Search results for: cyanobacterial pigment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 114

Search results for: cyanobacterial pigment

54 Investigating the Biosorption Potential of Indigenous Filamentous Fungi from Copperbelt Tailing Dams in Zambia with Copper and Cobalt Tolerance

Authors: Leonce Dusengemungu

Abstract:

Filamentous fungi indigenous to heavy metals (HMs) contaminated environments have a considerable biosorption potential yet are currently under-investigated in developing countries. In the work presented herein, the biosorption potential of three indigenous filamentous fungi (Aspergillus transmontanensis, Cladosporium cladosporioides, and Geotrichum candidum) isolated from copper and cobalt mining wasteland sites in Zambia's Copperbelt province was investigated. In Cu and Co tolerance tests, all the fungal isolates were shown to be tolerant, with mycelial growth at HMs concentrations of up to 7000 ppm. However, exposure to high Cu and Co concentrations hindered the growth of the three strains to varying degrees, resulting in reduced mycelial biomass (evidenced by loss of the infrared bands at 887 and 930 cm-1 of the 1,3-glucans backbone) as well as morphological alterations, sporulation, and pigment synthesis. In addition, gas chromatography-mass spectrometry characterization of the fungal biomass extracts allowed to detect changes in the chemical constituents upon exposure to HMs, with profiles poorer in maltol, 1,2-cyclopentadione, and n-hexadecanoic acid, and richer in furaldehydes. Biosorption tests showed that A. transmontanensis and G. candidum showed better performance as bioremediators than C. cladosporioides, with biosorption efficiencies of 1645, 1853 and 1253 ppm at pH 3, respectively, and may deserve further research in field conditions.

Keywords: bioremediation, fungi, biosorption, heavy metal

Procedia PDF Downloads 39
53 Exploring Marine Bacteria in the Arabian Gulf Region for Antimicrobial Metabolites

Authors: Julie Connelly, Tanvi Toprani, Xin Xie, Dhinoth Kumar Bangarusamy, Kris C. Gunsalus

Abstract:

The overuse of antibiotics worldwide has contributed to the development of multi-drug resistant (MDR) pathogenic bacterial strains. There is an increasing urgency to discover antibiotics to combat MDR pathogens. The microbiome of the Arabian Gulf is a largely unexplored and potentially rich source of novel bioactive compounds. Microbes that inhabit the Abu Dhabi coastal regions adapt to extreme environments with high salinity, hot temperatures, large temperature fluctuations, and acute exposure to solar energy. The microbes native to this region may produce unique metabolites with therapeutic potential as antibiotics and antifungals. We have isolated 200 pure bacterial strains from mangrove sediments, cyanobacterial mats, and coral reefs of the Abu Dhabi region. In this project, we aim to screen the marine bacterial strains to identify antibiotics, in particular undocumented compounds that show activity against existing antibiotic-resistant strains. We have acquired the ESKAPE pathogen panel, which consists of six antibiotic-resistant gram-positive and gram-negative bacterial pathogens that collectively cause most clinical infections. Our initial efforts of the primary screen using colony-picking co-culture assay have identified several candidate marine strains producing potential antibiotic compounds. We will next apply different assays, including disk-diffusion and broth turbidity growth assay, to confirm the results. This will be followed by bioactivity-guided purification and characterization of target compounds from the scaled-up volume of candidate strains, including SPE fraction, HPLC fraction, LC-MS, and NMR. For antimicrobial compounds with unknown structures, our final goal is to investigate their mode of action by identifying the molecular target.

Keywords: marine bacteria, natural products, drug discovery, ESKAPE panel

Procedia PDF Downloads 48
52 Effect of Heat Treatment on Nutrients, Bioactive Contents and Biological Activities of Red Beet (Beta Vulgaris L.)

Authors: Amessis-Ouchemoukh Nadia, Salhi Rim, Ouchemoukh Salim, Ayad Rabha, Sadou Dyhia, Guenaoui Nawel, Hamouche Sara, Madani Khodir

Abstract:

The cooking method is a key factor influencing the quality of vegetables. In this study, the effect of the most common cooking methods on the nutritional composition, phenolic content, pigment content and antioxidant activities (evaluated by DPPH, ABTS, CUPRAC, FRAP, reducing power and phosphomolybdene method) of fresh, steamed, and boiled red beet was investigated. The fresh samples showed the highest nutritional and bioactive composition compared to the cooked ones. The boiling method didn’t lead to a significant reduction (p< 0.05) in the content of phenolics, flavonoids, flavanols and DPPH, ABTS, FRAP, CUPRAC, phosphomolybdeneum and reducing power capacities. This effect was less pronounced when steam cooking was used, and the losses of bioactive compounds were lower. As a result, steam cooking resulted in greater retention of bioactive compounds and antioxidant activity compared to boiling. Overall, this study suggests that steam cooking is a better method in terms of retention of pigments and bioactive compounds and antioxidant activity of beetroot.

Keywords: beta vulgaris, cooking methods, bioactive compounds, antioxidant activities

Procedia PDF Downloads 19
51 Antioxidant Activity, Total Phenol and Pigments Content of Seaweeds Collected from, Rameshwaram, Gulf of Mannar, Southeast Coast of India

Authors: Suparna Roy, P. Anantharaman

Abstract:

The aim of this work is to estimate some in-vitro antioxidant activities and total phenols of various extracts such as aqueous, acetone, ethanol, methanol extract of seaweeds and pigments content by Spectrophotometric method. The seaweeds were collected during 2016 from Rameshwaram, southeast coast of India. Among four different extracts, aqueous extracts from all seaweeds had minimum activity than acetone, methanol and ethanol. The Rhodophyta and Phaeophyta had high antioxidant activity in comparing to Chlorophyta. The highest total antioxidant activity was found in acetone extract fromTurbinaria decurrens (98.97±0.00%), followed by its methanol extract (98.81±0.60%) and ethanol extract (98.58±0.53%). The highest reducing power and H2O2 scavenging activity were found in acetone extract of Caulerpa racemosa (383.25±1.04%), and methanol extract from Caulerpa racemosa var. macrophysa (24.91±0.49%). The methanol extract from Caulerpa scalpelliformis contained the highest total phenol (85.23±0.12%). The Chloro-a and Chloro-b contents were the highest in Gracilaria foliifera (13.69±0.38% mg/gm dry wt.) and Caulerpa racemosa var. macrophysa (9.12 ±0.12% mg/gm dry wt.) likewise carotenoid was also the highest in Gracilaria foliifera (0.054±0.0003% mg/gm dry wt.) and Caulerpa racemosa var. macrophysa (0.04 ±0.002% mg/gm dry wt.). It can be concluded from this study that some seaweed extract can be used for natural antioxidant production, after further characterization to negotiate the side effect of synthetic, market available antioxidants.

