Search results for: dielectric medium
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3084

Search results for: dielectric medium

2934 Aptitude of a Lactococcus Strain to Grow on Whey Medium

Authors: Souid Wafa, Boudjenah-Haroun Saliha, Khacef Linda

Abstract:

In this work, we focused on the valuation of discharges from the dairy industry. Whey is by-product of dairy industry, which is a formidable pollution factor and contains components (lactose, minerals and proteins) with high nutritional value. Whey is an excellent culture medium for microorganisms. The objective of our work is to investigate the ability of a lactic strain (of the genus Lactococcus) to grow in culture media based on whey of cattle and camels and comparing it with that recorded on M17 as indicator medium. In this study we isolated from a local sample of camel milk a lactic strain (S1).the strain had positive Gram shaped, cocci form and catalase (-). The strain has been purified by the method of streaks on M17 medium. Phenotypic identification allows us to classify this strain in the species: Lactococcus lactis subsp. Cremoris. We subsequently tested the ability of this strain to grow in cattle whey medium and camel whey, both media were deproteinized and unsupplemented. The obtained results revealed that: The cattle and camel whey are appropriate media for the growth of the strain Lactococcus lactis subsp cremoris but is more adapted to grow on a medium rich in lactose as the camel whey. In fact, after 48h and at initial pH 6.8 this strain acidified more camel whey (pH 3.99) than cattle whey (pH 4.8). And biomass produced in the camel whey is 1.50g /1 by contributing to the cattle whey which is 1g / l.

Keywords: cremoris, dairy industry, Lactococcus lactis subsp, medium, whey

Procedia PDF Downloads 329
2933 Enhanced Dielectric and Ferroelectric Properties in Holmium Substituted Stoichiometric and Non-Stoichiometric SBT Ferroelectric Ceramics

Authors: Sugandha Gupta, Arun Kumar Jha

Abstract:

A large number of ferroelectric materials have been intensely investigated for applications in non-volatile ferroelectric random access memories (FeRAMs), piezoelectric transducers, actuators, pyroelectric sensors, high dielectric constant capacitors, etc. Bismuth layered ferroelectric materials such as Strontium Bismuth Tantalate (SBT) has attracted a lot of attention due to low leakage current, high remnant polarization and high fatigue endurance up to 1012 switching cycles. However, pure SBT suffers from various major limitations such as high dielectric loss, low remnant polarization values, high processing temperature, bismuth volatilization, etc. Significant efforts have been made to improve the dielectric and ferroelectric properties of this compound. Firstly, it has been reported that electrical properties vary with the Sr/ Bi content ratio in the SrBi2Ta2O9 compsition i.e. non-stoichiometric compositions with Sr-deficient / Bi excess content have higher remnant polarization values than stoichiometic SBT compositions. With the objective to improve structural, dielectric, ferroelectric and piezoelectric properties of SBT compound, rare earth holmium (Ho3+) was chosen as a donor cation for substitution onto the Bi2O2 layer. Moreover, hardly any report on holmium substitution in stoichiometric SrBi2Ta2O9 and non-stoichiometric Sr0.8Bi2.2Ta2O9 compositions were available in the literature. The holmium substituted SrBi2-xHoxTa2O9 (x= 0.00-2.0) and Sr0.8Bi2.2Ta2O9 (x=0.0 and 0.01) compositions were synthesized by the solid state reaction method. The synthesized specimens were characterized for their structural and electrical properties. X-ray diffractograms reveal single phase layered perovskite structure formation for holmium content in stoichiometric SBT samples up to x ≤ 0.1. The granular morphology of the samples was investigated using scanning electron microscope (Hitachi, S-3700 N). The dielectric measurements were carried out using a precision LCR meter (Agilent 4284A) operating at oscillation amplitude of 1V. The variation of dielectric constant with temperature shows that the Curie temperature (Tc) decreases on increasing the holmium content. The specimen with x=2.0 i.e. the bismuth free specimen, has very low dielectric constant and does not show any appreciable variation with temperature. The dielectric loss reduces significantly with holmium substitution. The polarization–electric field (P–E) hysteresis loops were recorded using a P–E loop tracer based on Sawyer–Tower circuit. It is observed that the ferroelectric property improve with Ho substitution. Holmium substituted specimen exhibits enhanced value of remnant polarization (Pr= 9.22 μC/cm²) as compared to holmium free specimen (Pr= 2.55 μC/cm²). Piezoelectric co-efficient (d33 values) was measured using a piezo meter system (Piezo Test PM300). It is observed that holmium substitution enhances piezoelectric coefficient. Further, the optimized holmium content (x=0.01) in stoichiometric SrBi2-xHoxTa2O9 composition has been substituted in non-stoichiometric Sr0.8Bi2.2Ta2O9 composition to obtain further enhanced structural and electrical characteristics. It is expected that a new class of ferroelectric materials i.e. Rare Earth Layered Structured Ferroelectrics (RLSF) derived from Bismuth Layered Structured Ferroelectrics (BLSF) will generate which can be used to replace static (SRAM) and dynamic (DRAM) random access memories with ferroelectric random access memories (FeRAMS).

