Search results for: converter devices
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2601

Search results for: converter devices

2481 Performance Analysis of Different Power Electronics Structures for Electric Vehicles (EVs)

Authors: Sekkak Abdelmalek

Abstract:

The aim of this paper is to establish an energy balance of the drivetrain of a low power electric vehicle (around ten kilowatts). The study is based on two topologies of power electronics converter, the voltage source inverter and cascaded H-Bridge inverter. For each of these solutions, two voltage levels are studied for the drivetrain. At first a discussion of cascaded H-Bridge inverters will be performed on the potential benefits of this structure for its use to other functions such as macroscopic batteries management system. In a second step, the performances of the traction chain are compared according to the structure of the power converter and the voltage level of the traction chain.

Keywords: power electronics, static converters, cascaded H-Bridge, traction chain, efficiency, losses, batteries balancing

Procedia PDF Downloads 482
2480 Randomly Casted Single-Wall Carbon Nanotubes Films for High Performance Hybrid Photovoltaic Devices

Authors: My Ali El Khakani

Abstract:

Single-wall Carbon nanotubes (SWCNTs) possess an unprecedented combination of unique properties that make them highly promising for suitable for a new generation of photovoltaic (PV) devices. Prior to discussing the integration of SWCNTs films into effective PV devices, we will briefly highlight our work on the synthesis of SWCNTs by means of the KrF pulsed laser deposition technique, their purification and transfer onto n-silicon substrates to form p-n junctions. Some of the structural and optoelectronic properties of SWCNTs relevant to PV applications will be emphasized. By varying the SWCNTs film density (µg/cm2), we were able to point out the existence of an optimum value that yields the highest photoconversion efficiency (PCE) of ~10%. Further control of the doping of the p-SWCNTs films, through their exposure to nitric acid vapors, along with the insertion of an optimized hole-extraction-layer in the p-SWCNTs/n-Si hybrid devices permitted to achieve a PCE value as high as 14.2%. Such a high PCE value demonstrates the full potential of these p-SWCNTs/n-Si devices for sunlight photoconversion. On the other hand, by examining both the optical transmission and electrical conductance of the SWCNTs’ films, we established a figure of merit (FOM) that was shown to correlate well with the PCE performance. Such a direct relationship between the FOM and the PCE can be used as a guide for further PCE enhancement of these novel p-SWCNTs/n-Si PV devices.

Keywords: carbon nanotubes (CNTs), CNTs-silicon hybrid devices, photoconversion, photovoltaic devices, pulsed laser deposition

Procedia PDF Downloads 94
2479 Fixed-Frequency Pulse Width Modulation-Based Sliding Mode Controller for Switching Multicellular Converter

Authors: Rihab Hamdi, Amel Hadri Hamida, Ouafae Bennis, Fatima Babaa, Sakina Zerouali

Abstract:

This paper features a sliding mode controller (SMC) for closed-loop voltage control of DC-DC three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM). To maintain the switching frequency, the approach is to incorporate a pulse-width modulation that utilizes an equivalent control, inferred by applying the SM control method, to produce a control sign to be contrasted and the fixed-frequency within the modulator. Detailed stability and transient performance analysis have been conducted using Lyapunov stability criteria to restrict the switching frequency variation facing wide variations in output load, input changes, and set-point changes. The results obtained confirm the effectiveness of the proposed control scheme in achieving an enhanced output transient performance while faithfully realizing its control objective in the event of abrupt and uncertain parameter variations. Simulations studies in MATLAB/Simulink environment are performed to confirm the idea.

Keywords: DC-DC converter, pulse width modulation, power electronics, sliding mode control

Procedia PDF Downloads 114
2478 Leveraging Li-Fi to Enhance Security and Performance of Medical Devices

Authors: Trevor Kroeger, Hayden Williams, Edward Holzinger, David Coleman, Brian Haberman

Abstract:

The network connectivity of medical devices is increasing at a rapid rate. Many medical devices, such as vital sign monitors, share information via wireless or wired connections. However, these connectivity options suffer from a variety of well-known limitations. Wireless connectivity, especially in the unlicensed radio frequency bands, can be disrupted. Such disruption could be due to benign reasons, such as a crowded spectrum, or to malicious intent. While wired connections are less susceptible to interference, they inhibit the mobility of the medical devices, which could be critical in a variety of scenarios. This work explores the application of Light Fidelity (Li-Fi) communication to enhance the security, performance, and mobility of medical devices in connected healthcare scenarios. A simple bridge for connected devices serves as an avenue to connect traditional medical devices to the Li-Fi network. This bridge was utilized to conduct bandwidth tests on a small Li-Fi network installed into a Mock-ICU setting with a backend enterprise network similar to that of a hospital. Mobile and stationary tests were conducted to replicate various different situations that might occur within a hospital setting. Results show that in room Li-Fi connectivity provides reasonable bandwidth and latency within a hospital like setting.