Keywords: seaweeds, antioxidant, total phenol, pigment, Olaikuda, Vadakkadu, Rameshwaram

Procedia PDF Downloads 241
50 Identifying of Hybrid Lines for Lpx-B1 Gene in Durum Wheat

Authors: Özlem Ateş Sönmezoğlu, Begüm Terzi, Ahmet Yıldırım, Ramazan Özbey

Abstract:

The basic criteria which determine durum wheat quality is its suitability for pasta processing that is pasta making quality. Bright yellow color is a desired property in pasta products. Durum wheat pasta making quality is affected by grain pigment content and oxidative enzymes which affect adversely bright yellow color. Of the oxidative enzymes, lipoxygenase LOX is the most effective one on oxidative bleaching of yellow pigments in durum wheat products. Thus, wheat cultivars that are high in yellow pigments but low in LOX enzyme activity should be preferred for the production of pasta with high color quality. The aim of this study was to reduce lipoxygenase activities of the backcross durum wheat lines that were previously improved for their protein quality. For this purpose, two advanced lines with different parents (TMB2 and TMB3) were used recurrent parents. Also, Gediz-75 wheat with low LOX enzyme activity was used as the gene source. In all of the generations, backcrossed plants carrying the targeted gene region (Lpx-B1.1) were selected using SSR markers by marker assisted selection method. As a result, the study will be completed in three years instead of six years required in a classical backcross breeding study, leading to the development of high-quality candidate varieties. This research has been financially supported by TÜBİTAK (Project No: 112T910).

Keywords: durum wheat, lipoxygenase, LOX, Lpx-B1.1, MAS, Triticum durum

Procedia PDF Downloads 275
49 Inducing Cryptobiosis State of Tardigrades in Cyanobacteria Synechococcus elongatus for Effective Preservation

Authors: Nilesh Bandekar, Sumita Dasgupta, Luis Alberto Allcahuaman Huaya, Souvik Manna

Abstract:

Cryptobiosis is a dormant state where all measurable metabolic activities are at a halt, allowing an organism to survive in extreme conditions like low temperature (cryobiosis), extreme drought (anhydrobiosis), etc. This phenomenon is observed especially in tardigrades that can retain this state for decades depending on the abiotic environmental conditions. On returning to favorable conditions, tardigrades re-attain a metabolically active state. In this study, cyanobacteria as a model organism are being chosen to induce cryptobiosis for its effective preservation over a long period of time. Preserving cyanobacteria using this strategy will have multiple space applications because of its ability to produce oxygen. In addition, research has shown the survivability of this organism in space for a certain period of time. Few species of cyanobacterial residents of the soil such as Microcoleus, are able to survive in extreme drought as well. This work specifically focuses on Synechococcus elongatus, an endolith cyanobacteria with multiple benefits. It has the capability to produce 25% oxygen in water bodies. It utilizes carbon dioxide to produce oxygen via photosynthesis and also uses carbon dioxide as an energy source to form glucose via the Calvin cycle. There is a fair possibility of initiating cryptobiosis in such an organism by inducing certain proteins extracted from tardigrades such as Heat Shock Proteins (Hsp27 and Hsp30c) and/or hydrophilic Late Embryogenesis Abundant proteins (LEA). Existing methods like cryopreservation are difficult to execute in space keeping in mind their cost and heavy instrumentation. Also, extensive freezing may cause cellular damage. Therefore, cryptobiosis-induced cyanobacteria for its transportation from Earth to Mars as a part of future terraforming missions on Mars will save resources and increase the effectiveness of preservation. Finally, Cyanobacteria species like Synechococcus elongatus can also produce oxygen and glucose on Mars in favorable conditions and holds the key to terraforming Mars.

Keywords: cryptobiosis, cyanobacteria, glucose, mars, Synechococcus elongatus, tardigrades

Procedia PDF Downloads 166
48 Conformal Coating Technology Applicable to Cell Therapeutics Using Click-Reactive Biocompatible Polymers

Authors: Venkat Garigapati

Abstract:

Cell-based therapies are limited due to underlying host immune system activity. Microencapsulation of living cells to overcome this issue has some serious drawbacks, such as limitations of nutrient and oxygen diffusion, which pose a threat to the function and longevity of cells. The conformal coating could overcome the issues which are generally involved in traditional microencapsulation. Some of the theoretical advantages of conformal coating include superior nutrient and oxygen supply to cells, prolonged lifespan, improved drug-secreting cell functionality and an opportunity to load high cell doses in small volumes. Despite several advantages to the conformal coating, there are no suitable methods available to apply to living cells. The ultra-thin conformal coating was achieved utilizing click-reactive methacryloyloxyethyl phosphorylcholine (MPC) polymers, which are capable of specifically reacting one polymer to another at neutral pH in the aqueous isotonic system at the desired temperature suitable for living cells without the need of deleterious initiators. ARPE-19 (Adult Retinal Pigment Epithelial cell line-19) cell-spheroids and rat pancreatic islets were used in the formulation studies. The in vitro studies of coated ARPE-19 cell-spheroids and rat islets indicate that the coat was intact; cells were viable and functioning. The in vitro study results revealed that the conformal coating technology seems promising and in vivo studies are being planned.

Keywords: cells, hydrogel, conformal coating, microencapsulation, insulin

Procedia PDF Downloads 68
47 Intentional Cultivation of Non-toxic Filamentous Cyanobacteria Tolypothrix as an Approach to Treat Eutrophic Waters

Authors: Simona Lucakova, Irena Branyikova

Abstract:

Eutrophication, a condition when water becomes over-enriched with nutrients (P, N), can lead to undesirable excessive growth of phytoplankton, so-called algal bloom. This process results in the accumulation of toxin-producing cyanobacteria and oxygen depletion, both possibly leading to the collapse of the whole ecosystem. In real conditions, the limiting nutrient, which determines the possible growth of harmful algal bloom, is usually phosphorus. Algicides or flocculants have been applied in the eutrophicated waterbody in order to reduce the phytoplankton growth, which leads to the introduction of toxic chemicals into the water. In our laboratory, the idea of the prevention of harmful phytoplankton growth by the intentional cultivation of non-toxic cyanobacteria Tolypothrix tenuis in semi-open floating photobioreactors directly on the surface of phosphorus-rich waterbody is examined. During the process of cultivation, redundant phosphorus is incorporated into cyanobacterial biomass, which can be subsequently used for the production of biofuels, cosmetics, pharmaceuticals, or biostimulants for agricultural use. To determine the ability of phosphorus incorporation, batch-cultivation of Tolypothrix biomass in media simulating eutrophic water (10% BG medium) and in effluent from municipal wastewater treatment plant, both with the initial phosphorus concentration in the range 0.5-1.0 mgP/L was performed in laboratory-scale models of floating photobioreactors. After few hours of cultivation, the phosphorus content was decreased below the target limit of 0.035 mgP/L, which was given as a borderline for the algal bloom formation. Under laboratory conditions, the effect of several parameters on the rate of phosphorus decrease was tested (illumination, temperature, stirring speed/aeration gas flow, biomass to medium ratio). Based on the obtained results, a bench-scale floating photobioreactor was designed and will be tested for Tolypothrix growth in real conditions. It was proved that intentional cultivation of cyanobacteria Tolypothrix could be a suitable approach for extracting redundant phosphorus from eutrophic waters as prevention of algal bloom formation.

