Search results for: damaged reinforced concrete structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6321

Search results for: damaged reinforced concrete structures

6201 Evaluation of Prestressed Reinforced Concrete Slab Punching Shear Using Finite Element Method

Authors: Zhi Zhang, Liling Cao, Seyedbabak Momenzadeh, Lisa Davey

Abstract:

Reinforced concrete (RC) flat slab-column systems are commonly used in residential or office buildings, as the flat slab provides efficient clearance resulting in more stories at a given height than regular reinforced concrete beam-slab system. Punching shear of slab-column joints is a critical component of two-way reinforced concrete flat slab design. The unbalanced moment at the joint is transferred via slab moment and shear forces. ACI 318 provides an equation to evaluate the punching shear under the design load. It is important to note that the design code considers gravity and environmental load when considering the design load combinations, while it does not consider the effect from differential foundation settlement, which may be a governing load condition for the slab design. This paper describes how prestressed reinforced concrete slab punching shear is evaluated based on ACI 318 provisions and finite element analysis. A prestressed reinforced concrete slab under differential settlements is studied using the finite element modeling methodology. The punching shear check equation is explained. The methodology to extract data for punching shear check from the finite element model is described and correlated with the corresponding code provisions. The study indicates that the finite element analysis results should be carefully reviewed and processed in order to perform accurate punching shear evaluation. Conclusions are made based on the case studies to help engineers understand the punching shear behavior in prestressed and non-prestressed reinforced concrete slabs.

Keywords: differential settlement, finite element model, prestressed reinforced concrete slab, punching shear

Procedia PDF Downloads 102
6200 FE Modelling of Structural Effects of Alkali-Silica Reaction in Reinforced Concrete Beams

Authors: Mehdi Habibagahi, Shami Nejadi, Ata Aminfar

Abstract:

A significant degradation factor that impacts the durability of concrete structures is the alkali-silica reaction. Engineers are frequently charged with the challenges of conducting a thorough safety assessment of concrete structures that have been impacted by ASR. The alkali-silica reaction has a major influence on the structural capacities of structures. In most cases, the reduction in compressive strength, tensile strength, and modulus of elasticity is expressed as a function of free expansion and crack widths. Predicting the effect of ASR on flexural strength is also relevant. In this paper, a nonlinear three-dimensional (3D) finite-element model was proposed to describe the flexural strength degradation induced byASR.Initial strains, initial stresses, initial cracks, and deterioration of material characteristics were all considered ASR factors in this model. The effects of ASR on structural performance were evaluated by focusing on initial flexural stiffness, force–deformation curve, and load-carrying capacity. Degradation of concrete mechanical properties was correlated with ASR growth using material test data conducted at Tech Lab, UTS, and implemented into the FEM for various expansions. The finite element study revealed a better understanding of the ASR-affected RC beam's failure mechanism and capacity reduction as a function of ASR expansion. Furthermore, in this study, decreasing of the residual mechanical properties due to ASRisreviewed, using as input data for the FEM model. Finally, analysis techniques and a comparison of the analysis and the experiment results are discussed. Verification is also provided through analyses of reinforced concrete beams with behavior governed by either flexural or shear mechanisms.

Keywords: alkali-silica reaction, analysis, assessment, finite element, nonlinear analysis, reinforced concrete

Procedia PDF Downloads 140
6199 Numerical Investigation on Load Bearing Capacity of Pervious Concrete Piles as an Alternative to Granular Columns

Authors: Ashkan Shafee, Masoud Ghodrati, Ahmad Fahimifar

Abstract:

Pervious concrete combines considerable permeability with adequate strength, which makes it very beneficial in pavement construction and also in ground improvement projects. In this paper, a single pervious concrete pile subjected to vertical and lateral loading is analysed using a verified three dimensional finite element code. A parametric study was carried out in order to investigate load bearing capacity of a single unreinforced pervious concrete pile in saturated soft soil and also gain insight into the failure mechanism of this rather new soil improvement technique. The results show that concrete damaged plasticity constitutive model can perfectly simulate the highly brittle nature of the pervious concrete material and considering the computed vertical and horizontal load bearing capacities, some suggestions have been made for ground improvement projects.