Keywords: hospital, light fidelity, Li-Fi, medical devices, security

Procedia PDF Downloads 76
2477 Effect of Using Baffles Inside Spiral Micromixer

Authors: Delara Soltani, Sajad Alimohammadi, Tim Persoons

Abstract:

Microfluidic technology reveals a new area of research in drug delivery, biomedical diagnostics, and the food and chemical industries. Mixing is an essential part of microfluidic devices. There is a need for fast and homogeneous mixing in microfluidic devices. On the other hand, mixing is difficult to achieve in microfluidic devices because of the size and laminar flow in these devices. In this study, a hybrid passive micromixer of a curved channel with obstacles inside the channel is designed. The computational fluid dynamic method is employed to solve governing equations. The results show that using obstacles can improve mixing efficiency in spiral micromixers. the effects of Reynolds number, number, and position of baffles are investigated. In addition, the effect of baffles on pressure drop is presented. this novel micromixer has the potential to utilize in microfluidic devices.

Keywords: CFD, micromixer, microfluidics, spiral, reynolds number

Procedia PDF Downloads 62
2476 A Study of Safety of Data Storage Devices of Graduate Students at Suan Sunandha Rajabhat University

Authors: Komol Phaisarn, Natcha Wattanaprapa

Abstract:

This research is a survey research with an objective to study the safety of data storage devices of graduate students of academic year 2013, Suan Sunandha Rajabhat University. Data were collected by questionnaire on the safety of data storage devices according to CIA principle. A sample size of 81 was drawn from population by purposive sampling method. The results show that most of the graduate students of academic year 2013 at Suan Sunandha Rajabhat University use handy drive to store their data and the safety level of the devices is at good level.

Keywords: security, safety, storage devices, graduate students

Procedia PDF Downloads 323
2475 A High Time Resolution Digital Pulse Width Modulator Based on Field Programmable Gate Array’s Phase Locked Loop Megafunction

Authors: Jun Wang, Tingcun Wei

Abstract:

The digital pulse width modulator (DPWM) is the crucial building block for digitally-controlled DC-DC switching converter, which converts the digital duty ratio signal into its analog counterpart to control the power MOSFET transistors on or off. With the increase of switching frequency of digitally-controlled DC-DC converter, the DPWM with higher time resolution is required. In this paper, a 15-bits DPWM with three-level hybrid structure is presented; the first level is composed of a7-bits counter and a comparator, the second one is a 5-bits delay line, and the third one is a 3-bits digital dither. The presented DPWM is designed and implemented using the PLL megafunction of FPGA (Field Programmable Gate Arrays), and the required frequency of clock signal is 128 times of switching frequency. The simulation results show that, for the switching frequency of 2 MHz, a DPWM which has the time resolution of 15 ps is achieved using a maximum clock frequency of 256MHz. The designed DPWM in this paper is especially useful for high-frequency digitally-controlled DC-DC switching converters.

Keywords: DPWM, digitally-controlled DC-DC switching converter, FPGA, PLL megafunction, time resolution

Procedia PDF Downloads 447
2474 The Integration of Patient Health Record Generated from Wearable and Internet of Things Devices into Health Information Exchanges

Authors: Dalvin D. Hill, Hector M. Castro Garcia

Abstract:

A growing number of individuals utilize wearable devices on a daily basis. The usage and functionality of these wearable devices vary from user to user. One popular usage of said devices is to track health-related activities that are typically stored on a device’s memory or uploaded to an account in the cloud; based on the current trend, the data accumulated from the wearable device are stored in a standalone location. In many of these cases, this health related datum is not a factor when considering the holistic view of a user’s health lifestyle or record. This health-related data generated from wearable and Internet of Things (IoT) devices can serve as empirical information to a medical provider, as the standalone data can add value to the holistic health record of a patient. This paper proposes a solution to incorporate the data gathered from these wearable and IoT devices, with that a patient’s Personal Health Record (PHR) stored within the confines of a Health Information Exchange (HIE).