Keywords: cyanobacteria, eutrophication, floating photobioreactor, Tolypothrix

Procedia PDF Downloads 127
46 TCTN2 Maintains the Transition Zone Stability and Controls the Entrance of the Ciliary Membrane Protein into Primary Cilia

Authors: Rueyhung Weng, Chia-En Huang, Jung-Chi-Liao

Abstract:

The transition zone (TZ) serves as a diffusion barrier to regulate the ins and outs of the proteins recruited to the primary cilia. TCTN2 is one of the TZ proteins and its mutation causes Joubert syndrome, a serious multi-organ disease. Despite its important medical relevance, the functions of TCTN2 remain elusive. Here we created a TCTN2 gene deleted retinal pigment epithelial cells (RPE1) using CRISPR/Cas9-based genome editing technique and used this knockout line to reveal roles of TCTN2. TCTN2 knockout RPE1 cells displayed a significantly reduced ciliogenesis or a shortened primary cilium length in the cilium-remaining population. Intraflagellar transport protein IFT88 aberrantly accumulated at the tip of TCTN2 deficient cells. Guanine nucleotide exchange factor Arl13B was mostly absent from the ciliary compartment, with a small population localizing at the ciliary tip. The deficient TZ was corroborated with the mislocalization of two other TZ proteins TMEM67 and MKS1. In addition, TCTN2 deficiency induced TZ impairment led to the suppression of Sonic hedgehog signaling in response to Smoothened (Smo) agonist. Together, depletion of TCTN2 destabilizes other TZ proteins and considerably alters the localization of key transport and signaling-associated proteins, including IFT88, Arl13B, and Smo.

Keywords: CRISPR/Cas9, primary cilia, Sonic hedgehog signaling, transition zone

Procedia PDF Downloads 313
45 Applied Free Living Nematode as Bioindicator to Assess Environmental Impact of Dam Construction in Ba Lai Estuary, Vietnam

Authors: Ngo Xuan Quang, Tran Thanh Thai, Ann Vanreusel

Abstract:

The Ba Lai dam construction was created in 2000 in the Ba Lai estuarine river, Ben Tre province, Vietnam to prevent marine water infiltration, drainage and de-acidification, and to build a reservoir of freshwater for land reclamation in the Ba Lai tributary. However, this dam is considered as an environmental failure for the originally connected estuarine and river ecosystem, especially to bad effect to benthic fauna distribution. This research aims to study applying free living nematode communities’ distribution in disturbance of dam construction as bioindicator to detect environmental impact. Nematode samples were collected together measuring physical–chemical environmental parameters such as chlorophyll, CPE, coliform, nutrient, grain size, salinity, dissolved oxygen, turbidity, conductivity, temperature in three stations within three replicates. Results showed that free living nematode communities at the dam construction was significantly low densities, low diversity (Hurlbert’s index, Hill diversity indices) and very low maturity index in comparison with two remaining stations. Strong correlation of nematode feeding types and communities’ structure was found in relation with sediment grain size and nutrient enrichment such nitrite, nitrate, phosphate and pigment concentration. Moreover, greatly negative link between nematode maturity index with nutrient parameters can serve as warning organic pollution of the Ba Lai river due to dam construction.

Keywords: Ba Lai, dam impact, nematode, environment

Procedia PDF Downloads 324
44 Instrumental Characterization of Cyanobacteria as Polyhydroxybutyrate Producer

Authors: Eva Slaninova, Diana Cernayova, Zuzana Sedrlova, Katerina Mrazova, Petr Sedlacek, Jana Nebesarova, Stanislav Obruca

Abstract:

Cyanobacteria are gram-negative prokaryotes belonging to a group of photosynthetic bacteria. In comparison with heterotrophic microorganisms, cyanobacteria utilize atmospheric nitrogen and carbon dioxide without any additional substrates. This ability of these microorganisms could be employed in biotechnology for the production of bioplastics, concretely polyhydroxyalkanoates (PHAs) which are primarily accumulated as a storage material in cells in the form of intracellular granules. In this study, there two cyanobacterial cultures from genera Synechocystis were used, namely Synechocystic sp. PCC 6803 and Synechocystis salina CCALA 192. There were optimized and used several various approaches, including microscopic techniques such as cryo-scanning electron microscopy (Cryo-SEM) and transmission electron microscopy (TEM), and fluorescence lifetime imaging microscopy using Nile red as a fluorescent probe (FLIM). Due to these instrumental techniques, the morphology of intracellular space and surface of cells were characterized. The next group of methods which were employed was spectroscopic techniques such as UV-Vis spectroscopy measured in two modes (turbidimetry and integration sphere) and Fourier transform infrared spectroscopy (FTIR). All these diverse techniques were used for the detection and characterization of pigments (chlorophylls, carotenoids, phycocyanin, etc.) and PHAs, in our case poly (3-hydroxybutyrate) (P3HB). To verify results, gas chromatography (GC) was employed concretely for the determination of the amount of P3HB in biomass. Cyanobacteria were also characterized as polyhydroxybutyrate producers by flow cytometer, which could count cells and at the same time distinguish cells including P3HB and without due to fluorescent probe called BODIPY and live/dead fluorescent probe SYTO Blue. Based on results, P3HB content in cyanobacteria cells was determined, as also the overall fitness of the cells. Acknowledgment: Funding: This study was partly funded by the projectGA19-29651L of the Czech Science Foundation (GACR) and partly funded by the Austrian Science Fund (FWF), project I 4082-B25.

Keywords: cyanobacteria, fluorescent probe, microscopic techniques, poly(3hydroxybutyrate), spectroscopy, chromatography

Procedia PDF Downloads 196
43 Improving Lutein Bioavailability by Nanotechnology Applications

Authors: Hulya Ilyasoglu Buyukkestelli, Sedef Nehir El

Abstract:

Lutein is a member of xanthophyll group of carotenoids found in fruits and vegetables. Lutein accumulates in the macula region of the retina and known as macular pigment which absorbs damaging light in the blue wavelengths. The presence of lutein in retina has been related to decreased risk of two common eye diseases, age-related macular degeneration, and cataract. Being a strong antioxidant, it may also have effects on prevention some types of cancer, cardiovascular disease, cognitive dysfunction. Humans are not capable of synthesizing lutein de novo; therefore it must be provided naturally by the diet, fortified foods, and beverages or nutritional supplement. However, poor bioavailability and physicochemical stability limit its usage in the food industry. Poor solubility in digestive fluids and sensitivity to heat, light, and oxygen are both affect the stability and bioavailability of lutein. In this context, new technologies, delivery systems and formulations have been applied to improve stability and solubility of lutein. Nanotechnology, including nanoemulsion, nanocrystal, nanoencapsulation technology and microencapsulation by complex coacervation, spray drying are promising ways of increasing solubilization of lutein and stability of it in different conditions. Bioavailability of lutein is also dependent on formulations used, starch formulations and milk proteins, especially sodium caseinate are found effective in improving the bioavailability of lutein. Designing foods with highly bioavailable and stabile lutein needs knowledge about current technologies, formulations, and further needs. This review provides an overview of the new technologies and formulations used to improve bioavailability of lutein and also gives a future outlook to food researches.

