Search results for: convective parameterization schemes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 811

Search results for: convective parameterization schemes

271 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme

Authors: Salah Alrabeei, Mohammad Yousuf

Abstract:

The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.

Keywords: Integral differential equations, , L-stable methods, pricing European options, Jump–diffusion model

Procedia PDF Downloads 121
270 Long-Term Climate Patterns in Eastern and Southeastern Ethiopia

Authors: Messay Mulugeta, Degefa Tolossa

Abstract:

The purpose of this paper is to scrutinize trends of climate risks in eastern and southeastern parts of Ethiopia. This part of the country appears severely affected by recurrent droughts, erratic rainfall, and increasing temperature condition. Particularly, erratic rains and moisture stresses have been forcibly threatening and shoving the people over many decades coupled with unproductive policy frameworks and weak institutional setups. These menaces have been more severe in dry lowlands where rainfall is more erratic and scarce. Long-term climate data of nine weather stations in eastern and southeastern parts of Ethiopia were obtained from National Meteorological Agency of Ethiopia (NMA). As issues related to climate risks are very intricate, different techniques and indices were applied to deal with the objectives of the study. It is concluded that erratic rainfall, moisture scarcity, and increasing temperature conditions have been the main challenges in eastern and southeastern Ethiopia. In fact, these risks can be eased by putting in place efficient and integrated rural development strategies, environmental rehabilitation plans of action in overworked areas, proper irrigation and water harvesting practices and well thought-out and genuine resettlement schemes.

Keywords: rainfall variability, erratic rains, precipitation concentration index (PCI), climatic pattern, Ethiopia

Procedia PDF Downloads 208
269 Modeling and Simulation of Multiphase Evaporation in High Torque Low Speed Diesel Engine

Authors: Ali Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi

Abstract:

Diesel engines are most efficient and reliable in terms of efficiency, reliability, and adaptability. Most of the research and development up till now have been directed towards High Speed Diesel Engine, for Commercial use. In these engines, objective is to optimize maximum acceleration by reducing exhaust emission to meet international standards. In high torque low speed engines, the requirement is altogether different. These types of engines are mostly used in Maritime Industry, Agriculture Industry, Static Engines Compressors Engines, etc. On the contrary, high torque low speed engines are neglected quite often and are eminent for low efficiency and high soot emissions. One of the most effective ways to overcome these issues is by efficient combustion in an engine cylinder. Fuel spray dynamics play a vital role in defining mixture formation, fuel consumption, combustion efficiency and soot emissions. Therefore, a comprehensive understanding of the fuel spray characteristics and atomization process in high torque low speed diesel engine is of great importance. Evaporation in the combustion chamber has a rigorous effect on the efficiency of the engine. In this paper, multiphase evaporation of fuel is modeled for high torque low speed engine using the CFD (computational fluid dynamics) codes. Two distinct phases of evaporation are modeled using modeling soft wares. The basic model equations are derived from the energy conservation equation and Naiver-Stokes equation. O’Rourke model is used to model the evaporation phases. The results obtained showed a generous effect on the efficiency of the engine. Evaporation rate of fuel droplet is increased with the increase in vapor pressure. An appreciable reduction in size of droplet is achieved by adding the convective heat effects in the combustion chamber. By and large, an overall increase in efficiency is observed by modeling distinct evaporation phases. This increase in efficiency is due to the fact that droplet size is reduced and vapor pressure is increased in the engine cylinder.

Keywords: diesel fuel, CFD, evaporation, multiphase

Procedia PDF Downloads 314
268 A Review on Aviation Emissions and Their Role in Climate Change Scenarios

Authors: J. Niemisto, A. Nissinen, S. Soimakallio

Abstract:

Aviation causes carbon dioxide (CO2) emissions and other climate forcers which increase the contribution of aviation on climate change. Aviation industry and number of air travellers are constantly increasing. Aviation industry has an ambitious goal to strongly cut net CO2 emissions. Modern fleet, alternative jet fuels technologies and route optimisation are important technological tools in the emission reduction. Faster approaches are needed as well. Emission trade systems, voluntary carbon offset compensation schemes and taxation are already in operation. Global scenarios of aviation industry and its greenhouse gas emissions and other climate forcers are discussed in this review study based on literature and other published data. The focus is on the aviation in Nordic countries, but also European and global situation are considered. Different emission reduction technologies and compensation modes are examined. In addition, the role of aviation in a single passenger’s (a Finnish consumer) annual carbon footprint is analysed and a comparison of available emission calculators and carbon offset systems is performed. Long-haul fights have a significant role in a single consumer´s and company´s carbon footprint, but remarkable change in global emission level would need a huge change in attitudes towards flying.