Keywords: concrete damaged plasticity, ground improvement, load-bearing capacity, pervious concrete pile

Procedia PDF Downloads 202
6198 “BUM629” Special Hybrid Reinforcement Materials for Mega Structures

Authors: Gautam, Arjun, V. R. Sharma

Abstract:

In the civil construction steel and concrete plays a different role but the same purposes dealing with the design of structures that support or resist loads. Concrete has been used in construction since long time from now. Being brittle and weak in tension, concrete is always reinforced with steel bars for the purposes in beams and columns etc. The paper deals with idea of special designed 3D materials which we named as “BUM629” to be placed/anchored in the structural member and mixed with concrete later on, so as to resist the developments of cracks due to shear failure , buckling,tension and compressive load in concrete. It had cutting edge technology through Draft, Analysis and Design the “BUM629”. The results show that “BUM629” has the great results in Mechanical application. Its material properties are design according to the need of structure; we apply the material such as Mild Steel and Magnesium Alloy. “BUM629” are divided into two parts one is applied at the middle section of concrete member where bending movements are maximum and the second part is laying parallel to vertical bars near clear cover, so we design this material and apply in Reinforcement of Civil Structures. “BUM629” is analysis and design for use in the mega structures like skyscrapers, dams and bridges.

Keywords: BUM629, magnesium alloy, cutting edge technology, mechanical application, draft, analysis and design, mega structures

Procedia PDF Downloads 355
6197 'Performance-Based' Seismic Methodology and Its Application in Seismic Design of Reinforced Concrete Structures

Authors: Jelena R. Pejović, Nina N. Serdar

Abstract:

This paper presents an analysis of the “Performance-Based” seismic design method, in order to overcome the perceived disadvantages and limitations of the existing seismic design approach based on force, in engineering practice. Bearing in mind, the specificity of the earthquake as a load and the fact that the seismic resistance of the structures solely depends on its behaviour in the nonlinear field, traditional seismic design approach based on force and linear analysis is not adequate. “Performance-Based” seismic design method is based on nonlinear analysis and can be used in everyday engineering practice. This paper presents the application of this method to eight-story high reinforced concrete building with combined structural system (reinforced concrete frame structural system in one direction and reinforced concrete ductile wall system in other direction). The nonlinear time-history analysis is performed on the spatial model of the structure using program Perform 3D, where the structure is exposed to forty real earthquake records. For considered building, large number of results were obtained. It was concluded that using this method we could, with a high degree of reliability, evaluate structural behavior under earthquake. It is obtained significant differences in the response of structures to various earthquake records. Also analysis showed that frame structural system had not performed well at the effect of earthquake records on soil like sand and gravel, while a ductile wall system had a satisfactory behavior on different types of soils.

Keywords: ductile wall, frame system, nonlinear time-history analysis, performance-based methodology, RC building

Procedia PDF Downloads 344
6196 Structural Performance of Concrete Beams Reinforced with Steel Plates: Experimental Study

Authors: Mazin Mohammed S. Sarhan

Abstract:

This study presents the performance of concrete beams reinforced with steel plates as a technique of reinforcement. Three reinforced concrete beams with the dimensions of 200 mm x 300 mm x 4000 mm (width x height x length, respectively) were experimentally investigated under flexural loading. The deformed steel bars were used as the main reinforcement for the first beam. A steel plate placed horizontally was used as the main reinforcement for the second beam. The bond between the steel plate and the surrounding concrete was enhanced by using steel bolts (with a diameter of 20 mm and length of 100 mm) welded to the steel plate at a regular distance of 200 mm. A pair of steel plates placed vertically was used as the main reinforcement for the third beam. The bond between the pair steel plates and the surrounding concrete was enhanced by using 4 equal steel angles (with the dimensions of 75 mm x 75 mm and the thickness of 8 mm) for each vertical steel plate. Two steel angles were welded at each end of the steel plate. The outcomes revealed that the bending stiffness of the beams reinforced with steel plates was higher than that reinforced with deformed steel bars. Also, the flexural ductile behavior of the second beam was much higher than the rest beams.

Keywords: concrete beam, deflection, ductility, plate

Procedia PDF Downloads 131
6195 Behavior of Reinforced Concrete Structures Subjected to Multiple Floor Fire Loads

Authors: Suresh Narayana, Chaitanya Akkannavar

Abstract:

Assessment of behavior of reinforced concrete structures subjected to fire load, and its behavior for the multi-floor fire have been presented in this paper. This research is the part of the study to evaluate the performance of ten storied RC structure when it is subjected to fire loads at multiple floors and to evaluate the post-fire effects on structure such as deflection and stresses occurring due to combined effect of static and thermal loading. Thermal loading has been assigned to different floor levels to estimate the critical floors that initiate the collapse of the structure. The structure has been modeled and analyzed in Solid Works and commercially available Finite Element Software ABAQUS. Results are analyzed, and particular design solution has been suggested.

Keywords: collapse mechanism, fire analysis, RC structure, stress vs temperature

Procedia PDF Downloads 441
6194 Design Approach to Incorporate Unique Performance Characteristics of Special Concrete

Authors: Devendra Kumar Pandey, Debabrata Chakraborty

Abstract:

The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.