Keywords: bioavailability, formulation, lutein, nanotechnology

Procedia PDF Downloads 354
42 Surface Temperature of Asphalt Pavements with Colored Cement-Based Grouting Materials Containing Ceramic Waste Powder and Zeolite

Authors: H. Higashiyama, M. Sano, F. Nakanishi, M. Sugiyama, M. Kawanishi, S. Tsukuma

Abstract:

The heat island phenomenon and extremely hot summer climate are becoming environmental problems in Japan. Cool pavements reduce the surface temperature compared to conventional asphalt pavements in the hot summer climate and improve the thermal environment in the urban area. The authors have studied cement–based grouting materials poured into voids in porous asphalt pavements to reduce the road surface temperature. For the cement–based grouting material, cement, ceramic waste powder, and natural zeolite were used. This cement–based grouting material developed reduced the road surface temperature by 20 °C or more in the hot summer season. Considering the urban landscape, this study investigates the effect of surface temperature reduction of colored cement–based grouting materials containing pigments poured into voids in porous asphalt pavements by measuring the surface temperature of asphalt pavements outdoors. The yellow color performed the same as the original cement–based grouting material containing no pigment and was thermally better performance than the other color. However, all the tested cement–based grouting materials performed well for reducing the surface temperature and for creating the urban landscape.

Keywords: ceramic waste powder, natural zeolite, road surface temperature, asphalt pavement, urban landscape

Procedia PDF Downloads 289
41 Skin Diseases in the Rural Areas in Nepal; Impact on Quality of Life

Authors: Dwarika P. Shrestha, Dipendra Gurung, Rushma Shrestha, Inger Rosdahl

Abstract:

Introduction: Skin diseases are one of the most common health problems in Nepal. The objectives of this study are to determine the prevalence of skin diseases and impact on quality of life in rural areas in Nepal. Materials and methods: A house-to-house survey was conducted, to obtain socio-demographic data and identify individuals with skin diseases, followed by health camps, where the villagers were examined. A pilot study was conducted in one village, which was then extended to 10 villages in 4 districts. To assess the impact on quality of life, the villagers were interviewed with Skin Disease Disability Index. This is a questionnaire developed and validated by the authors for use in Nepal. Results: In the pilot study, the overall prevalence of skin diseases was 20.1% (645/3207). In the additional 10 villages with 7348 (3651/3787 m/f) inhabitants, 1862 (721/1141 m/f, mean age 31.4 years) had one or more skin diseases. The overall prevalence of skin diseases was 25%. The most common skin disease categories were eczemas (13.7%, percentage among all inhabitants) pigment disorders (6.8%), fungal infections (4.9%), nevi (3.7%) and urticaria (2.9%). These five most common skin disease categories comprise 71% of all skin diseases seen in the study. The mean skin disease disability index score was 13.7, indicating very large impact on the quality of life. Conclusions: This population-based study shows that skin diseases are very common in the rural areas of Nepal and have significant impact on quality of life. Targeted intervention at the primary health care level should help to reduce the health burden due to skin diseases.

Keywords: prevalence and pattern of skin diseases, impact on quality of life, rural Nepal, interventions

Procedia PDF Downloads 454
40 A 3D Bioprinting System for Engineering Cell-Embedded Hydrogels by Digital Light Processing

Authors: Jimmy Jiun-Ming Su, Yuan-Min Lin

Abstract:

Bioprinting has been applied to produce 3D cellular constructs for tissue engineering. Microextrusion printing is the most common used method. However, printing low viscosity bioink is a challenge for this method. Herein, we developed a new 3D printing system to fabricate cell-laden hydrogels via a DLP-based projector. The bioprinter is assembled from affordable equipment including a stepper motor, screw, LED-based DLP projector, open source computer hardware and software. The system can use low viscosity and photo-polymerized bioink to fabricate 3D tissue mimics in a layer-by-layer manner. In this study, we used gelatin methylacrylate (GelMA) as bioink for stem cell encapsulation. In order to reinforce the printed construct, surface modified hydroxyapatite has been added in the bioink. We demonstrated the silanization of hydroxyapatite could improve the crosslinking between the interface of hydroxyapatite and GelMA. The results showed that the incorporation of silanized hydroxyapatite into the bioink had an enhancing effect on the mechanical properties of printed hydrogel, in addition, the hydrogel had low cytotoxicity and promoted the differentiation of embedded human bone marrow stem cells (hBMSCs) and retinal pigment epithelium (RPE) cells. Moreover, this bioprinting system has the ability to generate microchannels inside the engineered tissues to facilitate diffusion of nutrients. We believe this 3D bioprinting system has potential to fabricate various tissues for clinical applications and regenerative medicine in the future.

Keywords: bioprinting, cell encapsulation, digital light processing, GelMA hydrogel

Procedia PDF Downloads 149
39 Synthesis and Characterization of Some Novel Carbazole Schiff Bases (OLED)

Authors: Baki Cicek, Umit Calisir

Abstract:

Carbazoles have been replaced lots of studies from 1960's to present and also still continues. In 1987, the first diode device had been developed. Thanks to that study, light emitting devices have been investigated and developed and also have been used on commercial applications. Nowadays, OLED (Organic Light Emitting Diodes) technology is using on lots of electronic screen such as (mobile phone, computer monitors, televisions, etc.) Carbazoles were subject a lot of study as a semiconductor material. Although this technology is used commen and widely, it is still development stage. Metal complexes of these compounds are using at pigment dyes because of colored substances, polymer technology, medicine industry, agriculture area, preparing rocket fuel-oil, determine some of biological events, etc. Becides all of these to preparing of schiff base synthesis is going on intensely. In this study, some of novel carbazole schiff bases were synthesized starting from carbazole. For that purpose, firstly, carbazole was alkylated. After purification of N-substituted-carbazole was nitrated to sythesized 3-nitro-N-substituted and 3,6-dinitro-N-substituted carbazoles. At next step, nitro group/groups were reduced to amines. Purified with using a type of silica gel-column chromatography. At the last step of our study, with sythesized 3,6-diamino-N-substituted carbazoles and 3-amino-N-substituted carbazoles were reacted with aldehydes to condensation reactions. 3-(imino-p-hydroxybenzyl)-N-isobutyl -carbazole, 3-(imino-2,3,4-trimethoxybenzene)-N-butylcarbazole, 3-(imino-3,4-dihydroxybenzene)-N-octylcarbazole, 3-(imino-2,3-dihydroxybenzene)-N-octylkarbazole and 3,6-di(α-imino-β-naphthol) -N-hexylcarbazole compounds were synthesized. All of synthesized compounds were characterized with FT-IR, 1H-NMR, 13C-NMR, and LC-MS.