Keywords: dielectrics, ferroelectrics, piezoelectrics, strontium bismuth tantalate

Procedia PDF Downloads 177
2932 Transport Medium That Prevents the Conversion of Helicobacter Pylori to the Coccoid Form

Authors: Eldar Mammadov, Konul Mammadova, Aytaj Ilyaszada

Abstract:

Background: According to many studies, it is known that H. pylori transform into the coccoid form, which cannot be cultured and has poor metabolic activity.In this study, we succeeded in preserving the spiral shape of H.pylori for a long time by preparing a biphase transport medium with a hard bottom (Muller Hinton with 7% HRBC (horse red blood cells) agar 5ml) and liquid top part (BH (brain heart) broth + HS (horse serum)+7% HRBC+antibiotics (Vancomycin 5 mg, Trimethoprim lactate 25 mg, Polymyxin B 1250 I.U.)) in cell culture flasks with filter caps. For comparison, we also used a BH broth medium with 7% HRBC used for the transport of H.pylori. Methods: Rapid urease test positive 7 biopsy specimens were also inoculated into biphasic and BH broth medium with 7% HRBC, then put in CO2 Gaspak packages and sent to the laboratory. Then both mediums were kept in the thermostat at 37 °C for 1 day. After microscopic, PCR and urease test diagnosis, they were transferred to Columbia Agar with 7% HRBC. Incubated at 37°C for 5-7 days, cultures were examined for colony characteristics and bacterial morphology. E-test antimicrobial susceptibility test was performed. Results: There were 3 growths from biphasic transport medium passed to Columbia agar with 7% HRBC and only 1 growth from BH broth medium with 7% HRBC. It was also observed that after the first 3 days in BH broth medium with 7%, H.pylori passed into coccoid form and its biochemical activity weakened, while its spiral shape did not change for 2-3 weeks in the biphase transport medium. Conclusions: By using the biphase transport medium we have prepared; we can culture the bacterium by preventing H.pylori from spiraling into the coccoid form. In our opinion, this may result in the wide use of culture method for diagnosis of H.pylori, study of antibiotic susceptibility and molecular genetic analysis.

Keywords: clinical trial, H.pylori, coccoid form, transport medium

Procedia PDF Downloads 45
2931 Envisioning Process in Medium Enterprises: An Exploratory Study of Cambodian Living Arts

Authors: Alexandre Bédard, Caroline Coulombe, Jonathan Harvey

Abstract:

Envisioning process (EP) in medium enterprises is treated equally in very small enterprises. Building on the concept of social construction, this study aims to explore how envisioning is constructed in a medium enterprise in which stakeholders are involved and how it is influenced. We use a unique case method based on qualitative data collected through 11 interviews representing various members of the organization. Through the discussion of the findings, we were able to confirm the social construction of the EP and to identify three main stakeholders responsible for the construction of the vision, mainly political and social powers, actors of the organization, and financial providers. Moreover, EP is influenced by external factors; in this case, the history of the organization and the value and importance of the art and the culture for Cambodians.

Keywords: envisioning process, social constructivism, medium enterprise, legitimacy

Procedia PDF Downloads 77
2930 Influence of Harmonics on Medium Voltage Distribution System: A Case Study for Residential Area

Authors: O. Arikan, C. Kocatepe, G. Ucar, Y. Hacialiefendioglu

Abstract:

In this paper, influence of harmonics on medium voltage distribution system of Bogazici Electricity Distribution Inc. (BEDAS) which takes place at Istanbul/Turkey is investigated. A ring network consisting of residential loads is taken into account for this study. Real system parameters and measurement results are used for simulations. Also, probable working conditions of the system are analyzed for %50, %75 and %100 loading of transformers with similar harmonic contents. Results of the study are exhibited the influence of nonlinear loads on %THDV, P.F. and technical losses of the medium voltage distribution system.

Keywords: distribution system, harmonic, technical losses, power factor, total harmonic distortion, residential load, medium voltage

Procedia PDF Downloads 548
2929 Simulation and Experimental Study on Dual Dense Medium Fluidization Features of Air Dense Medium Fluidized Bed

Authors: Cheng Sheng, Yuemin Zhao, Chenlong Duan

Abstract:

Air dense medium fluidized bed is a typical application of fluidization techniques for coal particle separation in arid areas, where it is costly to implement wet coal preparation technologies. In the last three decades, air dense medium fluidized bed, as an efficient dry coal separation technique, has been studied in many aspects, including energy and mass transfer, hydrodynamics, bubbling behaviors, etc. Despite numerous researches have been published, the fluidization features, especially dual dense medium fluidization features have been rarely reported. In dual dense medium fluidized beds, different combinations of different dense mediums play a significant role in fluidization quality variation, thus influencing coal separation efficiency. Moreover, to what extent different dense mediums mix and to what extent the two-component particulate mixture affects the fluidization performance and quality have been in suspense. The proposed work attempts to reveal underlying mechanisms of generation and evolution of two-component particulate mixture in the fluidization process. Based on computational fluid dynamics methods and discrete particle modelling, movement and evolution of dual dense mediums in air dense medium fluidized bed have been simulated. Dual dense medium fluidization experiments have been conducted. Electrical capacitance tomography was employed to investigate the distribution of two-component mixture in experiments. Underlying mechanisms involving two-component particulate fluidization are projected to be demonstrated with the analysis and comparison of simulation and experimental results.

Keywords: air dense medium fluidized bed, particle separation, computational fluid dynamics, discrete particle modelling

Procedia PDF Downloads 352
2928 Synthesis and Characterization of Zr and V Co-Doped BaTiO₃ Ceramic

Authors: Kanta Maan Sangwan, Neetu Ahlawat, Rajender Singh Kundu

Abstract:

BaZrTiO3 ceramics having high dielectric constant and low dielectric loss are interesting material for being used as commercial capacitor applications. BZT (BaZrTiO3) has attracted attentions for their many applications for the microwave technology as the doping of Zr4+ on Ti4+ has advantage to the stability of the system. In the present work, co-doping of Zr and V with BaTiO3 ceramics was synthesized by the conventional solid state reaction technique and sintered at 1200 K for 6 hours, and their structural and ferroelectric properties were studied. The XRD (x-ray diffraction) pattern of BZT (BaZrTiO3) ceramics shows that the crystalline sample is single phase tetragonal structure with P4mm space group. The result revealed that Zr ion enters the unit cell maintaining the perovskite structure of BZT ceramics and the impedance spectroscopy of the sample performed in selected frequency and temperature range.