Keywords: electronic health record, health information exchanges, internet of things, personal health records, wearable devices, wearables

Procedia PDF Downloads 96
2473 Microbial Fuel Cells: Performance and Applications

Authors: Andrea Pietrelli, Vincenzo Ferrara, Bruno Allard, Francois Buret, Irene Bavasso, Nicola Lovecchio, Francesca Costantini, Firas Khaled

Abstract:

This paper aims to show some applications of microbial fuel cells (MFCs), an energy harvesting technique, as clean power source to supply low power device for application like wireless sensor network (WSN) for environmental monitoring. Furthermore, MFC can be used directly as biosensor to analyse parameters like pH and temperature or arranged in form of cluster devices in order to use as small power plant. An MFC is a bioreactor that converts energy stored in chemical bonds of organic matter into electrical energy, through a series of reactions catalysed by microorganisms. We have developed a lab-scale terrestrial microbial fuel cell (TMFC), based on soil that acts as source of bacteria and flow of nutrient and a lab-scale waste water microbial fuel cell (WWMFC), where waste water acts as flow of nutrient and bacteria. We performed large series of tests to exploit the capability as biosensor. The pH value has strong influence on the open circuit voltage (OCV) delivered from TMFCs. We analyzed three condition: test A and B were filled with same soil but changing pH from 6 to 6.63, test C was prepared using a different soil with a pH value of 6.3. Experimental results clearly show how with higher pH value a higher OCV was produced; indeed reactors are influenced by different values of pH which increases the voltage in case of a higher pH value until the best pH value of 7 is achieved. The influence of pH on OCV of lab-scales WWMFC was analyzed at pH value of 6.5, 7, 7.2, 7.5 and 8. WWMFCs are influenced from temperature more than TMFCs. We tested the power performance of WWMFCs considering four imposed values of ambient temperature. Results show how power performance increase proportionally with higher temperature values, doubling the output power from 20° to 40°. The best value of power produced from our lab-scale TMFC was equal to 310 μW using peaty soil, at 1KΩ, corresponding to a current of 0.5 mA. A TMFC can supply proper energy to low power devices of a WSN by means of the design of three stages scheme of an energy management system, which adapts voltage level of TMFC to those required by a WSN node, as 3.3V. Using a commercial DC/DC boost converter, that needs an input voltage of 700 mV, the current source of 0.5 mA, charges a capacitor of 6.8 mF until it will have accumulated an amount of charge equal to 700 mV in a time of 10 s. The output stage includes an output switch that close the circuit after a time of 10s + 1.5ms because the converter can boost the voltage from 0.7V to 3.3V in 1.5 ms. Furthermore, we tested in form of clusters connected in series up to 20 WWMFCs, we have obtained a high voltage value as output, around 10V, but low current value. MFC can be considered a suitable clean energy source to be used to supply low power devices as a WSN node or to be used directly as biosensor.

Keywords: energy harvesting, low power electronics, microbial fuel cell, terrestrial microbial fuel cell, waste-water microbial fuel cell, wireless sensor network

Procedia PDF Downloads 178
2472 An Elegant Technique to Achieve ZCS in a Boost Converter Incorporating Complete Energy Transfer

Authors: Nagesh Vangala, Rayudu Mannam

Abstract:

Soft switching has attracted the interest of various researchers constantly. Many techniques are in vogue to achieve soft switching (ZVS and/or ZCS) in Boost converters. These techniques utilize an auxiliary switch to incorporate the ZCS/ZVS. Such schemes require additional control circuit and induce complexity in design. This paper proposes an elegant fly back approach which guarantees zero current switching of the main Switch without the need for any additional active device. A simple flyback transformer scheme is implemented which absorbs the initial turn ON energy (or the Reverse recovery energy of Boost diode) and delivers to the output.

Keywords: boost converter, complete energy transfer, flyback, zero current switching

Procedia PDF Downloads 363
2471 Performance Validation of Model Predictive Control for Electrical Power Converters of a Grid Integrated Oscillating Water Column

Authors: G. Rajapakse, S. Jayasinghe, A. Fleming

Abstract:

This paper aims to experimentally validate the control strategy used for electrical power converters in grid integrated oscillating water column (OWC) wave energy converter (WEC). The particular OWC’s unidirectional air turbine-generator output power results in discrete large power pulses. Therefore, the system requires power conditioning prior to integrating to the grid. This is achieved by using a back to back power converter with an energy storage system. A Li-Ion battery energy storage is connected to the dc-link of the back-to-back converter using a bidirectional dc-dc converter. This arrangement decouples the system dynamics and mitigates the mismatch between supply and demand powers. All three electrical power converters used in the arrangement are controlled using finite control set-model predictive control (FCS-MPC) strategy. The rectifier controller is to regulate the speed of the turbine at a set rotational speed to uphold the air turbine at a desirable speed range under varying wave conditions. The inverter controller is to maintain the output power to the grid adhering to grid codes. The dc-dc bidirectional converter controller is to set the dc-link voltage at its reference value. The software modeling of the OWC system and FCS-MPC is carried out in the MATLAB/Simulink software using actual data and parameters obtained from a prototype unidirectional air-turbine OWC developed at Australian Maritime College (AMC). The hardware development and experimental validations are being carried out at AMC Electronic laboratory. The designed FCS-MPC for the power converters are separately coded in Code Composer Studio V8 and downloaded into separate Texas Instrument’s TIVA C Series EK-TM4C123GXL Launchpad Evaluation Boards with TM4C123GH6PMI microcontrollers (real-time control processors). Each microcontroller is used to drive 2kW 3-phase STEVAL-IHM028V2 evaluation board with an intelligent power module (STGIPS20C60). The power module consists of a 3-phase inverter bridge with 600V insulated gate bipolar transistors. Delta standard (ASDA-B2 series) servo drive/motor coupled to a 2kW permanent magnet synchronous generator is served as the turbine-generator. This lab-scale setup is used to obtain experimental results. The validation of the FCS-MPC is done by comparing these experimental results to the results obtained by MATLAB/Simulink software results in similar scenarios. The results show that under the proposed control scheme, the regulated variables follow their references accurately. This research confirms that FCS-MPC fits well into the power converter control of the OWC-WEC system with a Li-Ion battery energy storage.

Keywords: dc-dc bidirectional converter, finite control set-model predictive control, Li-ion battery energy storage, oscillating water column, wave energy converter

Procedia PDF Downloads 85
2470 CFD Effect of the Tidal Grating in Opposite Directions

Authors: N. M. Thao, I. Dolguntseva, M. Leijon

Abstract:

Flow blockages referring to the increase in flow are considered as a vital equipment for marine current energy conversion. However, the shape of these devices will result in extracted energy under the operation. The present work investigates the effect of two configurations of a grating, convergent and divergent that located upstream, to the water flow velocity. Computational Fluid Dynamic simulation studies the flow characteristics by using the ANSYS Fluent solver for these specified arrangements of the grating. The results indicate that distinct features of flow velocity between “convergent” and “divergent” grating placements are up to in confined conditions. Furthermore, the velocity in case of granting is higher than that of the divergent grating.

Keywords: marine current energy, converter, turbine granting, RANS simulation, water flow velocity

Procedia PDF Downloads 379
2469 Control of Proton Exchange Membrane Fuel Cell Power System Using PI and Sliding Mode Controller

Authors: Mohamed Derbeli, Maissa Farhat, Oscar Barambones, Lassaad Sbita

Abstract:

Conventional controller (PI) applied to a DC/DC boost converter for the improvement and optimization of the Proton Exchange Membrane Fuel Cell (PEMFC) system efficiency, cannot attain a good performance effect. Thus, due to its advantages comparatively with the PI controller, this paper interest is focused on the use of the sliding mode controller (SMC), Stability of the closed loop system is analytically proved using Lyapunov approach for the proposed controller. The model and the controllers are implemented in the MATLAB and SIMULINK environment. A comparison of results indicates that the suggested approach has considerable advantages compared to the traditional controller.

Keywords: DC/DC boost converter, PEMFC, PI controller, sliding mode controller

Procedia PDF Downloads 204
2468 Analyze of Nanoscale Materials and Devices for Future Communication and Telecom Networks in the Gas Refinery

Authors: Mohamad Bagher Heidari, Hefzollah Mohammadian

Abstract:

New discoveries in materials on the nanometer-length scale are expected to play an important role in addressing ongoing and future challenges in the field of communication. Devices and systems for ultra-high speed short and long range communication links, portable and power efficient computing devices, high-density memory and logics, ultra-fast interconnects, and autonomous and robust energy scavenging devices for accessing ambient intelligence and needed information will critically depend on the success of next-generation emerging nonmaterials and devices. This article presents some exciting recent developments in nonmaterials that have the potential to play a critical role in the development and transformation of future intelligent communication and telecom networks in the gas refinery. The industry is benefiting from nanotechnology advances with numerous applications including those in smarter sensors, logic elements, computer chips, memory storage devices, optoelectronics.