Keywords: carbazole, carbazol schiff base, condensation reactions, OLED

Procedia PDF Downloads 416
38 Effect of Solvents in the Extraction and Stability of Anthocyanin from the Petals of Caesalpinia pulcherrima for Natural Dye-Sensitized Solar Cell

Authors: N. Prabavathy, R. Balasundaraprabhu, S. Shalini, Dhayalan Velauthapillai, S. Prasanna, N. Muthukumarasamy

Abstract:

Dye sensitized solar cell (DSSC) has become a significant research area due to their fundamental and scientific importance in the area of energy conversion. Synthetic dyes as sensitizer in DSSC are efficient and durable but they are costlier, toxic and have the tendency to degrade. Natural sensitizers contain plant pigments such as anthocyanin, carotenoid, flavonoid, and chlorophyll which promote light absorption as well as injection of charges to the conduction band of TiO2 through the sensitizer. But, the efficiency of natural dyes is not up to the mark mainly due to instability of the pigment such as anthocyanin. The stability issues in vitro are mainly due to the effect of solvents on extraction of anthocyanins and their respective pH. Taking this factor into consideration, in the present work, the anthocyanins were extracted from the flower Caesalpinia pulcherrima (C. pulcherrimma) with various solvents and their respective stability and pH values are discussed. The usage of citric acid as solvent to extract anthocyanin has shown good stability than other solvents. It also helps in enhancing the sensitization properties of anthocyanins with Titanium dioxide (TiO2) nanorods. The IPCE spectra show higher photovoltaic performance for dye sensitized TiO2nanorods using citric acid as solvent. The natural DSSC using citric acid as solvent shows a higher efficiency compared to other solvents. Hence citric acid performs to be a safe solvent for natural DSSC in boosting the photovoltaic performance and maintaining the stability of anthocyanins.

Keywords: Caesalpinia pulcherrima, citric acid, dye sensitized solar cells, TiO₂ nanorods

Procedia PDF Downloads 254
37 Evaluating the Potential of a Fast Growing Indian Marine Cyanobacterium by Reconstructing and Analysis of a Genome Scale Metabolic Model

Authors: Ruchi Pathania, Ahmad Ahmad, Shireesh Srivastava

Abstract:

Cyanobacteria is a promising microbe that can capture and convert atmospheric CO₂ and light into valuable industrial bio-products like biofuels, biodegradable plastics, etc. Among their most attractive traits are faster autotrophic growth, whole year cultivation using non-arable land, high photosynthetic activity, much greater biomass and productivity and easy for genetic manipulations. Cyanobacteria store carbon in the form of glycogen which can be hydrolyzed to release glucose and fermented to form bioethanol or other valuable products. Marine cyanobacterial species are especially attractive for countries with scarcity of freshwater. We recently identified a marine native cyanobacterium Synechococcus sp. BDU 130192 which has good growth rate and high level of polyglucans accumulation compared to Synechococcus PCC 7002. In this study, firstly we sequenced the whole genome and the sequences were annotated using the RAST server. Genome scale metabolic model (GSMM) was reconstructed through COBRA toolbox. GSMM is a computational representation of the metabolic reactions and metabolites of the target strain. GSMMs construction through the application of Flux Balance Analysis (FBA), which uses external nutrient uptake rates and estimate steady state intracellular and extracellular reaction fluxes, including maximization of cell growth. The model, which we have named isyn942, includes 942 reactions and 913 metabolites having 831 metabolic, 78 transport and 33 exchange reactions. The phylogenetic tree obtained by BLAST search revealed that the strain was a close relative of Synechococcus PCC 7002. The flux balance analysis (FBA) was applied on the model iSyn942 to predict the theoretical yields (mol product produced/mol CO₂ consumed) for native and non-native products like acetone, butanol, etc. under phototrophic condition by applying metabolic engineering strategies. The reported strain can be a viable strain for biotechnological applications, and the model will be helpful to researchers interested in understanding the metabolism as well as to design metabolic engineering strategies for enhanced production of various bioproducts.

Keywords: cyanobacteria, flux balance analysis, genome scale metabolic model, metabolic engineering

Procedia PDF Downloads 122
36 A Chemical-Free Colouration Technique for Regenerated Fibres Using Waste Alpaca Fibres

Authors: M. Abdullah Al Faruque, Rechana Remadevi, Abu Naser M. Ahsanul Haque, Joselito Razal, Xungai Wang, Maryam Naebe

Abstract:

Generally, the colouration of textile fibres is performed by using synthetic colourants in dope dyeing or conventional dyeing methods. However, the toxic effect of some synthetic colorants due to long-term exposure can cause several health threats including cancer, asthma and skin diseases. Moreover, in colouration process, these colourants not only consume a massive amount of water but also generates huge proportion of wastewater to the environment. Despite having the environmentally friendly characteristics, current natural colourants have downsides in their yield and need chemical extraction processes which are water consuming as well. In view of this, the present work focuses to develop a chemical-free biocompatible and natural pigment based colouration technique to colour regenerated fibres. Waste alpaca fibre was used as a colourant and the colour properties, as well as the mechanical properties, of the regenerated fibres were investigated. The colourant from waste alpaca was fabricated through mechanical milling process and it was directly applied to the polyacrylonitrile (PAN) dope solution in different ratios of alpaca: PAN (10:90, 20:80, 30:70). The results obtained from the chemical structure characterization suggested that all the coloured regenerated fibres exhibited chemical functional groups of both PAN and alpaca. Furthermore, the color strength was increased gradually with the increment of alpaca content and showed excellent washing fastness properties. These results reveal a potential new pathway for chemical-free dyeing technique for fibres with improved properties.