Keywords: ferroelectric, impedance spectroscopy, space group, tetragonal

Procedia PDF Downloads 183
2927 Medium Design and Optimization for High Β-Galactosidase Producing Microbial Strains from Dairy Waste through Fermentation

Authors: Ashish Shukla, K. P. Mishra, Pushplata Tripathi

Abstract:

This paper investigates the production and optimization of β-galactosidase enzyme using synthetic medium by isolated wild strains (S1, S2) mutated strains (M1, M2) through SSF and SmF. Among the different cell disintegration methods used, the highest specific activity was obtained when the cells were permeabilized using isoamyl alcohol. Wet lab experiments were performed to investigate the effects of carbon and nitrogen substrates present in Vogel’s medium on β-galactosidase enzyme activity using S1, S2, and M1, M2 strains through SSF. SmF experiments were performed for effects of carbon and nitrogen sources in YLK2Mg medium on β-galactosidase enzyme activity using S1, S2 and M1, M2 strains. Effect of pH on β-galactosidase enzyme production was also done using S1, S2, and M1, M2 strains. Results were found to be very appreciable in all the cases.

Keywords: β-galactosidase, cell disintegration, permeabilized, SSF, SmF

Procedia PDF Downloads 241
2926 The Fabrication and Characterization of a Honeycomb Ceramic Electric Heater with a Conductive Coating

Authors: Siming Wang, Qing Ni, Yu Wu, Ruihai Xu, Hong Ye

Abstract:

Porous electric heaters, compared to conventional electric heaters, exhibit excellent heating performance due to their large specific surface area. Porous electric heaters employ porous metallic materials or conductive porous ceramics as the heating element. The former attains a low heating power with a fixed current due to the low electrical resistivity of metal. Although the latter can bypass the inherent challenges of porous metallic materials, the fabrication process of the conductive porous ceramics is complicated and high cost. This work proposed a porous ceramic electric heater with dielectric honeycomb ceramic as a substrate and surface conductive coating as a heating element. The conductive coating was prepared by the sol-gel method using silica sol and methyl trimethoxysilane as raw materials and graphite powder as conductive fillers. The conductive mechanism and degradation reason of the conductive coating was studied by electrical resistivity and thermal stability analysis. The heating performance of the proposed heater was experimentally investigated by heating air and deionized water. The results indicate that the electron transfer is achieved by forming the conductive network through the contact of the graphite flakes. With 30 wt% of graphite, the electrical resistivity of the conductive coating can be as low as 0.88 Ω∙cm. The conductive coating exhibits good electrical stability up to 500°C but degrades beyond 600°C due to the formation of many cracks in the coating caused by the weight loss and thermal expansion. The results also show that the working medium has a great influence on the volume power density of the heater. With air under natural convection as the working medium, the volume power density attains 640.85 kW/m3, which can be increased by 5 times when using deionized water as the working medium. The proposed honeycomb ceramic electric heater has the advantages of the simple fabrication method, low cost, and high volume power density, demonstrating great potential in the fluid heating field.

Keywords: conductive coating, honeycomb ceramic electric heater, high specific surface area, high volume power density

Procedia PDF Downloads 111
2925 An Effect of Organic Supplements on Stimulating Growth of Dendrobium Protocorms and Seedlings

Authors: Sunthari Tharapan, Chockpisit Thepsithar, Kullanart Obsuwan

Abstract:

This study was aimed to investigate the effect of various organic supplements on growth and development of Dendrobium discolor’s protocorms and seedlings growth of Dendrobium Judy Rutz. Protocorms of Dendrobium discolor with 2.0 cm. in diameter and seedlings of Dendrobium Judy Rutz at the same size (0.5 cm. height) were sub-cultured on Hyponex medium supplemented with cow milk (CM), soy milk (SM), potato extract (PE) and peptone (P) for 2 months. The protocorms were developed to seedlings in all treatments after cultured for 2 months. However, the best results were found on Hyponex medium supplemented with P was the best in which the maximum fresh and dry weight and maximum shoot height were obtained in this treatment statistically different (p ≤ 0.05) to other treatments. Moreover, Hyponex medium supplemented with P also stimulated the maximum mean number of 5.7 shoots per explant which also showed statistically different (p ≤ 0.05) when compared to other treatments. The results of growth of Dendrobium Judy Rutz seedlings indicated the medium supplemented with 100 mL/L PE enhanced the maximum fresh and dry weigh per explants with significantly different (p ≤ 0.05) in fresh weight from other treatments including the control medium without any organic supplementation. However, the dry weight was not significantly different (p ≤ 0.05) from medium supplemented with SM and P. There was multiple shoots induction in all media with or without organic supplementation ranging from 2.6 to 3 shoots per explants. The maximum shoot height was also obtained in the seedlings cultured on medium supplemented with PE while the longest root length was found in medium supplemented with SM.

Keywords: fresh weight, in vitro propagation, orchid, plant height

Procedia PDF Downloads 333
2924 Effect of Manganese Doping on Ferrroelectric Properties of (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 Lead-Free Piezoceramic

Authors: Chongtham Jiten, Radhapiyari Laishram, K. Chandramani Singh

Abstract:

Alkaline niobate (Na0.5K0.5)NbO3 ceramic system has attracted major attention in view of its potential for replacing the highly toxic but superior lead zirconate titanate (PZT) system for piezoelectric applications. Recently, a more detailed study of this system reveals that the ferroelectric and piezoelectric properties are optimized in the Li- and V-modified system having the composition (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3. In the present work, we further study the pyroelectric behaviour of this composition along with another doped with Mn4+. So, (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 + x MnO2 (x = 0, and 0.01 wt. %) ceramic compositions were synthesized by conventional ceramic processing route. X-ray diffraction study reveals that both the undoped and Mn4+-doped ceramic samples prepared crystallize into a perovskite structure having orthorhombic symmetry. Dielectric study indicates that Mn4+ doping has little effect on both the Curie temperature (Tc) and tetragonal-orthorhombic phase transition temperature (Tot). The bulk density, room-temperature dielectric constant (εRT), and room-c The room-temperature coercive field (Ec) is observed to be lower in Mn4+ doped sample. The detailed analysis of the P-E hysteresis loops over the range of temperature from about room temperature to Tot points out that enhanced ferroelectric properties exist in this temperature range with better thermal stability for the Mn4+ doped ceramic. The study reveals that small traces of Mn4+ can modify (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 system so as to improve its ferroelectric properties with good thermal stability over a wide range of temperature.