Keywords: aviation, climate change, emissions, environment

Procedia PDF Downloads 184
267 Efficient Schemes of Classifiers for Remote Sensing Satellite Imageries of Land Use Pattern Classifications

Authors: S. S. Patil, Sachidanand Kini

Abstract:

Classification of land use patterns is compelling in complexity and variability of remote sensing imageries data. An imperative research in remote sensing application exploited to mine some of the significant spatially variable factors as land cover and land use from satellite images for remote arid areas in Karnataka State, India. The diverse classification techniques, unsupervised and supervised consisting of maximum likelihood, Mahalanobis distance, and minimum distance are applied in Bellary District in Karnataka State, India for the classification of the raw satellite images. The accuracy evaluations of results are compared visually with the standard maps with ground-truths. We initiated with the maximum likelihood technique that gave the finest results and both minimum distance and Mahalanobis distance methods over valued agriculture land areas. In meanness of mislaid few irrelevant features due to the low resolution of the satellite images, high-quality accord between parameters extracted automatically from the developed maps and field observations was found.

Keywords: Mahalanobis distance, minimum distance, supervised, unsupervised, user classification accuracy, producer's classification accuracy, maximum likelihood, kappa coefficient

Procedia PDF Downloads 154
266 Developing a Secure Iris Recognition System by Using Advance Convolutional Neural Network

Authors: Kamyar Fakhr, Roozbeh Salmani

Abstract:

Alphonse Bertillon developed the first biometric security system in the 1800s. Today, many governments and giant companies are considering or have procured biometrically enabled security schemes. Iris is a kaleidoscope of patterns and colors. Each individual holds a set of irises more unique than their thumbprint. Every single day, giant companies like Google and Apple are experimenting with reliable biometric systems. Now, after almost 200 years of improvements, face ID does not work with masks, it gives access to fake 3D images, and there is no global usage of biometric recognition systems as national identity (ID) card. The goal of this paper is to demonstrate the advantages of iris recognition overall biometric recognition systems. It make two extensions: first, we illustrate how a very large amount of internet fraud and cyber abuse is happening due to bugs in face recognition systems and in a very large dataset of 3.4M people; second, we discuss how establishing a secure global network of iris recognition devices connected to authoritative convolutional neural networks could be the safest solution to this dilemma. Another aim of this study is to provide a system that will prevent system infiltration caused by cyber-attacks and will block all wireframes to the data until the main user ceases the procedure.

Keywords: biometric system, convolutional neural network, cyber-attack, secure

Procedia PDF Downloads 190
265 Accountants and Anti-Money Laundering Compliance in the Real Estate Sector

Authors: Mark E. Lokanan, Liz Lee

Abstract:

This paper aims to examine the role of accountants as gatekeepers in anti-money laundering compliance in real estate transactions. The paper seeks to answer questions on ways in which accountants are involved in real estate transactions and mandatory compliance with regulatory authorities in Canada. The data for the study came from semi-structured interviews with accountants, lawyers, and government officials. Preliminary results reveal that there is a conflict between accountants’ obligation to disclose and loyalty to their clients. Accountants often do not see why they are obligated to disclose their clients' information to government agencies. The importance of the client in terms of the amount of revenue contributed to the accounting firm also plays a significant role in accountants' reporting decision-making process. Although the involvement of accountants in real estate purchase and sale transactions is limited to lawyers or notaries, they are often involved in designing financing schemes, which may involve money laundering activities. The paper is of wider public policy interests to both accountants and regulators. It is hard not to see Chartered Professional Accountant (CPA) Canada and government regulators using the findings to better understand the decision-making processes of accountants in their reporting practices to regulatory authorities.