Keywords: high performance concrete, special concrete, structural design, structural lightweight concrete

Procedia PDF Downloads 278
6193 Polyolefin Fiber Reinforced Self-Compacting Concrete Replacing 20% Cement by Fly Ash

Authors: Suman Kumar Adhikary, Zymantus Rudzionis, Arvind Balakrishnan

Abstract:

This paper deals with the behavior of concrete’s workability in a fresh state and compressive and flexural strength in a hardened state with the addition of polyolefin macro fibers. Four different amounts (3kg/m3, 4.5kg/m3, 6kg/m3 and 9kg/m3) of polyolefin macro fibers mixed in concrete mixture to observe the workability and strength properties difference between the concrete specimens. 20% class C type fly ash added is the concrete as replacement of cement. The water-cement ratio(W/C) of those concrete mix was 0.35. Masterglenium SKY 700 superplasticizer was added to the concrete mixture for better results. Slump test was carried out for determining the flowability. On 7th, 14th and 28th day of curing process compression strength tests were done and on 28th day flexural strength test and CMOD test were carried to differentiate the strength properties and post-cracking behavior of concrete samples.

Keywords: self-compacting concrete, polyolefin fibers, fiber reinforced concrete, CMOD test of concrete

Procedia PDF Downloads 147
6192 Evaluating the Methods of Retrofitting and Renovating of the Masonry Schools

Authors: Navid Khayat

Abstract:

This study investigates the retrofitting of schools in Ahvaz City. Three schools, namely, Enghelab, Sherafat, and Golchehreh, in Ahvaz City are initially examined through Schmidt hammer and ultrasonic tests. Given the tests and controls on the structures of these schools, the methods are presented for their reconstruction. The plan is presented for each school by estimating the cost and generally the feasibility and estimated the duration of project reconstruction. After reconstruction, the mentioned tests are re-performed for rebuilt parts and the results indicate a significant improvement in performance of structure because of reconstruction. According to the results, despite the fact that the use of fiber reinforced polymers (FRP) for structure retrofitting is costly, due to the low executive costs and also other benefits of FRP, it is generally considered as one of the most effective ways of retrofitting. Building the concrete coating on walls is another effective method in retrofitting the buildings. According to this method, a grid of horizontal and vertical bars is installed on the wall and then the concrete is poured on it. The use of concrete coating on the concrete and brick structures leads to the useful results and the experience indicates that the poured concrete filled the joints well and provides the appropriate binding and adhesion.

Keywords: renovation, retrofitting, masonry structures, old school

Procedia PDF Downloads 255
6191 Bond Strength of Concrete Beams Reinforced with Steel Plates: Experimental Study

Authors: Mazin Mohammed Sarhan Sarhan

Abstract:

This paper presents an experimental study of the bond behaviour of confined concrete beams reinforced with a chequer steel plate or a deformed steel bar by using the beam-bending pullout test. A total of three beams of 225 mm width, 300 mm height, and 600 mm length were cast and tested. All the beams had the same details of compression reinforcement and stirrups; two plain steel bars of 10 mm diameter (R10) were used for the compression reinforcement, and plain steel bars (R10) at a distance of 80 mm centre to centre were used for the stirrups. The first beam was reinforced with a deformed steel bar while the remaining beams were reinforced with horizontal or vertical chequer steel plates. The results showed no significant difference in the bond force between the beams reinforced with a deformed steel bar or a horizontal steel plate. The beam reinforced with a vertical steel plate considerably presented a bond force higher than the beam reinforced with a horizontal steel plate.

Keywords: bond, pullout, reinforced concrete, steel plate

Procedia PDF Downloads 102
6190 Modelling of Factors Affecting Bond Strength of Fibre Reinforced Polymer Externally Bonded to Timber and Concrete

Authors: Abbas Vahedian, Rijun Shrestha, Keith Crews

Abstract:

In recent years, fibre reinforced polymers as applications of strengthening materials have received significant attention by civil engineers and environmentalists because of their excellent characteristics. Currently, these composites have become a mainstream technology for strengthening of infrastructures such as steel, concrete and more recently, timber and masonry structures. However, debonding is identified as the main problem which limit the full utilisation of the FRP material. In this paper, a preliminary analysis of factors affecting bond strength of FRP-to-concrete and timber bonded interface has been conducted. A novel theoretical method through regression analysis has been established to evaluate these factors. Results of proposed model are then assessed with results of pull-out tests and satisfactory comparisons are achieved between measured failure loads (R2 = 0.83, P < 0.0001) and the predicted loads (R2 = 0.78, P < 0.0001).