Keywords: ceramics, dielectric properties, ferroelectric properties, lead-free, sintering, thermal stability

Procedia PDF Downloads 213
2923 Dielectric Thickness Modulation Based Optically Transparent Leaky Wave Antenna Design

Authors: Waqar Ali Khan

Abstract:

A leaky-wave antenna design is proposed which is based on the realization of a certain kind of surface impedance profile that allows the existence of a perturbed surface wave (fast wave) that radiates. The antenna is realized by using optically transparent material Plexiglas. Plexiglas behaves as a dielectric at radio frequencies and is transparent at optical frequencies. In order to have a ground plane for the microwave frequencies, metal strips are used parallel to the E field of the operating mode. The microwave wavelength chosen is large enough such that it does not resolve the metal strip ground plane and sees it to be a uniform ground plane. While, at optical frequencies, the metal strips do have some shadowing effect. However still, about 62% of optical power can be transmitted through the antenna.

Keywords: Plexiglass, surface-wave, optically transparent, metal strip

Procedia PDF Downloads 119
2922 Magnetoelectric Coupling in Hetero-Structured Nano-Composite of BST-BLFM Films

Authors: Navneet Dabra, Jasbir S. HUndal

Abstract:

Hetero-structured nano-composite thin film of Ba0.5Sr0.5TiO3/Bi0.9La0.1Fe0.9Mn0.1O3 (BST/BLFM) has been prepared by chemical solution deposition method with various BST to BLFM thickness ratios. These films have been deposited over on p-type Si (100) substrate. These samples exhibited low leakage current, large grain size and uniform distribution of particles. The maximum remanent polarization (Pr) was achieved in the heterostructures with thickness ratio of 2.65. The dielectric tenability, electric hysteresis (P-E), ME coupling coefficient, magnetic hysteresis (M-H), ferromagnetic exchange interaction and magnetoelectric measurements were carried out. Field Emission Scanning Electron Microscopy has been employed to investigate the surface morphology of these heterostructured nano-composite films.

Keywords: magnetoelectric, Schottky emission, interface coupling, dielectric tenability, electric hysteresis (P-E), ME coupling coefficient, magnetic hysteresis (M-H)

Procedia PDF Downloads 397
2921 Modeling of Flows in Porous Materials under Pressure Difference

Authors: Nicoleta O. Tanase, Ciprian S. Mateescu

Abstract:

This paper is concerned with the numerical study of the flow through porous media. The purpose of this project is to determine the permeability of a medium and its connection to porosity to be able to identify how the permeability of said medium can be altered without changing the porosity. The numerical simulations are performed in 2D flow configurations with the laminar solvers implemented in Workbench - ANSYS Fluent. The direction of flow of the working fluid (water) is axial, from left to right, and in steady-state conditions. The working fluid is water. The 2D geometry is a channel with 300 mm length and 30 mm width, with a different number of circles that are positioned differently, modelling a porous medium. The permeability of a porous medium can be altered without changing the porosity by positioning the circles differently (by missing the same number of circles) in the flow domain, which induces a change in the flow spectrum. The main goal of the paper is to investigate the flow pattern and permeability under controlled perturbations induced by the variation of velocity and porous medium. Numerical solutions provide insight into all flow magnitudes, one of the most important being the WSS distribution on the circles.

Keywords: CFD, porous media, permeability, flow spectrum

Procedia PDF Downloads 23
2920 A Study on Fundamental Problems for Small and Medium Agricultural Machinery Industries in Central Region Area

Authors: P. Thepnarintra, S. Nikorn

Abstract:

Agricultural machinery industry plays an important role in the industrial development especially the production industry of the country. There has been continuing development responding to the higher demand of the production. However, the problem in agricultural machinery production still exists. Thus, the purpose of this research is to investigate problems on fundamental factors of industry based on the entrepreneurs’ point of view. The focus was on the small and medium size industry receiving a factory license typed number 0660 from the Department of Industrial Works. The investigation was on the comparison between the management of the small and medium size agricultural industry in 3 provinces in the central region of Thailand. Population in this study consisted of 189 company managers or managing directors, of which 101 were from the small size and 88 were from the medium size industry. The data were analyzed to find percentage, arithmetic mean, and standard deviation with independent sample T-test at the statistical significance .05. The results showed that the small and medium size agricultural machinery manufacturers in the central region of Thailand reported high problems in every aspect. When compared the problems on basic factors in running the business, it was found that there was no difference statistically at .05 in managing of the small and medium size agricultural machinery manufacturers. However, there was a statistically significant difference between the small and medium size agricultural machinery manufacturers on the aspect of policy and services of the government. The problems reported by the small and medium size agricultural machinery manufacturers were the services on public tap water and the problem on politic and stability of the country.

