either a high-cholesterol diet (HCD) or a HCD supplemented with oils, either commercially available, i.e. EVOO, sunflower oil (SO), or modified as to their polar phenol content, i.e. phenolics deprived-EVOO (EVOOd), SO enriched with the EVOO phenolics (SOe). After 9 weeks of dietary intervention, heart and blood samples were collected. HCD induced dylipidemia shown by increase in serum total cholesterol, low-density lipoprotein cholesterol (LDL-c) and triacylglycerols. Heart tissue has been affected by dyslipidemia; oxidation was indicated by increase in MDA in cholesterol-fed rats and inflammation by increase in TNF-alpha. In both cases, this augmentation was attenuated in EVOO and SOe diets. With respect to oxidation, SO enrichment with the EVOO phenolics brought its lipid peroxidation levels as low as in EVOO-fed rats. This suggests that phenolic compounds may act as antioxidant agents in rat heart. A possible mechanism underlying this activity may be the protective effect of phenolics in mitochondrial membrane against oxidative damage. This was further supported by EVOO/EVOOd comparison with the former presenting lower heart MDA content. As for heart inflammation, phenolics naturally present in EVOO as well as phenolics chemically added in SO, exhibited quenching abilities in heart TNF-alpha levels of cholesterol-fed rats. TNF-alpha may have played a causative role in oxidative stress induction while the opposite may have also happened, hence setting up a vicious cycle. Overall, diet supplementation with EVOO or SOe attenuated hypercholesterolemia-induced increase in MDA and TNF-alpha in Wistar rat hearts. This is attributed to phenolic compounds either naturally existing in olive oil or as fortificants in seed oil.

Keywords: extra virgin olive oil, hypercholesterolemic rats, MDA, polar phenolics, TNF-alpha

Procedia PDF Downloads 469
231 Recycling Biomass of Constructed Wetlands as Precursors of Electrodes for Removing Heavy Metals and Persistent Pollutants

Authors: Álvaro Ramírez Vidal, Martín Muñoz Morales, Francisco Jesús Fernández Morales, Luis Rodríguez Romero, José Villaseñor Camacho, Javier Llanos López

Abstract:

In recent times, environmental problems have led to the extensive use of biological systems to solve them. Among the different types of biological systems, the use of plants such as aquatic macrophytes in constructed wetlands and terrestrial plant species for treating polluted soils and sludge has gained importance. Though the use of constructed wetlands for wastewater treatment is a well-researched domain, the slowness of pollutant degradation and high biomass production pose some challenges. Plants used in CW participate in different mechanisms for the capture and degradation of pollutants that also can retain some pharmaceutical and personal care products (PPCPs) that are very persistent in the environment. Thus, these systems present advantages in line with the guidelines published for the transition towards friendly and ecological procedures as they are environmentally friendly systems, consume low energy, or capture atmospheric CO₂. However, the use of CW presents some drawbacks, as the slowness of pollutant degradation or the production of important amounts of plant biomass, which need to be harvested and managed periodically. Taking this opportunity in mind, it is important to highlight that this residual biomass (of lignocellulosic nature) could be used as the feedstock for the generation of carbonaceous materials using thermochemical transformations such as slow pyrolysis or hydrothermal carbonization to produce high-value biomass-derived carbons through sustainable processes as adsorbents, catalysts…, thereby improving the circular carbon economy. Thus, this work carried out the analysis of some PPCPs commonly found in urban wastewater, as salicylic acid or ibuprofen, to evaluate the remediation carried out for the Phragmites Australis. Then, after the harvesting, this biomass can be used to synthesize electrodes through hydrothermal carbonization (HTC) and produce high-value biomass-derived carbons with electrocatalytic activity to remove heavy metals and persistent pollutants, promoting circular economy concepts. To do this, it was chosen biomass derived from the natural environment in high environmental risk as the Daimiel Wetlands National Park in the center of Spain, and the rest of the biomass developed in a CW specifically designed to remove pollutants. The research emphasizes the impact of the composition of the biomass waste and the synthetic parameters applied during HTC on the electrocatalytic activity. Additionally, this parameter can be related to the physicochemical properties, as porosity, surface functionalization, conductivity, and mass transfer of the electrodes lytic inks. Data revealed that carbon materials synthesized have good surface properties (good conductivities and high specific surface area) that enhance the electro-oxidants generated and promote the removal of PPCPs and the chemical oxygen demand of polluted waters.

Keywords: constructed wetlands, carbon materials, heavy metals, pharmaceutical and personal care products, hydrothermal carbonization

Procedia PDF Downloads 50
230 Co2e Sequestration via High Yield Crops and Methane Capture for ZEV Sustainable Aviation Fuel

Authors: Bill Wason

Abstract:

143 Crude Palm Oil Coop mills on Sumatra Island are participating in a program to transfer land from defaulted estates to small farmers while improving the sustainability of palm production to allow for biofuel & food production. GCarbon will be working with farmers to transfer technology, fertilizer, and trees to double the yield from the current baseline of 3.5 tons to at least 7 tons of oil per ha (25 tons of fruit bunches). This will be measured via evaluation of yield comparisons between participant and non-participant farms. We will also capture methane from Palm Oil Mill Effluent (POME)throughbelt press filtering. Residues will be weighed and a formula used to estimate methane emission reductions based on methodologies developed by other researchers. GCarbon will also cover mill ponds with a non-permeable membrane and collect methane for energy or steam production. A system for accelerating methane production involving ozone and electro-flocculation will be tested to intensifymethane generation and reduce the time for wastewater treatment. A meta-analysis of research on sweet potatoes and sorghum as rotation crops will look at work in the Rio Grande do Sul, Brazil where5 ha. oftest plots of industrial sweet potato have achieved yields of 60 tons and 40 tons per ha. from 2 harvests in one year (100 MT/ha./year). Field trials will be duplicated in Bom Jesus Das Selvas, Maranhaothat will test varieties of sweet potatoes to measure yields and evaluate disease risks in a very different soil and climate of NE Brazil. Hog methane will also be captured. GCarbon Brazil, Coop Sisal, and an Australian research partner will plant several varieties of agave and use agronomic procedures to get yields of 880 MT per ha. over 5 years. They will also plant new varieties expected to get 3500 MT of biomass after 5 years (176-700 MT per ha. per year). The goal is to show that the agave can adapt to Brazil’s climate without disease problems. The study will include a field visit to growing sites in Australia where agave is being grown commercially for biofuels production. Researchers will measure the biomass per hectare at various stages in the growing cycle, sugar content at harvest, and other metrics to confirm the yield of sugar per ha. is up to 10 times greater than sugar cane. The study will look at sequestration rates from measuring soil carbon and root accumulation in various plots in Australia to confirm carbon sequestered from 5 years of production. The agave developer estimates that 60-80 MT of sequestration per ha. per year occurs from agave. The three study efforts in 3 different countries will define a feedstock pathway for jet fuel that involves very high yield crops that can produce 2 to 10 times more biomass than current assumptions. This cost-effective and less land intensive strategy will meet global jet fuel demand and produce huge quantities of food for net zero aviation and feeding 9-10 billion people by 2050

Keywords: zero emission SAF, methane capture, food-fuel integrated refining, new crops for SAF

Procedia PDF Downloads 74