Keywords: debonding, fibre reinforced polymers (FRP), pull-out test, stepwise regression analysis

Procedia PDF Downloads 207
6189 Simplifying Seismic Vulnerability Analysis for Existing Reinforced Concrete Buildings

Authors: Maryam Solgi, Behzad Shahmohammadi, Morteza Raissi Dehkordi

Abstract:

One of the main steps for seismic retrofitting of buildings is to determine the vulnerability of structures. While current procedures for evaluating existing buildings are complicated, and there is no limitation between short, middle-high, and tall buildings. This research utilizes a simplified method for assessing structures, which is adequate for existing reinforced concrete buildings. To approach this aim, Simple Lateral Mechanisms Analysis (SLaMA) procedure proposed by NZSEE (New Zealand Society for Earthquake Engineering) has been carried out. In this study, three RC moment-resisting frame buildings are determined. First, these buildings have been evaluated by inelastic static procedure (Pushover) based on acceptance criteria. Then, Park-Ang Damage Index is determined for the whole members of each building by Inelastic Time History Analysis. Next, the Simple Lateral Mechanisms Analysis procedure, a hand method, is carried out to define the capacity of structures. Ultimately, existing procedures are compared with Peak Ground Acceleration caused to fail (PGAfail). The results of this comparison emphasize that the Pushover procedure and SLaMA method define a greater value of PGAfail than the Park-Ang Damage model.

Keywords: peak ground acceleration caused to fail, reinforced concrete moment-frame buildings, seismic vulnerability analysis, simple lateral mechanisms analysis

Procedia PDF Downloads 58
6188 Sustainability of Carbon Nanotube-Reinforced Concrete

Authors: Rashad Al Araj, Adil K. Tamimi

Abstract:

Concrete, despite being one of the most produced materials in the world, still has weaknesses and drawbacks. Significant concern of the cementitious materials in structural applications is their quasi-brittle behavior, which causes the material to crack and lose its durability. One of the very recently proposed mitigations for this problem is the implementation of nanotechnology in the concrete mix by adding carbon nanotubes (CNTs) to it. CNTs can enhance the critical mechanical properties of concrete as a structural material. Thus, this paper demonstrates a state-of-the-art review of reinforcing concrete with CNTs, emphasizing on the structural performance. It also goes over the properties of CNTs alone, the present methods and costs associated with producing them, the possible special applications of concretes reinforced with CNTs, the key challenges and drawbacks that this new technology still encounters, and the most reliable practices and methodologies to produce CNT-reinforced concrete in the lab. This work has shown that the addition of CNTs to the concrete mix in percentages as low as 0.25% weight of cement could increase the flexural strength and toughness of concrete by more than 45% and 25%, respectively, and enhance other durability-related properties, given that an effective dispersion of CNTs in the cementitious mix is achieved. Since nano reinforcement for cementitious materials is a new technology, many challenges have to be tackled before it becomes practiced at the mass level.

Keywords: sustainability, carbon nano tube, microsilica, concrete

Procedia PDF Downloads 310
6187 Reinforced Concrete Slab under Static and Dynamic Loading

Authors: Aaron Aboshio, Jianqiao Ye

Abstract:

In this study, static and dynamic responses of a typical reinforced concrete flat slab, designed to British Standard (BS 8110, 1997) and under self and live loadings for dance halls are reported. Linear perturbation analysis using finite element method was employed for modal, impulse loading and frequency response analyses of the slab under the aforementioned loading condition. Results from the static and dynamic analyses, comprising of the slab fundamental frequencies and mode shapes, dynamic amplification factor, maximum deflection, stress distributions among other valuable outcomes are presented and discussed. These were gauged with the limiting provisions in the design code with a view to optimise the structure and ensure both adequate strength and economical section for large clear span slabs. This is necessary owing to the continued increase in cost of erecting building structures and the squeeze on public finance globally.

Keywords: economical design, finite element method, modal dynamics, reinforced concrete, slab

Procedia PDF Downloads 287
6186 Seismic Behavior of Self-Balancing Post-Tensioned Reinforced Concrete Spatial Structure

Authors: Mircea Pastrav, Horia Constantinescu

Abstract:

The construction industry is currently trying to develop sustainable reinforced concrete structures. In trying to aid in the effort, the research presented in this paper aims to prove the efficiency of modified special hybrid moment frames composed of discretely jointed precast and post-tensioned concrete members. This aim is due to the fact that current design standards do not cover the spatial design of moment frame structures assembled by post-tensioning with special hybrid joints. This lack of standardization is coupled with the fact that previous experimental programs, available in scientific literature, deal mainly with plane structures and offer little information regarding spatial behavior. A spatial model of a modified hybrid moment frame is experimentally analyzed. The experimental results of a natural scale model test of a corner column-beams sub-structure, cut from an actual multilevel building tested to seismic type loading are presented in order to highlight the behavior of this type of structure. The test is performed under alternative cycles of imposed lateral displacements, up to a storey drift ratio of 0.035. Seismic response of the spatial model is discussed considering the acceptance criteria for reinforced concrete frame structures designed based on experimental tests, as well as some of its major sustainability features. The results obtained show an overall excellent behavior of the system. The joint detailing allows for quick and cheap repairs after an accidental event and a self-balancing behavior of the system that ensures it can be used almost immediately after an accidental event it.