Keywords: money laundering, real estate, disclosure, legislation, compliance

Procedia PDF Downloads 199
264 Chipless RFID Capacity Enhancement Using the E-pulse Technique

Authors: Haythem H. Abdullah, Hesham Elkady

Abstract:

With the fast increase in radio frequency identification (RFID) applications such as medical recording, library management, etc., the limitation of active tags stems from its need to external batteries as well as passive or active chips. The chipless RFID tag reduces the cost to a large extent but at the expense of utilizing the spectrum. The reduction of the cost of chipless RFID is due to the absence of the chip itself. The identification is done by utilizing the spectrum in such a way that the frequency response of the tags consists of some resonance frequencies that represent the bits. The system capacity is decided by the number of resonators within the pre-specified band. It is important to find a solution to enhance the spectrum utilization when using chipless RFID. Target identification is a process that results in a decision that a specific target is present or not. Several target identification schemes are present, but one of the most successful techniques in radar target identification in the oscillatory region is the extinction pulse technique (E-Pulse). The E-Pulse technique is used to identify targets via its characteristics (natural) modes. By introducing an innovative solution for chipless RFID reader and tag designs, the spectrum utilization goes to the optimum case. In this paper, a novel capacity enhancement scheme based on the E-pulse technique is introduced to improve the performance of the chipless RFID system.

Keywords: chipless RFID, E-pulse, natural modes, resonators

Procedia PDF Downloads 46
263 Aerodynamic Design of a Light Long Range Blended Wing Body Unmanned Vehicle

Authors: Halison da Silva Pereira, Ciro Sobrinho Campolina Martins, Vitor Mainenti Leal Lopes

Abstract:

Long range performance is a goal for aircraft configuration optimization. Blended Wing Body (BWB) is presented in many works of literature as the most aerodynamically efficient design for a fixed-wing aircraft. Because of its high weight to thrust ratio, BWB is the ideal configuration for many Unmanned Aerial Vehicle (UAV) missions on geomatics applications. In this work, a BWB aerodynamic design for typical light geomatics payload is presented. Aerodynamic non-dimensional coefficients are predicted using low Reynolds number computational techniques (3D Panel Method) and wing parameters like aspect ratio, taper ratio, wing twist and sweep are optimized for high cruise performance and flight quality. The methodology of this work is a summary of tailless aircraft wing design and its application, with appropriate computational schemes, to light UAV subjected to low Reynolds number flows leads to conclusions like the higher performance and flight quality of thicker airfoils in the airframe body and the benefits of using aerodynamic twist rather than just geometric.

Keywords: blended wing body, low Reynolds number, panel method, UAV

Procedia PDF Downloads 555
262 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems

Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar

Abstract:

With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.

Keywords: cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple output systems, orthogonal frequency division multiplexing

Procedia PDF Downloads 282
261 Intensification of Heat Transfer Using AL₂O₃-Cu/Water Hybrid Nanofluid in a Circular Duct Using Inserts

Authors: Muluken Biadgelegn Wollele, Mebratu Assaye Mengistu

Abstract:

Nanotechnology has created new opportunities for improving industrial efficiency and performance. One of the proposed approaches to improving the effectiveness of temperature exchangers is the use of nanofluids to improve heat transfer performance. The thermal conductivity of nanoparticles, as well as their size, diameter, and volume concentration, all played a role in influencing the rate of heat transfer. Nanofluids are commonly used in automobiles, energy storage, electronic component cooling, solar absorbers, and nuclear reactors. Convective heat transfer must be improved when designing thermal systems in order to reduce heat exchanger size, weight, and cost. Using roughened surfaces to promote heat transfer has been tried several times. Thus, both active and passive heat transfer methods show potential in terms of heat transfer improvement. There will be an added advantage of enhanced heat transfer due to the two methods adopted; however, pressure drop must be considered during flow. Thus, the current research aims to increase heat transfer by adding a twisted tap insert in a plain tube using a working fluid hybrid nanofluid (Al₂O₃-Cu) with a base fluid of water. A circular duct with inserts, a tube length of 3 meters, a hydraulic diameter of 0.01 meters, and tube walls with a constant heat flux of 20 kW/m² and a twist ratio of 125 was used to investigate Al₂O₃-Cu/H₂O hybrid nanofluid with inserts. The temperature distribution is better than with conventional tube designs due to stronger tangential contact and swirls in the twisted tape. The Nusselt number values of plain twisted tape tubes are 1.5–2.0 percent higher than those of plain tubes. When twisted tape is used instead of plain tube, performance evaluation criteria improve by 1.01 times. A heat exchanger that is useful for a number of heat exchanger applications can be built utilizing a mixed flow of analysis that incorporates passive and active methodologies.