Keywords: nonmaterial, intelligent communication, nanoscale, nanophotonic, telecom

Procedia PDF Downloads 291
2467 Design and Optimization of an Electromagnetic Vibration Energy Converter

Authors: Slim Naifar, Sonia Bradai, Christian Viehweger, Olfa Kanoun

Abstract:

Vibration provides an interesting source of energy since it is available in many indoor and outdoor applications. Nevertheless, in order to have an efficient design of the harvesting system, vibration converters have to satisfy some criterion in terms of robustness, compactness and energy outcome. In this work, an electromagnetic converter based on mechanical spring principle is proposed. The designed harvester is formed by a coil oscillating around ten ring magnets using a mechanical spring. The proposed design overcomes one of the main limitation of the moving coil by avoiding the contact between the coil wires with the mechanical spring which leads to a better robustness for the converter. In addition, the whole system can be implemented in a cavity of a screw. Different parameters in the harvester were investigated by finite element method including the magnet size, the coil winding number and diameter and the excitation frequency and amplitude. A prototype was realized and tested. Experiments were performed for 0.5 g to 1 g acceleration. The used experimental setup consists of an electrodynamic shaker as an external artificial vibration source controlled by a laser sensor to measure the applied displacement and frequency excitation. Together with the laser sensor, a controller unit, and an amplifier, the shaker is operated in a closed loop which allows controlling the vibration amplitude. The resonance frequency of the proposed designs is in the range of 24 Hz. Results indicate that the harvester can generate 612 mV and 1150 mV maximum open circuit peak to peak voltage at resonance for 0.5 g and 1 g acceleration respectively which correspond to 4.75 mW and 1.34 mW output power. Tuning the frequency to other values is also possible due to the possibility to add mass to the moving part of the or by changing the mechanical spring stiffness.

Keywords: energy harvesting, electromagnetic principle, vibration converter, moving coil

Procedia PDF Downloads 269
2466 Securing Internet of Things Devices in Healthcare industry: An Investigation into Efficient and Effective Authorization Procedures

Authors: Maruf Farhan, Abdul Salih, Sikandar Ali Tahir

Abstract:

Protecting patient information's confidentiality is paramount considering the widespread use of Internet of Things (IoT) gadgets in medical settings. This study's subjects are decentralized identifiers (DIDs) and verifiable credentials (VCs) in conjunction with an OAuth-based authorization framework, as they are the key to protecting IoT healthcare devices. DIDs enable autonomous authentication and trust formation between IoT devices and other entities. To authorize users and enforce access controls based on verified claims, VCs offer a secure and adaptable solution. Through the proposed method, medical facilities can improve the privacy and security of their IoT devices while streamlining access control administration. A Smart pill dispenser in a hospital setting is used to illustrate the advantages of this method. The findings demonstrate the value of DIDs, VCs, and OAuth-based delegation in protecting the IoT devices. Improved processes for authorizing and controlling access to IoT devices are possible thanks to the research findings, which also help ensure patient confidentiality in the healthcare sector.

Keywords: Iot, DID, authorization, verifiable credentials

Procedia PDF Downloads 50
2465 Modeling and Analysis of DFIG Based Wind Power System Using Instantaneous Power Components

Authors: Jaimala Ghambir, Tilak Thakur, Puneet Chawla

Abstract:

As per the statistical data, the Doubly-fed Induction Generator (DFIG) based wind turbine with variable speed and variable pitch control is the most common wind turbine in the growing wind market. This machine is usually used on the grid connected wind energy conversion system to satisfy grid code requirements such as grid stability, fault ride through (FRT), power quality improvement, grid synchronization and power control etc. Though the requirements are not fulfilled directly by the machine, the control strategy is used in both the stator as well as rotor side along with power electronic converters to fulfil the requirements stated above. To satisfy the grid code requirements of wind turbine, usually grid side converter is playing a major role. So in order to improve the operation capacity of wind turbine under critical situation, the intensive study of both machine side converter control and grid side converter control is necessary In this paper DFIG is modeled using power components as variables and the performance of the DFIG system is analysed under grid voltage fluctuations. The voltage fluctuations are made by lowering and raising the voltage values in the utility grid intentionally for the purpose of simulation keeping in view of different grid disturbances.

Keywords: DFIG, dynamic modeling, DPC, sag, swell, voltage fluctuations, FRT

Procedia PDF Downloads 428
2464 Reactive Power Cost Evaluation with FACTS Devices in Restructured Power System

Authors: A. S. Walkey, N. P. Patidar

Abstract:

It is not always economical to provide reactive power using synchronous alternators. The cost of reactive power can be minimized by optimal placing of FACTS devices in power systems. In this paper a Particle Swarm Optimization- Sequential Quadratic Programming (PSO-SQP) algorithm is applied to minimize the cost of reactive power generation along with real power generation to alleviate the bus voltage violations. The effectiveness of proposed approach tested on IEEE-14 bus systems. In this paper in addition to synchronous generators, an opportunity of FACTS devices are also proposed to procure the reactive power demands in the power system.