Keywords: modified hybrid joint, seismic type loading response, self-balancing structure, acceptance criteria

Procedia PDF Downloads 210
6185 Modified Tendon Model Considered Structural Nonlinearity in PSC Structures

Authors: Yangsu Kwon, Hyo-Gyoung Kwak

Abstract:

Nonlinear tendon constitutive model for nonlinear analysis of pre-stressed concrete structures are presented. Since the post-cracking behavior of concrete structures, in which bonded reinforcements such as tendons and/or reinforcing steels are embedded, depends on many influencing factors(the tensile strength of concrete, anchorage length of reinforcements, concrete cover, and steel spacing) that are deeply related to the bond characteristics between concrete and reinforcements, consideration of the tension stiffening effect on the basis of the bond-slip mechanism is necessary to evaluate ultimate resisting capacity of structures. In this paper, an improved tendon model, which considering the slip effect between concrete and tendon, and effect of tension stiffening, is suggested. The validity of the proposed models is established by comparing between the analytical results and experimental results in pre-stressed concrete beams.

Keywords: bond-slip, prestressed concrete, tendon, ultimate strength

Procedia PDF Downloads 469
6184 Hybridization of Steel and Polypropylene Fibers in Concrete: A Comprehensive Study with Various Mix Ratios

Authors: Qaiser uz Zaman Khan

Abstract:

This research article provides a comprehensive study of combining steel fiber and polypropylene fibers in concrete at different mix ratios. This blending of various fibers has led to the development of hybrid fiber-reinforced concrete (HFRC), which offers notable improvements in mechanical properties and increased resistance to cracking. Steel fibers are known for their high tensile strength and excellent crack control abilities, while polypropylene fibers offer increased toughness and impact resistance. The synergistic use of these two fiber types in concrete has yielded promising outcomes, effectively enhancing its overall performance. This article explores the key aspects of hybridization, including fiber types, proportions, mixing methods, and the resulting properties of the concrete. Additionally, challenges, potential applications, and future research directions in the field are discussed.

Keywords: FRC, fiber-reinforced concrete, split tensile testing, HFRC, mechanical properties, steel fibers, reinforced concrete, polypropylene fibers

Procedia PDF Downloads 52
6183 Influence of Structural Cracks on Transport Performance of Reinforced Concrete

Authors: V. A. Okenyi, K. Yang, P. A. M. Basheer

Abstract:

Concrete structures in service are constantly under the influence of load. Microstructural cracks often develop in them and considering those in the marine environment; these microcracks often serve as a means for transportation of harmful fluids into the concrete. This paper studies the influence of flexural tensile stress that structural elements undergo on the transport properties of such concrete in the tensile zone of the structural member. Reinforced concrete beams of 1200mm ⨉ 230mm ⨉ 150mm in dimension in a four-point bending set up were subjected to various levels of the loading required to cause a microcrack width of 100µm. The use of Autoclam permeability tests, sorptivity tests as well as the Permit chloride ion migration tests were employed, and results showed that air permeability, sorptivity and water permeability all increased as the load increased in the concrete tensile zone. For air permeability, an increase in stress levels led to more permeability, and the addition of steel macrofibers had no significant effect until at 75% of stress level where it decreased air permeability. For sorptivity, there was no absorption into concrete when no load was added, but water sorptivity index was high at 75% stress levels and higher in steel fiber reinforced concrete (SFRC). Steel macrofibers produced more water permeability into the concrete at 75% stress level under the 100µm crack width considered while steel macrofibers helped in slightly reducing the migration of chloride into concrete by 8.8% reduction, compared to control samples at 75% stress level. It is clear from this research that load-induced cracking leads to an increase in fluid permeability into concrete and the effect of the addition of steel macrofiber to concrete for durability is not significant under 100µm crack width.

Keywords: durability, microcracks, SFRC, stress Level, transport properties

Procedia PDF Downloads 102
6182 The Influence of Zeolitic Spent Refinery Admixture on the Rheological and Technological Properties of Steel Fiber Reinforced Self- Compacting Concrete

Authors: Žymantas Rudžionis, Paulius Grigaliūnas, Danutė Vaičiukynienė

Abstract:

By planning this experimental work to investigate the effect of zeolitic waste on rheological and technological properties of self-compacting fiber reinforced concrete, we had an intention to draw attention to the environmental factor. Large amount of zeolitic waste, as a secondary raw materials are not in use properly and large amount of it is collected without a clear view of it’s usage in future. The principal aim of this work is to assure, that zeolitic waste admixture takes positive effect to the self-compacting fiber reinforced concrete mixes stability, flowability and other properties by using the experimental research methods. In addition to that a research on cement and zeolitic waste mortars were implemented to clarify the effect of zeolitic waste on properties of cement paste and stone. Primary studies indicates that zeolitic waste characterizes clear puzzolanic behavior, do not deteriorate and in some cases ensure positive rheological and mechanical characteristics of self-compacting concrete mixes.