Keywords: nanofluids, active method, passive method, Nusselt number, performance evaluation criteria

Procedia PDF Downloads 49
260 Performance Analysis in 5th Generation Massive Multiple-Input-Multiple-Output Systems

Authors: Jihad S. Daba, Jean-Pierre Dubois, Georges El Soury

Abstract:

Fifth generation wireless networks guarantee significant capacity enhancement to suit more clients and services at higher information rates with better reliability while consuming less power. The deployment of massive multiple-input-multiple-output technology guarantees broadband wireless networks with the use of base station antenna arrays to serve a large number of users on the same frequency and time-slot channels. In this work, we evaluate the performance of massive multiple-input-multiple-output systems (MIMO) systems in 5th generation cellular networks in terms of capacity and bit error rate. Several cases were considered and analyzed to compare the performance of massive MIMO systems while varying the number of antennas at both transmitting and receiving ends. We found that, unlike classical MIMO systems, reducing the number of transmit antennas while increasing the number of antennas at the receiver end provides a better solution to performance enhancement. In addition, enhanced orthogonal frequency division multiplexing and beam division multiple access schemes further improve the performance of massive MIMO systems and make them more reliable.

Keywords: beam division multiple access, D2D communication, enhanced OFDM, fifth generation broadband, massive MIMO

Procedia PDF Downloads 236
259 Study of Launch Recovery Control Dynamics of Retro Propulsive Reusable Rockets

Authors: Pratyush Agnihotri

Abstract:

The space missions are very costly because the transportation to the space is highly expensive and therefore there is the need to achieve complete re-usability in our launch vehicles to make the missions highly economic by cost cutting of the material recovered. Launcher reusability is the most efficient approach to decreasing admittance to space access economy, however stays an incredible specialized hurdle for the aerospace industry. Major concern of the difficulties lies in guidance and control procedure and calculations, specifically for those of the controlled landing stage, which should empower an exact landing with low fuel edges. Although cutting edge ways for navigation and control are present viz hybrid navigation and robust control. But for powered descent and landing of first stage of launch vehicle the guidance control is need to enable on board optimization. At first the CAD model of the launch vehicle I.e. space x falcon 9 rocket is presented for better understanding of the architecture that needs to be identified for the guidance and control solution for the recovery of the launcher. The focus is on providing the landing phase guidance scheme for recovery and re usability of first stage using retro propulsion. After reviewing various GNC solutions, to achieve accuracy in pre requisite landing online convex and successive optimization are explored as the guidance schemes.

Keywords: guidance, navigation, control, retro propulsion, reusable rockets

Procedia PDF Downloads 64
258 Modeling User Departure Time Choice for Work Trips in High Traffic Suburban Roads

Authors: Saeed Sayyad Hagh Shomar

Abstract:

Modeling users’ decisions on departure time choice is the main motivation for this research. In particular, it examines the impact of social-demographic features, household, job characteristics and trip qualities on individuals’ departure time choice. Departure time alternatives are presented as adjacent discrete time periods. The choice between these alternatives is done using a discrete choice model. Since a great deal of early morning trips and traffic congestion at that time of the day comprise work trips, the focus of this study is on the work trip over the entire day. Therefore, this study by using the users’ stated preference in questionnaire models users’ departure time choice affected by congestion pricing schemes in high traffic suburban entrance roads of Tehran. The results demonstrate efficient social-demographic impact on work trips’ departure time. These findings have substantial outcomes for the analysis of transportation planning. Particularly, the analysis shows that ignoring the effects of these variables could result in erroneous information and consequently decisions in the field of transportation planning and air quality would fail and cause financial resources loss.

Keywords: congestion pricing, departure time, modeling, travel timing, time of the day, transportation planning

Procedia PDF Downloads 273
257 A Study on Social and Economic Conditions of Street Vendors Using Field Survey Data

Authors: Ruchika Yadav

Abstract:

Street vendors are the integral component of urban economies of the world. They are the distributors of affordable goods and services and provide convenient and accessible retail options to the customers and form a vital part of the social and economic life of a city. A street vendor as an occupation existed for hundreds of years and considered to be as a cornerstone of many cities. In this paper, our objective is to analyze the socio-economic profile of street vendors, identification of their problems and to suggest remedial measures for the betterment based on the observation and suggestions of the street vendors. To conduct this study, primary data has been collected with the help of field survey and direct questionnaire to the respondents in Aligarh City which contains all the information relevant to social and economic conditions. The overall analysis of this study reveals street vendors are the backward sections of the society possess medium to the low-level standard of living due to illiteracy; their working environment and social security issues are not addressed properly. They are unaware of many of the governmental schemes launched for poverty alleviation and their poor accessibility in basic amenities leads to the backward socio-economic status in the society. The results found in this study can be very useful and helping tool for the policymakers to know the socio-economic conditions of the street vendors in detail.