Keywords: reactive power, reactive power cost, voltage security margins, capability curve, FACTS devices

Procedia PDF Downloads 474
2463 Influence Analysis of Pelamis Wave Energy Converter Structure Parameters

Authors: Liu Shengnan, Sun Liping, Zhu Jianxun

Abstract:

Based on three dimensional potential flow theory and hinged rigid body motion equations, structure RAOs of Pelamis wave energy converter is analyzed. Analysis of numerical simulation is carried out on Pelamis in the irregular wave conditions, and the motion response of structures and total generated power is obtained. The paper analyzes influencing factors on the average power including diameter of floating body, section form of floating body, draft, hinged stiffness and damping. The optimum parameters are achieved in Zhejiang Province. Compared with the results of the pelamis experiment made by Glasgow University, the method applied in this paper is feasible.

Keywords: Pelamis, hinge, floating multibody, wave energy

Procedia PDF Downloads 445
2462 Optimum Design of Photovoltaic Water Pumping System Application

Authors: Sarah Abdourraziq, Rachid El Bachtiri

Abstract:

The solar power source for pumping water is one of the most promising areas in photovoltaic applications. The implementation of these systems allows to protect the environment and reduce the CO2 gas emission compared to systems trained by diesel generators. This paper presents a comparative study between the photovoltaic pumping system driven by DC motor, and AC motor to define the optimum design of this application. The studied system consists of PV array, DC-DC Boost Converter, inverter, motor-pump set and storage tank. The comparison was carried out to define the characteristics and the performance of each system. Each subsystem is modeled in order to simulate the whole system in MATLAB/ Simulink. The results show the efficiency of the proposed technique.

Keywords: photovoltaic water pumping system, DC motor-pump, AC motor-pump, DC-DC boost converter

Procedia PDF Downloads 300
2461 Time-Domain Simulations of the Coupled Dynamics of Surface Riding Wave Energy Converter

Authors: Chungkuk Jin, Moo-Hyun Kim, HeonYong Kang

Abstract:

A surface riding (SR) wave energy converter (WEC) is designed and its feasibility and performance are numerically simulated by the author-developed floater-mooring-magnet-electromagnetics fully-coupled dynamic analysis computer program. The biggest advantage of the SR-WEC is that the performance is equally effective even in low sea states and its structural robustness is greatly improved by simply riding along the wave surface compared to other existing WECs. By the numerical simulations and actuator testing, it is clearly demonstrated that the concept works and through the optimization process, its efficiency can be improved.

Keywords: computer simulation, electromagnetics fully-coupled dynamics, floater-mooring-magnet, optimization, performance evaluation, surface riding, WEC

Procedia PDF Downloads 113
2460 Control Power in Doubly Fed Induction Generator Wind Turbine with SVM Control Inverter

Authors: Zerzouri Nora, Benalia Nadia, Bensiali Nadia

Abstract:

This paper presents a grid-connected wind power generation scheme using Doubly Fed Induction Generator (DFIG). This can supply power at constant voltage and constant frequency with the rotor speed varying. This makes it suitable for variable speed wind energy application. The DFIG system consists of wind turbine, asynchronous wound rotor induction generator, and inverter with Space Vector Modulation (SVM) controller. In which the stator is connected directly to the grid and the rotor winding is in interface with rotor converter and grid converter. The use of back-to-back SVM converter in the rotor circuit results in low distortion current, reactive power control and operate at variable speed. Mathematical modeling of the DFIG is done in order to analyze the performance of the systems and they are simulated using MATLAB. The simulation results for the system are obtained and hence it shows that the system can operate at variable speed with low harmonic current distortion. The objective is to track and extract maximum power from the wind energy system and transfer it to the grid for useful work.

Keywords: Doubly Fed Induction Generator, Wind Energy Conversion Systems, Space Vector Modulation, distortion harmonics

Procedia PDF Downloads 450
2459 Development of Power System Stability by Reactive Power Planning in Wind Power Plant With Doubley Fed Induction Generators Generator

Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Oriol Gomis Bellmunt, Vinicius Albernaz Lacerda Freitas

Abstract:

The use of distributed and renewable sources in power systems has grown significantly, recently. One the most popular sources are wind farms which have grown massively. However, ¬wind farms are connected to the grid, this can cause problems such as reduced voltage stability, frequency fluctuations and reduced dynamic stability. Variable speed generators (asynchronous) are used due to the uncontrollability of wind speed specially Doubley Fed Induction Generators (DFIG). The most important disadvantage of DFIGs is its sensitivity to voltage drop. In the case of faults, a large volume of reactive power is induced therefore, use of FACTS devices such as SVC and STATCOM are suitable for improving system output performance. They increase the capacity of lines and also passes network fault conditions. In this paper, in addition to modeling the reactive power control system in a DFIG with converter, FACTS devices have been used in a DFIG wind turbine to improve the stability of the power system containing two synchronous sources. In the following paper, recent optimal control systems have been designed to minimize fluctuations caused by system disturbances, for FACTS devices employed. For this purpose, a suitable method for the selection of nine parameters for MPSH-phase-post-phase compensators of reactive power compensators is proposed. The design algorithm is formulated ¬¬as an optimization problem searching for optimal parameters in the controller. Simulation results show that the proposed controller Improves the stability of the network and the fluctuations are at desired speed.

Keywords: renewable energy sources, optimization wind power plant, stability, reactive power compensator, double-feed induction generator, optimal control, genetic algorithm

Procedia PDF Downloads 57
2458 An Analysis of Interactional Metadiscourse Devices in Communication Arts Research Articles

Authors: Woravit Kitjaroenpaiboon, Kanyarat Getkham

Abstract:

This corpus analysis is a quantitative study which intended to investigate the uses of four main interactional metadiscourse devices including fourteen sub-devices in the introduction and the discussion sections of the twenty communication arts research articles taken from Online Journal of Communication and Media technologies by applying ‘AntConc’ software and PASW 18.0. The findings reveal that the three most frequently used devices in the introduction parts are attitudinal marker (adjective), booster (verb), and hedge (modal verb) while the three most frequently found devices in the discussion sections are attitudinal marker (adjective), hedge (modal verb) and booster (verb). There are nine sub-interactional metadiscourse devices among each of which significant difference exist in both introduction and discussion sections. They are attitudinal marker (adverb), attitudinal marker (adjective), booster (verb), booster (adverb), booster (adjective), hedge (modal verb), hedge (lexical verb), hedge (adverb), and hedge (adjective), while another five sub-interactional metadiscourse devices; self-mention, attitudinal marker (verb), attitudinal marker (noun), hedge (noun), and Hedge (phraseology) are found to have has no significant difference between the uses of each device in the introduction and discussion sections. The results also revealed that low and positive relationships exist among thirteen devices. One device which has no relationship with others is attitudinal marker (verb).

Keywords: corpus analysis, interactional metadiscourse devices, communication arts research articles, media technologies

Procedia PDF Downloads 347
2457 Backstepping Controller for a Variable Wind Speed Energy Conversion System Based on a DFIG

Authors: Sara Mensou, Ahmed Essadki, Issam Minka, Tamou Nasser, Badr Bououlid Idrissi

Abstract:

In this paper we present a contribution for the modeling and control of wind energy conversion system based on a Doubly Fed Induction Generator (DFIG). Since the wind speed is random the system has to produce an optimal electrical power to the Network and ensures important strength and stability. In this work, the Backstepping controller is used to control the generator via two converter witch placed a DC bus capacitor and connected to the grid by a Filter R-L, in order to optimize capture wind energy. All is simulated and presented under MATLAB/Simulink Software to show performance and robustness of the proposed controller.

Keywords: wind turbine, doubly fed induction generator, MPPT control, backstepping controller, power converter

Procedia PDF Downloads 154
2456 Intelligent Diagnostic System of the Onboard Measuring Devices

Authors: Kyaw Zin Htut

Abstract:

In this article, the synthesis of the efficiency of intelligent diagnostic system in the aircraft measuring devices is described. The technology developments of the diagnostic system are considered based on the model errors of the gyro instruments, which are used to measure the parameters of the aircraft. The synthesis of the diagnostic intelligent system is considered on the example of the problem of assessment and forecasting errors of the gyroscope devices on the onboard aircraft. The result of the system is to detect of faults of the aircraft measuring devices as well as the analysis of the measuring equipment to improve the efficiency of its work.