Keywords: alpaca, chemical-free coloration, natural colorant, polyacrylonitrile, water consumption, wet spinning

Procedia PDF Downloads 136
35 Visual Outcome After 360-Degree Retinectomy in Total Rhegmatogenous Retinal Detachment with Advanced Proliferative Vitreoretinopathy: A Case Series

Authors: Andriati Nadhilah Widyarini, Ezra Margareth

Abstract:

Introduction: Rhegmatogenous retinal detachment is a condition where there’s a break in the retina, which allows the vitreous to directly enter the subretinal space. Proliferative vitreoretinopathy (PVR) may develop due to this condition and can result in a new break, which could cause traction on the previously detached retina. Various methods of therapy can be done to treat this complication. Case: This case series involved 2 eyes of 2 patients who had total retinal detachment with advanced PVR. Pars plana vitrectomy was performed, and a 360-degree retinectomy procedure with perfluorocarbon liquid usage was done. This was followed by endo laser retinopexy to surround the border of retinectomy. 5000 cs silicone oil was used in 1 eye, whereas 12% of perfluoropropane gas was used in the other eye as a tamponade. These procedures were performed with meticulous attention to prevent any fluid from entering the subretinal space. Postoperative examination showed attachment of the retina and improvement of the patient’s visual acuity. Both eyes’ intraocular pressure was in the normal range. One eye developed retinal displacement, but no other complications occurred. Discussion: Rhegmatogenous retinal detachment with advanced PVR is a complex situation for vitreoretinal surgeons. PVR is characterized by the growth and migration of preretinal or subretinal membranes. PVR is the most common cause of retinal reattachment failure. A 360-degree retinectomy is an alternative surgical method to overcome this condition. Objectives of this procedure are releasing retinal traction caused by PVR, reducing the recurrence rate of PVR, and reattaching the retina to the pigment epithelial surface. Conclusion: 360-degree retinectomy provides satisfactory retinal reattachment and visual outcome improvement in rhegmatogenous retinal detachment with advanced PVR.

Keywords: RRD, retinectomy, pars plana, advanced PVR

Procedia PDF Downloads 20
34 Hydrothermal Liquefaction for Astaxanthin Extraction from Wet Algae

Authors: Spandana Ramisetty, Mandan Chidambaram, Ramesh Bhujade

Abstract:

Algal biomass is not only a potential source for biocrude but also for high value chemicals like carotenoids, fatty acids, proteins, polysaccharides, vitamins etc. Astaxanthin is one such high value vital carotenoid which has extensive applications in pharmaceutical, aquaculture, poultry and cosmetic industries and expanding as dietary supplement to humans. Green microalgae Haematococcus pluvialis is identified as the richest natural source of astaxanthin and is the key source of commercial astaxanthin. Several extraction processes from wet and dry Haematococcus pluvialis biomass have been explored by researchers. Extraction with supercritical CO₂ and various physical disruption techniques like mortar and pestle, homogenization, ultrasonication and ball mill from dried algae are widely used extraction methods. However, these processes require energy intensive drying of biomass that escalates overall costs notably. From the process economics perspective, it is vital to utilize wet processing technology in order to eliminate drying costs. Hydrothermal liquefaction (HTL) is a thermo-chemical conversion process that converts wet biomass containing over 80% water to bio-products under high temperature and high pressure conditions. Astaxanthin is a lipid soluble pigment and is usually extracted along with lipid component. Mild HTL at 200°C and 60 bar has been demonstrated by researchers in a microfluidic platform achieving near complete extraction of astaxanthin from wet biomass. There is very limited work done in this field. An integrated approach of sequential HTL offers cost-effective option to extract astaxanthin/lipid from wet algal biomass without drying algae and also recovering water, minerals and nutrients. This paper reviews past work and evaluates the astaxanthin extraction processes with focus on hydrothermal extraction.

Keywords: astaxanthin, extraction, high value chemicals, hydrothermal liquefaction

Procedia PDF Downloads 279
33 Primary Melanocytic Tumors of the Central Nervous System: A Clinico-Pathological Study of Seven Cases

Authors: Sushila Jaiswal, Awadhesh Kumar Jaiswal

Abstract:

Background: Primary melanocytic tumors of the central nervous system (CNS) are uncommon lesions and arise from the melanocytes located within the leptomeninges. Aim and objective: The aim of the study was to evaluate the clinical details, histomorphology of the primary melanocytic tumor of CNS. Method: The study was performed by the retrospective review of the case records of the primary melanocytic tumors of CNS diagnosed in our department. The formalin-fixed, paraffin embedded tissue blocks and tissue sections were retrieved and reviewed. Results: Seven cases (6 males, 1 female; age range- 16-40 years; mean age- 27 years) of primary melanocytic tumors of CNS were retrieved over last seven years. The tumor was intracranial (n=5; frontal – 1 case, parietal – 1 case, cerebello-pontine angle- 1 case, occipital -1 case, foramen magnum-1 case) and intra spinal (n=2; cervical – 2 cases). All patients presented with the neurological deficits related to the location of the tumor. Four cases were malignant melanoma; two were melanocytoma of intermediate grade and remaining one was melanocytoma. On histopathology, melanocytoma and melanoma both displayed sheets of well-differentiated melanocytes having round to oval nuclei with finely dispersed chromatin, occasional single eosinophilic nucleoli and a moderate amount of cytoplasm with abundant granular melanin pigment. The absence of mitosis and macronucleoli was noticed in melanocytoma while melanoma showed frequent mitosis and macronucleoli. On immunohistochemistry, both showed diffuse strong HMB45 and S-100 immunopositivity. Conclusion: Primary melanocytic tumors of CNS are rare and predominantly seen in males. It is important to differentiate melanoma from melanocytoma as prognosis of later is good.

Keywords: melanocytoma, melanoma, brain tumor, melanin

Procedia PDF Downloads 198
32 Synergistic Effect of Curcumin and Insulin on GLUT4 Translocation in C2C12 Cell

Authors: Javad Mohiti-Ardekani, Shabodin Asadii, Ali Moradi

Abstract:

Introduction: Curcumin, the yellow pigment in turmeric, has been shown as an anti-diabetic agent for centuries but only in recent few years, its mechanism of action has been under investigation. Some studies showed that curcumin might exert its anti-diabetic effect via increasing glucose transporter isotype-4 (GLUT4) gene and glycoprotein contents in cells. To investigate this possibility, we investigate the effects of extract and commercial curcumin with and without insulin on GLUT4 translocation from intracellular compartments of nuclear or endoplasmic reticulum membranes (N/ER) into the cytoplasmic membrane (CM). Methods and Material: C2C12 myoblastic cell line were seeded in DMEM plus 20 % FBS and differentiated to myotubes using 2 % horse serum. After myotubes formation, 40 µmolar Extract and Commercial curcumin, with or without insulin as intervention, and as control 1 % DMSO were added for 3 h. Cells were washed and homogenized followed by ultracentrifuge fractionation, protein separation by SDS-PAGE and GLUT4 detection using semi-quantitative Western blotting. Data analysis was done by two independent samples t-test for comparison of mean ± SD of GLUT4 percent in categories. GLUT4 contents were higher in CM groups curcumin and curcumin with insulin in comparison to 1 % DMSO-treated myotubes control group. Results: As our results have shown extract and commercial curcumin induces GLUT4 translocation from intra-cell into cell surface. The results have also shown synergic effect of curcumin on translocation of GLUT4 from intra-cell into cell surface in the presence of 100 nm insulin. Discussion: We conclude that curcumin may be a choice of type-2 diabetes mellitus treatment because its extract and commercial enhances GLUT4 contents in CM where it facilitates glucose entrance into the cell. However, it is necessary to trace the signaling pathways which are activated by curcumin.