Keywords: abject poverty, socio-economic conditions, street vendors, vulnerability

Procedia PDF Downloads 114
256 Experimental Analysis on Heat Transfer Enhancement in Double Pipe Heat Exchanger Using Al2O3/Water Nanofluid and Baffled Twisted Tape Inserts

Authors: Ratheesh Radhakrishnan, P. C. Sreekumar, K. Krishnamoorthy

Abstract:

Heat transfer augmentation techniques ultimately results in the reduction of thermal resistance in a conventional heat exchanger by generating higher convective heat transfer coefficient. It also results in reduction of size, increase in heat duty, decrease in approach temperature difference and reduction in pumping power requirements for heat exchangers. Present study deals with compound augmentation technique, which is not widely used. The study deals with the use of Alumina (Al2O3)/water nanofluid and baffled twisted tape inserts in double pipe heat exchanger as compound augmentation technique. Experiments were conducted to evaluate the heat transfer coefficient and friction factor for the flow through the inner tube of heat exchanger in turbulent flow range (8000Keywords: enhancement, heat transfer coefficient, friction factor, twisted tape, nanofluid

Procedia PDF Downloads 330
255 Analysis of Factors Used by Farmers to Manage Risk: A Case Study on Italian Farms

Authors: A. Pontrandolfi, G. Enjolras, F. Capitanio

Abstract:

The study analyses the strategies Italian farmers use to cope with the risks that face their production. We specifically explore the potential and the limitations of the economic tools for climatic risk management in agriculture of the Common Agricultural Policy 2014-2020, that foresees contributions for economic tools for risk management, in relation to farms’ needs, exposure and vulnerability of agricultural areas to climatic risk. We consider at the farm level approaches to hedge risks in terms of the use of technical tools (agricultural practices, pesticides, fertilizers, irrigation) and economic/financial instruments (insurances, etc.). We develop cross-sectional and longitudinal analyses as well as analyses of correlation that underline the main differences between the way farms adapt their structure and management towards risk. The results show a preference for technical tools, despite the presence of important public aids on economic tools such as insurances. Therefore, there is a strong need for a more effective and integrated risk management policy scheme. Synergies between economic tools and risk reduction actions of a more technical, structural and management nature (production diversification, irrigation infrastructures, technological and management innovations and formation-information-consultancy, etc.) are emphasized.

Keywords: agriculture and climate change, climatic risk management, insurance schemes, farmers' approaches to risk management

Procedia PDF Downloads 310
254 Carbon Nanotube-Based Catalyst Modification to Improve Proton Exchange Membrane Fuel Cell Interlayer Interactions

Authors: Ling Ai, Ziyu Zhao, Zeyu Zhou, Xiaochen Yang, Heng Zhai, Stuart Holmes

Abstract:

Optimizing the catalyst layer structure is crucial for enhancing the performance of proton exchange membrane fuel cells (PEMFCs) with low Platinum (Pt) loading. Current works focused on the utilization, durability, and site activity of Pt particles on support, and performance enhancement has been achieved by loading Pt onto porous support with different morphology, such as graphene, carbon fiber, and carbon black. Some schemes have also incorporated cost considerations to achieve lower Pt loading. However, the design of the catalyst layer (CL) structure in the membrane electrode assembly (MEA) must consider the interactions between the layers. Addressing the crucial aspects of water management, low contact resistance, and the establishment of effective three-phase boundary for MEA, multi-walled carbon nanotubes (MWCNTs) are promising CL support due to their intrinsically high hydrophobicity, high axial electrical conductivity, and potential for ordered alignment. However, the drawbacks of MWCNTs, such as strong agglomeration, wall surface chemical inertness, and unopened ends, are unfavorable for Pt nanoparticle loading, which is detrimental to MEA processing and leads to inhomogeneous CL surfaces. This further deteriorates the utilization of Pt and increases the contact resistance. Robust chemical oxidation or nitrogen doping can introduce polar functional groups onto the surface of MWCNTs, facilitating the creation of open tube ends and inducing defects in tube walls. This improves dispersibility and load capacity but reduces length and conductivity. Consequently, a trade-off exists between maintaining the intrinsic properties and the degree of functionalization of MWCNTs. In this work, MWCNTs were modified based on the operational requirements of the MEA from the viewpoint of interlayer interactions, including the search for the optimal degree of oxidation, N-doping, and micro-arrangement. MWCNT were functionalized by oxidizing, N-doping, as well as micro-alignment to achieve lower contact resistance between CL and proton exchange membrane (PEM), better hydrophobicity, and enhanced performance. Furthermore, this work expects to construct a more continuously distributed three-phase boundary by aligning MWCNT to form a locally ordered structure, which is essential for the efficient utilization of Pt active sites. Different from other chemical oxidation schemes that used HNO3:H2SO4 (1:3) mixed acid to strongly oxidize MWCNT, this scheme adopted pure HNO3 to partially oxidize MWCNT at a lower reflux temperature (80 ℃) and a shorter treatment time (0 to 10 h) to preserve the morphology and intrinsic conductivity of MWCNT. The maximum power density of 979.81 mw cm-2 was achieved by Pt loading on 6h MWCNT oxidation time (Pt-MWCNT6h). This represented a 59.53% improvement over the commercial Pt/C catalyst of 614.17 (mw cm-2). In addition, due to the stronger electrical conductivity, the charge transfer resistance of Pt-MWCNT6h in the electrochemical impedance spectroscopy (EIS) test was 0.09 Ohm cm-2, which was 48.86% lower than that of Pt/C. This study will discuss the developed catalysts and their efficacy in a working fuel cell system. This research will validate the impact of low-functionalization modification of MWCNTs on the performance of PEMFC, which simplifies the preparation challenges of CL and contributing for the widespread commercial application of PEMFCs on a larger scale.

Keywords: carbon nanotubes, electrocatalyst, membrane electrode assembly, proton exchange membrane fuel cell

Procedia PDF Downloads 37
253 Knowledge Diffusion via Automated Organizational Cartography (Autocart)

Authors: Mounir Kehal

Abstract:

The post-globalization epoch has placed businesses everywhere in new and different competitive situations where knowledgeable, effective and efficient behavior has come to provide the competitive and comparative edge. Enterprises have turned to explicit - and even conceptualizing on tacit - knowledge management to elaborate a systematic approach to develop and sustain the intellectual capital needed to succeed. To be able to do that, you have to be able to visualize your organization as consisting of nothing but knowledge and knowledge flows, whilst being presented in a graphical and visual framework, referred to as automated organizational cartography. Hence, creating the ability of further actively classifying existing organizational content evolving from and within data feeds, in an algorithmic manner, potentially giving insightful schemes and dynamics by which organizational know-how is visualized. It is discussed and elaborated on most recent and applicable definitions and classifications of knowledge management, representing a wide range of views from mechanistic (systematic, data driven) to a more socially (psychologically, cognitive/metadata driven) orientated. More elaborate continuum models, for knowledge acquisition and reasoning purposes, are being used for effectively representing the domain of information that an end user may contain in their decision making process for utilization of available organizational intellectual resources (i.e. Autocart). In this paper, we present an empirical research study conducted previously to try and explore knowledge diffusion in a specialist knowledge domain.

Keywords: knowledge management, knowledge maps, knowledge diffusion, organizational cartography

Procedia PDF Downloads 280
252 Analysis of Interpolation Factor in Pulse Shaping Filter on MRC for CDMA 2000 Systems

Authors: Pankaj Verma, Gagandeep Singh Walia, Padma Devi, H. P. Singh

Abstract:

Code Division Multiple Access 2000 operates on various RF channel bandwidths 1.2288 or 3.6864 Mcps. CDMA offers high bandwidth and wireless broadband services but the efficiency gets decreased because of many interfering factors like fading, interference, scattering, diffraction, refraction, reflection etc. To reduce the spectral bandwidth is one of the major concerns in modern day technology and this is achieved by pulse shaping filter. This paper investigates the effect of diversity (MRC), interpolation factor in Root Raised Cosine (RRC) filter for the QPSK and BPSK modulation schemes. It is made possible to send information with minimum inter symbol interference and within limited bandwidth with proper pulse shaping technique. Bit error rate (BER) performance is analyzed by applying diversity technique by varying the interpolation factor for Binary Phase Shift Keying (BPSK) and Quadrature Phase Shift Keying (QPSK). Interpolation factor increases the original sampling rate of a sequence to a higher rate and reduces the interference and diversity reduces the fading.