Keywords: diagnostic, dynamic system, errors of gyro instruments, model errors, assessment, prognosis

Procedia PDF Downloads 370
2455 A Comparative Study on the Performance of Viscous and Friction Dampers under Seismic Excitation

Authors: Apetsi K. Ampiah, Zhao Xin

Abstract:

Earthquakes over the years have been known to cause devastating damage on buildings and induced huge loss on human life and properties. It is for this reason that engineers have devised means of protecting buildings and thus protecting human life. Since the invention of devices such as the viscous and friction dampers, scientists/researchers have been able to incorporate these devices into buildings and other engineering structures. The viscous damper is a hydraulic device which dissipates the seismic forces by pushing fluid through an orifice, producing a damping pressure which creates a force. In the friction damper, the force is mainly resisted by converting the kinetic energy into heat by friction. Devices such as viscous and friction dampers are able to absorb almost all the earthquake energy, allowing the structure to remain undamaged (or with some amount of damage) and ready for immediate reuse (with some repair works). Comparing these two devices presents the engineer with adequate information on the merits and demerits of these devices and in which circumstances their use would be highly favorable. This paper examines the performance of both viscous and friction dampers under different ground motions. A two-storey frame installed with both devices under investigation are modeled in commercial computer software and analyzed under different ground motions. The results of the performance of the structure are then tabulated and compared. Also included in this study is the ease of installation and maintenance of these devices.

Keywords: friction damper, seismic, slip load, viscous damper

Procedia PDF Downloads 140
2454 Performance Comparison of Tablet Devices and Medical Diagnostic Display Devices Using Digital Object Patterns in PACS Environment

Authors: Yan-Lin Liu, Cheng-Ting Shih, Jay Wu

Abstract:

Tablet devices have been introduced into the medical environment in recent years. The performance of display can be varied based on the use of different hardware specifications and types of display technologies. Therefore, the differences between tablet devices and medical diagnostic LCDs have to be verified to ensure that image quality is not jeopardized for clinical diagnosis in a picture archiving and communication system (PACS). In this study, a set of randomized object test patterns (ROTPs) were developed, which included randomly located spheres in abdominal CT images. Five radiologists were asked to independently review the CT images on different generations of iPads and a diagnostic monochrome medical LCD monitor. Receiver operating characteristic (ROC) analysis was performed by using a five-point rating scale, and the average area under curve (AUC) and average reading time (ART) were calculated. The AUC values for the second generation iPad, iPad mini, iPad Air, and monochrome medical monitor were 0.712, 0.717, 0.725, and 0.740, respectively. The differences between iPads were not significant. The ARTs were 177 min and 127 min for iPad mini and medical LCD monitor, respectively. A significant difference appeared (p = 0.04). The results show that the iPads were slightly inferior to the monochrome medical LCD monitor. However, tablet devices possess advantages in portability and versatility, which can improve the convenience of rapid diagnosis and teleradiology. With advances in display technology, the applicability of tablet devices and mobile devices may be more diversified in PACS.

Keywords: tablet devices, PACS, receiver operating characteristic, LCD monitor

Procedia PDF Downloads 454
2453 Utilizing Hybrid File Mapping for High-Performance I/O

Authors: Jaechun No

Abstract:

As the technology of NAND flash memory rapidly grows, SSD is becoming an excellent alternative for storage solutions, because of its high random I/O throughput and low power consumption. These SSD potentials have drawn great attention from IT enterprises that seek for better I/O performance. However, high SSD cost per capacity makes it less desirable to construct a large-scale storage subsystem solely composed of SSD devices. An alternative is to build a hybrid storage subsystem where both HDD and SSD devices are incorporated in an economic manner, while employing the strengths of both devices. This paper presents a hybrid file system, called hybridFS, that attempts to utilize the advantages of HDD and SSD devices, to provide a single, virtual address space by integrating both devices. HybridFS not only proposes an efficient implementation for the file management in the hybrid storage subsystem but also suggests an experimental framework for making use of the excellent features of existing file systems. Several performance evaluations were conducted to verify the effectiveness and suitability of hybridFS.

Keywords: hybrid file mapping, data layout, hybrid device integration, extent allocation

Procedia PDF Downloads 474
2452 Fuzzy Logic Based Sliding Mode Controller for a New Soft Switching Boost Converter

Authors: Azam Salimi, Majid Delshad

Abstract:

This paper presents a modified design of a sliding mode controller based on fuzzy logic for a New ZVThigh step up DC-DC Converter . Here a proportional - integral (PI)-type current mode control is employed and a sliding mode controller is designed utilizing fuzzy algorithm. Sliding mode controller guarantees robustness against all variations and fuzzy logic helps to reduce chattering phenomenon due to sliding controller, in that way efficiency increases and error, voltage and current ripples decreases. The proposed system is simulated using MATLAB / SIMULINK. This model is tested under variations of input and reference voltages and it was found that in comparison with conventional sliding mode controllers they perform better.

Keywords: switching mode power supplies, DC-DC converters, sliding mode control, robustness, fuzzy control, current mode control, non-linear behavior

Procedia PDF Downloads 510