Keywords: agricultural machinery, manufacturers, problems, on running the business

Procedia PDF Downloads 260
2919 Behavior of Epoxy Insulator with Surface Defect under HVDC Stress

Authors: Qingying Liu, S. Liu, L. Hao, B. Zhang, J. D. Yan

Abstract:

HVDC technology is becoming increasingly popular due to its simplicity in topology and less power loss over long distance of power transmission, in comparison with HVAC technology. However, the dielectric behavior of insulators in the long term under HVDC stress is completely different from that under HVAC stress as a result of charge accumulation in a constant electric field. Insulators used in practical systems are never perfect in their structural conditions. Over time shallow cracks may develop on their surface. The presence of defects can lead to drastic change in their dielectric behaviour and thus increase the probability of surface flashover. In this contribution, experimental investigations have been carried out on the charge accumulation phenomenon on the surface of a rod insulator made of epoxy that is placed between two disk shaped electrodes at different voltage levels and in different gases (SF6, CO2 and N2). Many results obtained, such as, the two-dimensional electrostatic potential distribution along the insulator surface after the removal of the power source following a pre-defined period of application. The probe has been carefully calibrated before each test. Results show that surface charge distribution near the two disk shaped electrodes is not uniform in the circumferential direction, possibly due to the imperfect electrical connections between the embeded conductor in the insulator and the disk shaped electrodes. The axial length of this non-uniform region is experimentally determined, which provides useful information for shielding design. A charge transport model is also used to explain the formation of the long term electrostatic potential distribution under a constant applied voltage.

Keywords: HVDC, power systems, dielectric behavior, insulation, charge accumulation

Procedia PDF Downloads 199
2918 Culture of Manager of a Medium or Small Enterprises

Authors: Omar Bendjimaa, Karzabi Abdelatif

Abstract:

Small and medium enterprises have witnessed several developments in recent years thanks to the policies and programs of support given by the state, and that is due to their importance in local and national development. Nevertheless, the success and development of these firms depends on a number of factors, especially the human element, for instance, the culture of the manager has its origin in the culture of the community and is of crucial influence in these firms. In fact, this culture is nothing more than a set of values, perceptions, beliefs, symbols and practices repeated, in addition to the knowledge it has received from the readings and the modern means of education. All these factors have an impact on the effectiveness of governance, its resolutions, instructions and performance of its function as a manager of a medium or small enterprise is inevitably affected by these cultural values, it is the driving force, the leader, and the observer at the same time.

Keywords: small and medium enterprises, the culture of the manager, the culture of the community, values, perceptions, beliefs, symbols, performance

Procedia PDF Downloads 354
2917 The 'Human Medium' in Communicating the National Image: A Case Study of Chinese Middle-Class Tourists Visiting Japan

Authors: Abigail Qian Zhou

Abstract:

In recent years, the prosperity of mass tourism in China has accelerated the breadth and depth of direct communication between countries, and the national image has been placed in a new communication context. Outbound tourists are not only directly involved in the formation of the national image, but are also the most direct medium and the most active symbol representing the national image. This study uses Chinese middle-class tourists visiting Japan as a case study, and analyzes, through participant observation and semi-structured interviews, the communication function of the national image transmitted by 'human medium' in tourism activities. It also explores the 'human medium' in the era of mass tourism. This study hopes to build a bridge for tourism research and national image and media studies. It will provide a theoretical basis and practical guidance for promoting the national image, strengthening exchanges between tourists and local populations, and expanding the tourism market in the future.

Keywords: human medium, national image, communication, Chinese middle class, outbound tourists

Procedia PDF Downloads 105
2916 Multiple Shoot Induction and Plant Regeneration of Kepuh (Sterculia foetida L.) Tissue Culture

Authors: Titin Handayani, Endang Yuniastuti

Abstract:

Kepuh (Sterculia foetida L.) is a potential plant contain mainly oil seeds that can be used as a source of alternative bioenergy and medicine. The main problem of kepuh cultivation is the limited supply of seed plants. Seeds development were very easy, but to produce fruit have to wait for approximately 5 years. The objective of this research was to obtain kepuh plants through direct in vitro regeneration. Hypocotyls and shoot tips explants were excised from sterile germinated seedlings and placed on shoot induction medium containing basal salts of Murashige and Skoog (MS) and various concentrations of plant growth regulators. The results showed that shoots induction from the apical and axillary buds on MS medium + 1.5 and 2 mg/L BAP and 0.5 and 1 mg/L IAA was growth very slowly. Increasing of BAP concentrations was increased shoot formation. The first subcultures were increased the rate of shoots growth on MS medium supplemented with 2 mg/L BAP and 0.5 mg/L IAA. The second of shoots subculture on MS medium + 1.5 to 2 mg/L BAP + 0.5 mg/L IAA was increased the number of shoots up to 4.8 in average. The best medium of shoots elongation were MS + 1 mgL-1 kinetin + 5 mg/L GA3. The highest percentage of roots (65%) occurred on MS medium with 5 mg/L IBA which average number of roots was 3.1. High percentages of survival and plants of normal appearance were obtained after five weeks of acclimatization.

Keywords: Kepuh, Sterculia foetida L, shoot multiplication, rooting, acclimatization, bioenergy, medicine

Procedia PDF Downloads 259
2915 Business Continuity Opportunities in the Cloud a Small to Medium Business Perspective

Authors: Donald Zullick, Cihan Varol

Abstract:

This research paper begins with a look at current work in business continuity as it relates to the cloud and small to medium business (SMB). While cloud services are an emerging paradigm that is quickly making an impact on business, there has been no substantive research applied to SMB. Seeing this lapse, we have taken a fusion of continuity and cloud research with application to the SMB market. It is an initial reflection with base framework guidelines as a starting point for implementation. In this approach, our research ties together existing work and fill the gap with an SMB outlook.