Keywords: Curcumin, insulin, Diabetes type-2, GLUT4

Procedia PDF Downloads 214
31 Non-Invasive Techniques of Analysis of Painting in Forensic Fields

Authors: Radka Sefcu, Vaclava Antuskova, Ivana Turkova

Abstract:

A growing market with modern artworks of a high price leads to the creation and selling of artwork counterfeits. Material analysis is an important part of the process of assessment of authenticity. Knowledge of materials and techniques used by original authors is also necessary. The contribution presents possibilities of non-invasive methods of structural analysis in research on paintings. It was proved that unambiguous identification of many art materials is feasible without sampling. The combination of Raman spectroscopy with FTIR-external reflection enabled the identification of pigments and binders on selected artworks of prominent Czech painters from the first half of the 20th century – Josef Čapek, Emil Filla, Václav Špála and Jan Zrzavý. Raman spectroscopy confirmed the presence of a wide range of white pigments - lead white, zinc white, titanium white, barium white and also Freeman's white as a special white pigment of painting. Good results were obtained for red, blue and most of the yellow areas. Identification of green pigments was often impossible due to strong fluorescence. Oil was confirmed as a binding medium on most of the analyzed artworks via FTIR - external reflection. Collected data present the valuable background for the determination of art materials characteristic for each painter (his palette) and its development over time. Obtained results will further serve as comparative material for the authentication of artworks. This work has been financially supported by the project of the Ministry of the Interior of the Czech Republic: The Development of a Strategic Cluster for Effective Instrumental Technological Methods of Forensic Authentication of Modern Artworks (VJ01010004).

Keywords: non-invasive analysis, Raman spectroscopy, FTIR-external reflection, forgeries

Procedia PDF Downloads 146
30 Isolation of Nitrosoguanidine Induced NaCl Tolerant Mutant of Spirulina platensis with Improved Growth and Phycocyanin Production

Authors: Apurva Gupta, Surendra Singh

Abstract:

Spirulina spp., as a promising source of many commercially valuable products, is grown photo autotrophically in open ponds and raceways on a large scale. However, the economic exploitation in an open system seems to have been limited because of lack of multiple stress-tolerant strains. The present study aims to isolate a stable stress tolerant mutant of Spirulina platensis with improved growth rate and enhanced potential to produce its commercially valuable bioactive compounds. N-methyl-n'-nitro-n-nitrosoguanidine (NTG) at 250 μg/mL (concentration permitted 1% survival) was employed for chemical mutagenesis to generate random mutants and screened against NaCl. In a preliminary experiment, wild type S. platensis was treated with NaCl concentrations from 0.5-1.5 M to calculate its LC₅₀. Mutagenized colonies were then screened for tolerance at 0.8 M NaCl (LC₅₀), and the surviving colonies were designated as NaCl tolerant mutants of S. platensis. The mutant cells exhibited 1.5 times improved growth against NaCl stress as compared to the wild type strain in control conditions. This might be due to the ability of the mutant cells to protect its metabolic machinery against inhibitory effects of salt stress. Salt stress is known to adversely affect the rate of photosynthesis in cyanobacteria by causing degradation of the pigments. Interestingly, the mutant cells were able to protect its photosynthetic machinery and exhibited 4.23 and 1.72 times enhanced accumulation of Chl a and phycobiliproteins, respectively, which resulted in enhanced rate of photosynthesis (2.43 times) and respiration (1.38 times) against salt stress. Phycocyanin production in mutant cells was observed to enhance by 1.63 fold. Nitrogen metabolism plays a vital role in conferring halotolerance to cyanobacterial cells by influx of nitrate and efflux of Na+ ions from the cell. The NaCl tolerant mutant cells took up 2.29 times more nitrate as compared to the wild type and efficiently reduce it. Nitrate reductase and nitrite reductase activity in the mutant cells also improved by 2.45 and 2.31 times, respectively against salt stress. From these preliminary results, it could be deduced that enhanced nitrogen uptake and its efficient reduction might be a reason for adaptive and halotolerant behavior of the S. platensis mutant cells. Also, the NaCl tolerant mutant of S. platensis with significant improved growth and phycocyanin accumulation compared to the wild type can be commercially promising.

Keywords: chemical mutagenesis, NaCl tolerant mutant, nitrogen metabolism, photosynthetic machinery, phycocyanin

Procedia PDF Downloads 145
29 Conserving History: Evaluating and Selecting Effective Restoration Methods for a Fragment Mural Painting from Amarna

Authors: Kholod Khairy Salama, Shabban Hassan Thabet

Abstract:

In the present study, a comprehensive investigation has been undertaken into an Egyptian mural painting with feet wear slippers approach to choose the most successful restoration methods. The mural painting under examination dates back to the Amarna period; it was detached from a wall of an unknown tomb in Egypt, and currently, it is initially displayed in a showcase at the Egyptian Museum – Tahrir Square – Cairo, Egypt. The main objectives of this research were to (a) reveal the pigment used in the mural painting, (b) reveal the medium used with colours, (c) determine the technique of manufacturing, (e) determine the ground support, and (f) reveal the main deterioration aspects. The analytical techniques used for investigation were Optical Microscopy, Raman, X-ray Florescence, X-ray diffraction, and Fourier transform infrared coupled with attenuated total reflectance “FTIR-ATR”. The investigation revealed that the vital deterioration factors affecting the object. This research aims to examine and analyze the mural painting to choose the suitable method for the restoration process (a) define the colours through comparative analysis to choose the suitable material for cleaning, (b) define the natural structure of the ground support layer, which appeared as mud layer (c) determine the medium used with colours (d) diagnosis the presence of the white wash layer, and (e) choose the suitable restoration methods according to the results. Conclusion: This study focused mainly on the physical and chemical properties of the mural painting compound and the main changes that happened to the mural painting material, which caused deterioration and fall down of the painting parts, so we can find the best and optimum restoration ways for this object.

Keywords: mural paintings, Tal Al-Amarna, digital microscope, Raman, XRF, XRD, FTIR

Procedia PDF Downloads 42
28 Hydrometallurgical Processing of a Nigerian Chalcopyrite Ore

Authors: Alafara A. Baba, Kuranga I. Ayinla, Folahan A. Adekola, Rafiu B. Bale

Abstract:

Due to increasing demands and diverse applications of copper oxide as pigment in ceramics, cuprammonium hydroxide solution for rayon, p-type semi-conductor, dry cell batteries production and as safety disposal of hazardous materials, a study on the hydrometallurgical operations involving leaching, solvent extraction and precipitation for the recovery of copper for producing high grade copper oxide from a Nigerian chalcopyrite ore in chloride media has been examined. At a particular set of experimental parameter with respect to acid concentration, reaction temperature and particle size, the leaching investigation showed that the ore dissolution increases with increasing acid concentration, temperature and decreasing particle diameter at a moderate stirring. The kinetics data has been analyzed and was found to follow diffusion control mechanism. At optimal conditions, the extent of ore dissolution reached 94.3%. The recovery of the total copper from the hydrochloric acid-leached chalcopyrite ore was undertaken by solvent extraction and precipitation techniques, prior to the beneficiation of the purified solution as copper oxide. The purification of the leach liquor was firstly done by precipitation of total iron and manganese using Ca(OH)2 and H2O2 as oxidizer at pH 3.5 and 4.25, respectively. An extraction efficiency of 97.3% total copper was obtained by 0.2 mol/L Dithizone in kerosene at 25±2ºC within 40 minutes, from which ≈98% Cu from loaded organic phase was successfully stripped by 0.1 mol/L HCl solution. The beneficiation of the recovered pure copper solution was carried out by crystallization through alkali addition followed by calcination at 600ºC to obtain high grade copper oxide (Tenorite, CuO: 05-0661). Finally, a simple hydrometallurgical scheme for the operational extraction procedure amenable for industrial utilization and economic sustainability was provided.