Keywords: self compacting concrete, steel fiber reinforced concrete, zeolitic waste, rheological, properties of concrete, slump flow

Procedia PDF Downloads 337
6181 Development of Tensile Stress-Strain Relationship for High-Strength Steel Fiber Reinforced Concrete

Authors: H. A. Alguhi, W. A. Elsaigh

Abstract:

This paper provides a tensile stress-strain (σ-ε) relationship for High-Strength Steel Fiber Reinforced Concrete (HSFRC). Load-deflection (P-δ) behavior of HSFRC beams tested under four-point flexural load were used with inverse analysis to calculate the tensile σ-ε relationship for various tested concrete grades (70 and 90MPa) containing 60 kg/m3 (0.76 %) of hook-end steel fibers. A first estimate of the tensile (σ-ε) relationship is obtained using RILEM TC 162-TDF and other methods available in literature, frequently used for determining tensile σ-ε relationship of Normal-Strength Concrete (NSC) Non-Linear Finite Element Analysis (NLFEA) package ABAQUS® is used to model the beam’s P-δ behavior. The results have shown that an element-size dependent tensile σ-ε relationship for HSFRC can be successfully generated and adopted for further analyzes involving HSFRC structures.

Keywords: tensile stress-strain, flexural response, high strength concrete, steel fibers, non-linear finite element analysis

Procedia PDF Downloads 335
6180 Use of Waste Tire Rubber Alkali-Activated-Based Mortars in Repair of Concrete Structures

Authors: Mohammad Ebrahim Kianifar, Ehsan Ahmadi

Abstract:

Reinforced concrete structures experience local defects such as cracks over their lifetime under various environmental loadings. Consequently, they are repaired by mortars to avoid detrimental effects such as corrosion of reinforcement, which in long-term may lead to strength loss of a member or collapse of structures. However, repaired structures may need multiple repairs due to changes in load distribution, and thus, lack of compatibility between mortar and substrate concrete. On the other hand, waste tire rubber alkali-activated (WTRAA)-based materials have very high potential to be used as repair mortars because of their ductility and flexibility, which may delay the failure of repair mortar and thus, provide sufficient compatibility. Hence, this work presents a pioneering study on suitability of WTRAA-based materials as mortars for the repair of concrete structures through an experimental program. To this end, WTRAA mortars with 15% aggregate replacement, alkali-activated (AA) mortars, and ordinary mortars are made to repair a number of concrete beams. The WTRAA mortars are composed of slag as base material, sodium hydroxide as an alkaline activator, and different gradations of waste tire rubber (fine and coarse gradations). Flexural tests are conducted on the concrete beams repaired by the ordinary, AA, and WTRAA mortars. It is found that, despite having lower compressive strength and modulus of elasticity, the WTRAA and AA mortars increase the flexural strength of the repaired beams, give compatible failures, and provide sufficient mortar-concrete interface bondings. The ordinary mortars, however, show incompatible failure modes. This study demonstrates the promising application of WTRAA mortars in the practical repairs of concrete structures.

Keywords: alkali-activated mortars, concrete repair, mortar compatibility, flexural strength, waste tire rubber

Procedia PDF Downloads 110
6179 A Parametric Study on Effects of Internal Factors on Carbonation of Reinforced Concrete

Authors: Kunal Tongaria, Abhishek Mangal, S. Mandal, Devendra Mohan

Abstract:

The carbonation of concrete is a phenomenon which is a function of various interdependent parameters. Therefore, in spite of numerous literature and database, the useful generalization is not an easy task. These interdependent parameters can be grouped under the category of internal and external factors. This paper focuses on the internal parameters which govern and increase the probability of the ingress of deleterious substances into concrete. The mechanism of effects of internal parameters such as microstructure for with and without supplementary cementing materials (SCM), water/binder ratio, the age of concrete etc. has been discussed. This is followed by the comparison of various proposed mathematical models for the deterioration of concrete. Based on existing laboratory experiments as well as field results, this paper concludes the present understanding of mechanism, modeling and future research needs in this field.