Keywords: business continuity, cloud services, medium size business, risk assessment, small business

Procedia PDF Downloads 371
2914 Check Red Blood Cells Concentrations of a Blood Sample by Using Photoconductive Antenna

Authors: Ahmed Banda, Alaa Maghrabi, Aiman Fakieh

Abstract:

Terahertz (THz) range lies in the area between 0.1 to 10 THz. The process of generating and detecting THz can be done through different techniques. One of the most familiar techniques is done through a photoconductive antenna (PCA). The process of generating THz radiation at PCA includes applying a laser pump in femtosecond and DC voltage difference. However, photocurrent is generated at PCA, which its value is affected by different parameters (e.g., dielectric properties, DC voltage difference and incident power of laser pump). THz radiation is used for biomedical applications. However, different biomedical fields need new technologies to meet patients’ needs (e.g. blood-related conditions). In this work, a novel method to check the red blood cells (RBCs) concentration of a blood sample using PCA is presented. RBCs constitute 44% of total blood volume. RBCs contain Hemoglobin that transfers oxygen from lungs to body organs. Then it returns to the lungs carrying carbon dioxide, which the body then gets rid of in the process of exhalation. The configuration has been simulated and optimized using COMSOL Multiphysics. The differentiation of RBCs concentration affects its dielectric properties (e.g., the relative permittivity of RBCs in the blood sample). However, the effects of four blood samples (with different concentrations of RBCs) on photocurrent value have been tested. Photocurrent peak value and RBCs concentration are inversely proportional to each other due to the change of dielectric properties of RBCs. It was noticed that photocurrent peak value has dropped from 162.99 nA to 108.66 nA when RBCs concentration has risen from 0% to 100% of a blood sample. The optimization of this method helps to launch new products for diagnosing blood-related conditions (e.g., anemia and leukemia). The resultant electric field from DC components can not be used to count the RBCs of the blood sample.

Keywords: biomedical applications, photoconductive antenna, photocurrent, red blood cells, THz radiation

Procedia PDF Downloads 176
2913 The Role of Financial and Non-Financial Institutions in Promoting Entrepreneurship in Micro small and Medium Enterprises

Authors: Lemuel David

Abstract:

The importance of the Micro, Small, and Medium Enterprises sector is well recognized for its legitimate contribution to the Macroeconomic objectives of the Republic of Liberia, like generation of employment, input t, exports, and enhancing entrepreneurship. Right now, Medium and Small enterprises accounts for about 99 percent of the industrial units in the country, contributing 60 percent of the manufacturing sector output and approximately one-third of the nation’s exports. The role of various financial institutions like ECO bank and Non-financial Institutions like Bearch Limited support promoting the growth of Micro, Small, and Medium Enterprises is unique. A small enterprise or entrepreneur gets many types of assistance from different institutions for varied purposes in the course of his entrepreneurial journey. This paper focuses on the factors related to financial institutional support and non-financial institutional support entrepreneurs to the growth of Medium and Small enterprises in the Republic of Liberia. The significance of this paper is to support Policy and Institutional Support for Medium and Small enterprises to know the views of entrepreneurs about financial and non-financial support systems in the Republic of Liberia. This study was carried out through a survey method, with the use of questionnaires. The population for this study consisted of all registered Medium and Small enterprises which have been registered during the years 2004-2014 in the republic of Liberia. The sampling method employed for this study was a simple random technique and determined a sample size of 400. Data for the study was collected using a standard questionnaire. The questionnaire consisted of two parts: the first part consisted of questions on the profile of the respondents. The second part covers (1) financial, promotional factors and (2) non-financial promotional factors. The results of the study are based on financial and non-financial supporting activities provided by institutions to Medium and Small enterprises. After investigation, it has been found that there is no difference in the support given by Financial Institutions and non-financial Institutions. Entrepreneurs perceived “collateral-free schemes and physical infrastructure support factors are highest contributing to entry and growth of Medium and Small enterprises.

Keywords: micro, small, and medium enterprises financial institutions, entrepreneurship

Procedia PDF Downloads 61
2912 Electro-Hydrodynamic Effects Due to Plasma Bullet Propagation

Authors: Panagiotis Svarnas, Polykarpos Papadopoulos

Abstract:

Atmospheric-pressure cold plasmas continue to gain increasing interest for various applications due to their unique properties, like cost-efficient production, high chemical reactivity, low gas temperature, adaptability, etc. Numerous designs have been proposed for these plasmas production in terms of electrode configuration, driving voltage waveform and working gas(es). However, in order to exploit most of the advantages of these systems, the majority of the designs are based on dielectric-barrier discharges (DBDs) either in filamentary or glow regimes. A special category of the DBD-based atmospheric-pressure cold plasmas refers to the so-called plasma jets, where a carrier noble gas is guided by the dielectric barrier (usually a hollow cylinder) and left to flow up to the atmospheric air where a complicated hydrodynamic interplay takes place. Although it is now well established that these plasmas are generated due to ionizing waves reminding in many ways streamer propagation, they exhibit discrete characteristics which are better mirrored on the terms 'guided streamers' or 'plasma bullets'. These 'bullets' travel with supersonic velocities both inside the dielectric barrier and the channel formed by the noble gas during its penetration into the air. The present work is devoted to the interpretation of the electro-hydrodynamic effects that take place downstream of the dielectric barrier opening, i.e., in the noble gas-air mixing area where plasma bullet propagate under the influence of local electric fields in regions of variable noble gas concentration. Herein, we focus on the role of the local space charge and the residual ionic charge left behind after the bullet propagation in the gas flow field modification. The study communicates both experimental and numerical results, coupled in a comprehensive manner. The plasma bullets are here produced by a custom device having a quartz tube as a dielectric barrier and two external ring-type electrodes driven by sinusoidal high voltage at 10 kHz. Helium gas is fed to the tube and schlieren photography is employed for mapping the flow field downstream of the tube orifice. Mixture mass conservation equation, momentum conservation equation, energy conservation equation in terms of temperature and helium transfer equation are simultaneously solved, leading to the physical mechanisms that govern the experimental results. Namely, we deal with electro-hydrodynamic effects mainly due to momentum transfer from atomic ions to neutrals. The atomic ions are left behind as residual charge after the bullet propagation and gain energy from the locally created electric field. The electro-hydrodynamic force is eventually evaluated.