Keywords: chalcopyrite ore, Nigeria, copper, copper oxide, solvent extraction

Procedia PDF Downloads 364
27 Beta-Carotene Attenuates Cognitive and Hepatic Impairment in Thioacetamide-Induced Rat Model of Hepatic Encephalopathy via Mitigation of MAPK/NF-κB Signaling Pathway

Authors: Marawan Abd Elbaset Mohamed, Hanan A. Ogaly, Rehab F. Abdel-Rahman, Ahmed-Farid O.A., Marwa S. Khattab, Reham M. Abd-Elsalam

Abstract:

Liver fibrosis is a severe worldwide health concern due to various chronic liver disorders. Hepatic encephalopathy (HE) is one of its most common complications affecting liver and brain cognitive function. Beta-Carotene (B-Car) is an organic, strongly colored red-orange pigment abundant in fungi, plants, and fruits. The study attempted to know B-Car neuroprotective potential against thioacetamide (TAA)-induced neurotoxicity and cognitive decline in HE in rats. Hepatic encephalopathy was induced by TAA (100 mg/kg, i.p.) three times per week for two weeks. B-Car was given orally (10 or 20 mg/kg) daily for two weeks after TAA injections. Organ body weight ratio, Serum transaminase activities, liver’s antioxidant parameters, ammonia, and liver histopathology were assessed. Also, the brain’s mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NF-κB), antioxidant parameters, adenosine triphosphate (ATP), adenosine monophosphate (AMP), norepinephrine (NE), dopamine (DA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) cAMP response element-binding protein (CREB) expression and B-cell lymphoma 2 (Bcl-2) expression were measured. The brain’s cognitive functions (Spontaneous locomotor activity, Rotarod performance test, Object recognition test) were assessed. B-Car prevented alteration of the brain’s cognitive function in a dose-dependent manner. The histopathological outcomes supported these biochemical evidences. Based on these results, it could be established that B-Car could be assigned to treat the brain’s neurotoxicity consequences of HE via downregualtion of MAPK/NF-κB signaling pathways.

Keywords: beta-carotene, liver injury, MAPK, NF-κB, rat, thioacetamide

Procedia PDF Downloads 130
26 Transcriptome and Metabolome Analysis of a Tomato Solanum Lycopersicum STAYGREEN1 Null Line Generated Using Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Technology

Authors: Jin Young Kim, Kwon Kyoo Kang

Abstract:

The SGR1 (STAYGREEN1) protein is a critical regulator of plant leaves in chlorophyll degradation and senescence. The functions and mechanisms of tomato SGR1 action are poorly understood and worthy of further investigation. To investigate the function of the SGR1 gene, we generated a SGR1-knockout (KO) null line via clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated gene editing and conducted RNA sequencing and gas chromatography tandem mass spectrometry (GC-MS/MS) analysis to identify the differentially expressed genes. The SlSGR1 (Solanum lycopersicum SGR1) knockout null line clearly showed a turbid brown color with significantly higher chlorophyll and carotenoid content compared to wild-type (WT) fruit. Differential gene expression analysis revealed 728 differentially expressed genes (DEGs) between WT and sgr1 #1-6 line, including 263 and 465 downregulated and upregulated genes, respectively, for which fold change was >2, and the adjusted p-value was <0.05. Most of the DEGs were related to photosynthesis and chloroplast function. In addition, the pigment, carotenoid changes in sgr1 #1-6 line was accumulated of key primary metabolites such as sucrose and its derivatives (fructose, galactinol, raffinose), glycolytic intermediates (glucose, G6P, Fru6P) and tricarboxylic acid cycle (TCA) intermediates (malate and fumarate). Taken together, the transcriptome and metabolite profiles of SGR1-KO lines presented here provide evidence for the mechanisms underlying the effects of SGR1 and molecular pathways involved in chlorophyll degradation and carotenoid biosynthesis.

Keywords: tomato, CRISPR/Cas9, null line, RNA-sequencing, metabolite profiling

Procedia PDF Downloads 85
25 Scientific Investigation for an Ancient Egyptian Polychrome Wooden Stele

Authors: Ahmed Abdrabou, Medhat Abdalla

Abstract:

The studied stele dates back to Third Intermediate Period (1075-664) B.C in an ancient Egypt. It is made of wood and covered with painted gesso layers. This study aims to use a combination of multi spectral imaging {visible, infrared (IR), Visible-induced infrared luminescence (VIL), Visible-induced ultraviolet luminescence (UVL) and ultraviolet reflected (UVR)}, along with portable x-ray fluorescence in order to map and identify the pigments as well as to provide a deeper understanding of the painting techniques. Moreover; the authors were significantly interested in the identification of wood species. Multispectral imaging acquired in 3 spectral bands, ultraviolet (360-400 nm), visible (400-780 nm) and infrared (780-1100 nm) using (UV Ultraviolet-induced luminescence (UVL), UV Reflected (UVR), Visible (VIS), Visible-induced infrared luminescence (VIL) and Infrared photography. False color images are made by digitally editing the VIS with IR or UV images using Adobe Photoshop. Optical Microscopy (OM), potable X-ray fluorescence spectroscopy (p-XRF) and Fourier Transform Infrared Spectroscopy (FTIR) were used in this study. Mapping and imaging techniques provided useful information about the spatial distribution of pigments, in particular visible-induced luminescence (VIL) which allowed the spatial distribution of Egyptian blue pigment to be mapped and every region containing Egyptian blue, even down to single crystals in some instances, is clearly visible as a bright white area; however complete characterization of the pigments requires the use of p. XRF spectroscopy. Based on the elemental analysis found by P.XRF, we conclude that the artists used mixtures of the basic mineral pigments to achieve a wider palette of hues. Identification of wood species Microscopic identification indicated that the wood used was Sycamore Fig (Ficus sycomorus L.) which is recorded as being native to Egypt and was used to make wooden artifacts since at least the Fifth Dynasty.

Keywords: polychrome wooden stele, multispectral imaging, IR luminescence, Wood identification, Sycamore Fig, p-XRF

Procedia PDF Downloads 235