Keywords: carbonation, diffusion coefficient, microstructure of concrete, reinforced concrete

Procedia PDF Downloads 379
6178 FEM Study of Different Methods of Fiber Reinforcement Polymer Strengthening of a High Strength Concrete Beam-Column Connection

Authors: Talebi Aliasghar, Ebrahimpour Komeleh Hooman, Maghsoudi Ali Akbar

Abstract:

In reinforced concrete (RC) structures, beam-column connection region has a considerable effect on the behavior of structures. Using fiber reinforcement polymer (FRP) for the strengthening of connections in RC structures can be one of the solutions to retrofitting this zone which result in the enhanced behavior of structure. In this paper, these changes in behavior by using FRP for high strength concrete beam-column connection have been studied by finite element modeling. The concrete damage plasticity (CDP) model has been used to analyze the RC. The results illustrated a considerable development in load-bearing capacity but also a noticeable reduction in ductility. The study also assesses these qualities for several modes of strengthening and suggests the most effective mode of strengthening. Using FRP in flexural zone and FRP with 45-degree oriented fibers in shear zone of joint showed the most significant change in behavior.

Keywords: HSC, beam-column connection, Fiber Reinforcement Polymer, FRP, Finite Element Modeling, FEM

Procedia PDF Downloads 127
6177 Conceptual Design of Panel Based Reinforced Concrete Floating Substructure for 10 MW Offshore Wind Turbine

Authors: M. Sohail Hasan, Wichuda Munbua, Chikako Fujiyama, Koichi Maekawa

Abstract:

During the past few years, offshore wind energy has become the key parameter to reduce carbon emissions. In most of the previous studies, floaters in floating offshore wind turbines (FOWT) are made up of steel. However, fatigue and corrosion are always major concerns of steel marine structures. Recently, researchers are working on concrete floating substructures. In this paper, the conceptual design of pre-cast panel-based economical and durable reinforced concrete floating substructure for a 10 MW offshore wind turbine is proposed. The new geometrical shape, i.e., hexagon with inside hollow boxes, is proposed under static conditions. To design the outer panel/side walls to resist hydrostatic forces, special consideration for durability is given to limit the crack width within permissible range under service limit state. A comprehensive system is proposed for transferring the ultimate moment and shear due to strong wind at the connection between steel tower and concrete floating substructure. Moreover, a stable connection is also designed considering the fatigue of concrete and steel due to the fluctuation of stress from the mooring line. This conceptual design will be verified by subsequent dynamic analysis soon.

Keywords: cracks width control, mooring line, reinforced concrete floater, steel tower

Procedia PDF Downloads 190
6176 A Study of Cracking Behavior in Concrete Beams Reinforced With Two Different Grades of Steel

Authors: Nihal Abdel Hamid Taha

Abstract:

Crack evaluation of flexure reinforced concrete (RC) member is considered an important step in the design process, since the formation of concrete cracks depends on the possibility of exposure to various conditions(pollution, humidity,..etc.). Because of the disparity between different grades of steel in the service load stresses, this affects the cracking behavior. This paper is concerned with the crack pattern and cracking load for concrete beams with T-section reinforced with two different grades of steel at the service load levels stages up to ultimate load. A practical program has been put up to investigate the difference between reinforced steel bars with yield strength 420 N/mm2 and 500 N/mm2 through six T-section reinforced beams. The beams were tested under static- monotonic two– point service loading up to ultimate failure under flexural stresses. The influence of parameters such as clear concrete cover and concrete compressive strength are considered for each of the two grades of steel used. Cracking load, spacing and width were determined. The experimental results demonstrated that increasing the concrete strength results in both of cracking and ultimate load increase, while no significant difference in yield load for the two steel grades used. It has also become obvious, that the number of cracks was more for the lower steel strength, which is followed by decrease in crack width and spacing.

Keywords: RC beams, cracking behavior, steel stress, crack width, crack spacing

Procedia PDF Downloads 26
6175 Uncertainty Quantification of Crack Widths and Crack Spacing in Reinforced Concrete

Authors: Marcel Meinhardt, Manfred Keuser, Thomas Braml

Abstract:

Cracking of reinforced concrete is a complex phenomenon induced by direct loads or restraints affecting reinforced concrete structures as soon as the tensile strength of the concrete is exceeded. Hence it is important to predict where cracks will be located and how they will propagate. The bond theory and the crack formulas in the actual design codes, for example, DIN EN 1992-1-1, are all based on the assumption that the reinforcement bars are embedded in homogeneous concrete without taking into account the influence of transverse reinforcement and the real stress situation. However, it can often be observed that real structures such as walls, slabs or beams show a crack spacing that is orientated to the transverse reinforcement bars or to the stirrups. In most Finite Element Analysis studies, the smeared crack approach is used for crack prediction. The disadvantage of this model is that the typical strain localization of a crack on element level can’t be seen. The crack propagation in concrete is a discontinuous process characterized by different factors such as the initial random distribution of defects or the scatter of material properties. Such behavior presupposes the elaboration of adequate models and methods of simulation because traditional mechanical approaches deal mainly with average material parameters. This paper concerned with the modelling of the initiation and the propagation of cracks in reinforced concrete structures considering the influence of transverse reinforcement and the real stress distribution in reinforced concrete (R/C) beams/plates in bending action. Therefore, a parameter study was carried out to investigate: (I) the influence of the transversal reinforcement to the stress distribution in concrete in bending mode and (II) the crack initiation in dependence of the diameter and distance of the transversal reinforcement to each other. The numerical investigations on the crack initiation and propagation were carried out with a 2D reinforced concrete structure subjected to quasi static loading and given boundary conditions. To model the uncertainty in the tensile strength of concrete in the Finite Element Analysis correlated normally and lognormally distributed random filed with different correlation lengths were generated. The paper also presents and discuss different methods to generate random fields, e.g. the Covariance Matrix Decomposition Method. For all computations, a plastic constitutive law with softening was used to model the crack initiation and the damage of the concrete in tension. It was found that the distributions of crack spacing and crack widths are highly dependent of the used random field. These distributions are validated to experimental studies on R/C panels which were carried out at the Laboratory for Structural Engineering at the University of the German Armed Forces in Munich. Also, a recommendation for parameters of the random field for realistic modelling the uncertainty of the tensile strength is given. The aim of this research was to show a method in which the localization of strains and cracks as well as the influence of transverse reinforcement on the crack initiation and propagation in Finite Element Analysis can be seen.

Keywords: crack initiation, crack modelling, crack propagation, cracks, numerical simulation, random fields, reinforced concrete, stochastic

Procedia PDF Downloads 114
6174 Experimental Investigation on the Behavior of Steel Fibers Reinforced Concrete under Impact Loading

Authors: Feng Fu, Ahmad Bazgir

Abstract:

This study aimed to investigate and examine the structural behaviour of steel fibre reinforced concrete slabs when subjected to impact loading using drop weight method. A number of compressive tests, tensile splitting tests, as well as impact tests were conducted. The experimental work consists of testing both conventional reinforced slabs and SFRC slabs. Parameters to be considered for carrying out the test will consist of the volume fraction of steel fibre, type of steel fibres, drop weight height and number of blows. Energy absorption of slabs under impact loading and failure modes were examined in-depth and compared with conventional reinforced concrete slab are investigated.

Keywords: steel fibre reinforce concrete, compressive test, tensile splitting test, impact test

Procedia PDF Downloads 393
6173 Mechanical Properties of Fibre Reinforced High Performance Concrete

Authors: Laura Dembovska, Diana Bajare, Vitalijs Lusis, Genadijs Sahmenko, Aleksandrs Korjakins

Abstract:

This study focused on the mechanical properties of the fibre reinforced High Performance Concrete. The most important benefits of addition of fibres to the concrete mix are the hindrance of the development of microcracks, the delay of the propagation of microcracks to macroscopic cracks and the better ductility after microcracks have been occurred. This work presents an extensive comparative experimental study on six different types of fibres (alkali resistant glass, polyvinyl alcohol fibres, polypropylene fibres and carbon fibres) with the same binding High Performance Concrete matrix. The purpose was to assess the influence of the type of fibre on the mechanical properties of Fibre Reinforced High Performance Concrete. Therefore, in this study three main objectives have been chosen: 1) analyze the structure of the bulk cementitious matrix, 2) determine the influence of fibres and distribution in the matrix on the mechanical properties of fibre reinforced High Performance Concrete and 3) characterize the microstructure of the fibre-matrix interface. Acknowledgement: This study was partially funded by European Regional Development Fund project Nr.1.1.1.1/16/A/007 “A New Concept for Sustainable and Nearly Zero-Energy Buildings” and COST Action TU1404 Conference grants project.

Keywords: high performance concrete, fibres, mechanical properties, microstructure

Procedia PDF Downloads 249
6172 Effect of Water Hyacinth on Behaviour of Reinforced Concrete Beams

Authors: Ahmed Shaban Abdel Hay Gabr

Abstract:

Water hyacinth (W-H) has an adverse effect on Nile river in Egypt, it absorbs high quantities of water, it needs to serve these quantities especially at this time, so by burning W-H, it can be used in concrete mix to reduce the permeability of concrete and increase both the compressive and splitting strength. The effect of W-H on non-structural concrete properties was studied, but there is a lack of studies about the behavior of structural concrete containing W-H. Therefore, in the present study, the behavior of 15 RC beams with 100 x 150 mm cross section, 1250 mm span, different reinforcement ratios and different W-H ratios were studied by testing the beams under two-point bending test. The test results showed that Water Hyacinth is compatible with RC which yields promising results.

Keywords: beams, reinforcement ratio, reinforced concrete, water hyacinth

Procedia PDF Downloads 423