Keywords: atmospheric-pressure plasmas, dielectric-barrier discharges, schlieren photography, electro-hydrodynamic force

Procedia PDF Downloads 119
2911 Prismatic Bifurcation Study of a Functionally Graded Dielectric Elastomeric Tube Using Linearized Incremental Theory of Deformations

Authors: Sanjeet Patra, Soham Roychowdhury

Abstract:

In recent times, functionally graded dielectric elastomer (FGDE) has gained significant attention within the realm of soft actuation due to its dual capacity to exert highly localized stresses while maintaining its compliant characteristics on application of electro-mechanical loading. Nevertheless, the full potential of dielectric elastomer (DE) has not been fully explored due to their susceptibility to instabilities when subjected to electro-mechanical loads. As a result, study and analysis of such instabilities becomes crucial for the design and realization of dielectric actuators. Prismatic bifurcation is a type of instability that has been recognized in a DE tube. Though several studies have reported on the analysis for prismatic bifurcation in an isotropic DE tube, there is an insufficiency in studies related to prismatic bifurcation of FGDE tubes. Therefore, this paper aims to determine the onset of prismatic bifurcations on an incompressible FGDE tube when subjected to electrical loading across the thickness of the tube and internal pressurization. The analysis has been conducted by imposing two axial boundary conditions on the tube, specifically axially free ends and axially clamped ends. Additionally, the rigidity modulus of the tube has been linearly graded in the direction of thickness where the inner surface of the tube has a lower stiffness than the outer surface. The static equilibrium equations for deformation of the axisymmetric tube are derived and solved using numerical technique. The condition for prismatic bifurcation of the axisymmetric static equilibrium solutions has been obtained by using the linearized incremental constitutive equations. Two modes of bifurcations, corresponding to two different non-circular cross-sectional geometries, have been explored in this study. The outcomes reveal that the FGDE tubes experiences prismatic bifurcation before the Hessian criterion of failure is satisfied. It is observed that the lower mode of bifurcation can be triggered at a lower critical voltage as compared to the higher mode of bifurcation. Furthermore, the tubes with larger stiffness gradient require higher critical voltages for triggering the bifurcation. Moreover, with the increase in stiffness gradient, a linear variation of the critical voltage is observed with the thickness of the tube. It has been found that on applying internal pressure to a tube with low thickness, the tube becomes less susceptible to bifurcations. A thicker tube with axially free end is found to be more stable than the axially clamped end tube at higher mode of bifurcation.

Keywords: critical voltage, functionally graded dielectric elastomer, linearized incremental approach, modulus of rigidity, prismatic bifurcation

Procedia PDF Downloads 46
2910 Study on the Voltage Induced Wrinkling of Elastomer with Different Electrode Areas

Authors: Zhende Hou, Fan Yang, Guoli Zhang

Abstract:

Dielectric elastomer is a promising class of Electroactive polymers which can deform in response to an applied electric field. Comparing general smart material, the Dielectric elastomer is more compliance and can achieve higher energy density, which can be for diverse applications such as actuators, artificial muscles, soft robotics, and energy harvesters. The coupling of the Electroactive polymers and the electric field is that the elastomer is sandwiched between two compliant electrodes and when the electrodes are subjected to a voltage, the positive and negative charges on the two electrodes compress the polymer, so that the polymer reduces in thickness and expands in area. However, the pre-stretched dielectric elastomer film not only can achieve large electric-field induced deformation but also is prone to wrinkling, under the interaction of its own strain energy and the applied electric field energy. For a uniaxially pre-stretched dielectric elastomer film, the electrode area is an important parameter to the electric-field induced deformation and may also be a key factor affecting the film wrinkling. To determine and quantify the effect experimentally, VHB 9473 tapes were employed and compliant electrodes with different areas were pant on each of them. The tape was first tensed to a uniaxial stretch of 8. Then a DC voltage was applied to the electrodes and increased gradually until wrinkling occurred in the film. Then, the critical wrinkling voltages of the film with different electrode areas were obtained, and the wrinkle wavelengths were obtained simultaneously for analyzing the wrinkling characteristics. Experimental results indicate when the electrode area is smaller the wrinkling voltage is higher, and with the increases of electrode area, the wrinkling voltage decreases rapidly until a specific area. Beyond that, the wrinkling voltage becomes larger gradually with the increases of the area. While the wrinkle wavelength decreases gradually with the increase of voltage monotonically. That is, the relation between the critical wrinkling voltage and the electrode areas is U-shaped. Analysis believes that the film wrinkling is a kind of local effect, the interaction and the energy transfer between electrode region and non-electrode region have great influence on wrinkling. In the experiment, very thin copper wires are used as the electrode leads that just contact with the electrodes, which can avoid the stiffness of the leads affecting the wrinkling.

Keywords: elastomers, uniaxial stretch, electrode area, wrinkling

Procedia PDF Downloads 214
2909 Enhanced Thermal and Electrical Properties of Terbium Manganate-Polyvinyl Alcohol Nanocomposite Film

Authors: Monalisa Halder, Amit K. Das, Ajit K. Meikap

Abstract:

Polymer nanocomposites are very significant materials both in academia and industry for diverse potential applicability in electronics. Polymer plays the role of matrix element which has low density, flexibility, good mechanical strength and electrical properties. Use of nanosized multiferroic filler in the polymer matrix is suitable to achieve nanocomposites with enhanced magneto-dielectric effect and good mechanical properties both at the same time. Multiferroic terbium manganate (TbMnO₃) nanoparticles have been synthesized by sol-gel method using chloride precursors. Terbium manganate-polyvinyl alcohol (TbMnO₃-PVA) nanocomposite film has been prepared by solution casting method. Crystallite size of TbMnO₃ nanoparticle has been calculated to be ~ 40 nm from XRD analysis. Morphological study of the samples has been done by scanning electron microscopy and a well dispersion of the nanoparticles in the PVA matrix has been found. Thermogravimetric analysis (TGA) exhibits enhancement of thermal stability of the nanocomposite film with the inclusion of TbMnO₃ nanofiller in PVA matrix. The electrical transport properties of the nanocomposite film sample have been studied in the frequency range 20Hz - 2MHz at and above room temperature. The frequency dependent variation of ac conductivity follows universal dielectric response (UDR) obeying Jhonscher’s sublinear power law. Correlated barrier hopping (CBH) mechanism is the dominant charge transport mechanism with maximum barrier height 19 meV above room temperature. The variation of dielectric constant of the sample with frequency has been studied at different temperatures. Real part of dielectric constant at 1 KHz frequency at room temperature of the sample is found to be ~ 8 which is higher than that of the pure PVA film sample (~ 6). Dielectric constant decreases with the increase in frequency. Relaxation peaks have been observed in the variation of imaginary part of electric modulus with frequency. The relaxation peaks shift towards higher frequency as temperature increases probably due to the existence of interfacial polarization in the sample in presence of applied electric field. The current-voltage (I-V) characteristics of the nanocomposite film have been studied under ±40 V applied at different temperatures. I-V characteristic exhibits temperature dependent rectifying nature indicating the formation of Schottky barrier diode (SBD) with barrier height 23 meV. In conclusion, using multiferroic TbMnO₃ nanofiller in PVA matrix, enhanced thermal stability and electrical properties can be achieved.

Keywords: correlated barrier hopping, nanocomposite, schottky diode, TbMnO₃, TGA

Procedia PDF Downloads 101
2908 In Vitro Micropropagation of Rosa damascena Mill

Authors: Asghar Ebrahimzadeh, Sattar Malekian, Mohammad Ali Aazami, Mohammad Bagher Hassanpouraghdam

Abstract:

Roses are of main ornamental flowers worldwide. Rosa damascena Mill., besides being an ornamental plant, has major pharmaceutical, cosmetic and fragrance applications. Traditional propagation methods of the plant are using suckers, cutting and grafting. In the present experiment, we used the different explants (leaf section, petioles and nodal cutting) for the optimization of this high-valued ornamental from a native clonal plant. Diverse explants were acquired from mature plants during the growing season and were planted on MS medium supplemented with different hormonal combinations. 70% alcohol and sodium hypochloride were utilized for the surface sterilization. For proliferation, BAP and BA (1-5 mg L-1) and NAA (1-2 mg L-1) were tested. The highest proliferation rate was afforded from MS medium supplemented with 1.5 mg L-1 BA and 5 mg L-1 BAP. Callogenesis from leaf samples and petioles was the best with 1/2 MS medium enriched with 1mg L-1 BAP and 4 mg L-1 2,4-D. Rooting was occurred with the highest frequency in a medium containing 0.1 mg L-1 IBA.

Keywords: Rosa damascene, micropropagation, petiole, IBA, BAP

Procedia PDF Downloads 544
2907 A Semi-Implicit Phase Field Model for Droplet Evolution

Authors: M. H. Kazemi, D. Salac

Abstract:

A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables.

Keywords: coalescence, leaky dielectric, numerical method, phase field, rising droplet, semi-implicit method

Procedia PDF Downloads 448
2906 Regeneration of Plantlets via Direct Somatic Embryogenesis from Different Explants of Murraya koenigii

Authors: Nisha Khatik, Ramesh Joshi

Abstract:

An in vitro plant regeneration system was developed via direct somatic embryogenesis from different seedling explants of an important medicinal plant Murraya koenigii (L) Spreng. Cotyledons (COT), Hypocotyle (HYP)(10 to 15 mm) and Root (RT) segments (10 to 20 mm) were excised from 60 days old seedlings as explants. The somatic embryos induction was achieved on MS basal medium augmented with different concentrations of BAP 1.33 to 8.40 µM and TDZ 1.08 to 9.82 µM. The globular embryos originated from cut ends and entire surface of the root, hypocotyle explants and margins of cotyledons within 30-40days. The percentage of somatic embryos induction per explant was significantly higher in HYP explants (94.21±5.77%) in the MS basal medium supplemented with 6.20 µM BAP and 8.64 µM TDZ. The highest rate of conversion of torpedo, heart and cotyledonary stages from globular stage was obtained in MS medium supplemented with 8.64 µM TDZ. The matured somatic embryos were transferred to the MS basal medium without PGRs. Highest 88% of the matured embryos were germinated on transfer to the PGR free medium where they grew for a further 3-4 weeks. Out of seventy six hardened plants seventy (92%) plantlets were found healthy under field conditions.

Keywords: Murraya koenigii, somatic embryogenesis, thidiazuron, regeneration, rutaceae

Procedia PDF Downloads 399
2905 Enhanced Thermal Stability of Dielectric and Energy Storage Properties in 0.4BCZT-0.6BTSn Lead-Free Ceramics Elaborated by Sol-Gel Method

Authors: S. Khardazi, H. Zaitouni, A. Neqali, S. Lyubchyk, D. Mezzane, M. Amjoud, E. Choukri, S. Lyubchyk, Z. Kutnjak

Abstract:

In the present paper, structural, dielectric, ferroelectric, and energy storage properties of pure perovskite lead-free BCZT, BTSn, and BTSn-BCZT ferroelectric ceramics have been investigated. Rietveld refinement of XRD data confirms the coexistence of the rhombohedral and orthorhombic phases at room temperature in the composite BCZT–BTSn ceramic. Remarkably, an improved recoverable energy density of 137.86 mJ/cm³ and a high energy storage efficiency of 86.19 % at 80°C under a moderate applied electric field of 30 kV/cm were achieved in the designed BCZT–BTSn ceramic. Besides, the sample exhibits excellent thermal stability of the energy storage efficiency (less than 3%) in the temperature range of 70 to 130 °C under 30 kV/cm. Such results make the pb-free BCZT–BTSn ferroelectric ceramic a very promising potential matrix for energy storage capacitor applications.

Keywords: sol-gel, ferroelectrics, lead-free, perovskites, energy storage

Procedia PDF Downloads 40