Keywords: CDMA2000, root raised cosine, roll off factor, ISI, diversity, interference, fading

Procedia PDF Downloads 452
251 Arbitrarily Shaped Blur Kernel Estimation for Single Image Blind Deblurring

Authors: Aftab Khan, Ashfaq Khan

Abstract:

The research paper focuses on an interesting challenge faced in Blind Image Deblurring (BID). It relates to the estimation of arbitrarily shaped or non-parametric Point Spread Functions (PSFs) of motion blur caused by camera handshake. These PSFs exhibit much more complex shapes than their parametric counterparts and deblurring in this case requires intricate ways to estimate the blur and effectively remove it. This research work introduces a novel blind deblurring scheme visualized for deblurring images corrupted by arbitrarily shaped PSFs. It is based on Genetic Algorithm (GA) and utilises the Blind/Reference-less Image Spatial QUality Evaluator (BRISQUE) measure as the fitness function for arbitrarily shaped PSF estimation. The proposed BID scheme has been compared with other single image motion deblurring schemes as benchmark. Validation has been carried out on various blurred images. Results of both benchmark and real images are presented. Non-reference image quality measures were used to quantify the deblurring results. For benchmark images, the proposed BID scheme using BRISQUE converges in close vicinity of the original blurring functions.

Keywords: blind deconvolution, blind image deblurring, genetic algorithm, image restoration, image quality measures

Procedia PDF Downloads 419
250 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits

Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.

Abstract:

With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.

Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme

Procedia PDF Downloads 97
249 Explicit Numerical Approximations for a Pricing Weather Derivatives Model

Authors: Clarinda V. Nhangumbe, Ercília Sousa

Abstract:

Weather Derivatives are financial instruments used to cover non-catastrophic weather events and can be expressed in the form of standard or plain vanilla products, structured or exotics products. The underlying asset, in this case, is the weather index, such as temperature, rainfall, humidity, wind, and snowfall. The complexity of the Weather Derivatives structure shows the weakness of the Black Scholes framework. Therefore, under the risk-neutral probability measure, the option price of a weather contract can be given as a unique solution of a two-dimensional partial differential equation (parabolic in one direction and hyperbolic in other directions), with an initial condition and subjected to adequate boundary conditions. To calculate the price of the option, one can use numerical methods such as the Monte Carlo simulations and implicit finite difference schemes conjugated with Semi-Lagrangian methods. This paper is proposed two explicit methods, namely, first-order upwind in the hyperbolic direction combined with Lax-Wendroff in the parabolic direction and first-order upwind in the hyperbolic direction combined with second-order upwind in the parabolic direction. One of the advantages of these methods is the fact that they take into consideration the boundary conditions obtained from the financial interpretation and deal efficiently with the different choices of the convection coefficients.

Keywords: incomplete markets, numerical methods, partial differential equations, stochastic process, weather derivatives

Procedia PDF Downloads 67
248 Two-Dimensional Analysis and Numerical Simulation of the Navier-Stokes Equations for Principles of Turbulence around Isothermal Bodies Immersed in Incompressible Newtonian Fluids

Authors: Romulo D. C. Santos, Silvio M. A. Gama, Ramiro G. R. Camacho

Abstract:

In this present paper, the thermos-fluid dynamics considering the mixed convection (natural and forced convections) and the principles of turbulence flow around complex geometries have been studied. In these applications, it was necessary to analyze the influence between the flow field and the heated immersed body with constant temperature on its surface. This paper presents a study about the Newtonian incompressible two-dimensional fluid around isothermal geometry using the immersed boundary method (IBM) with the virtual physical model (VPM). The numerical code proposed for all simulations satisfy the calculation of temperature considering Dirichlet boundary conditions. Important dimensionless numbers such as Strouhal number is calculated using the Fast Fourier Transform (FFT), Nusselt number, drag and lift coefficients, velocity and pressure. Streamlines and isothermal lines are presented for each simulation showing the flow dynamics and patterns. The Navier-Stokes and energy equations for mixed convection were discretized using the finite difference method for space and a second order Adams-Bashforth and Runge-Kuta 4th order methods for time considering the fractional step method to couple the calculation of pressure, velocity, and temperature. This work used for simulation of turbulence, the Smagorinsky, and Spalart-Allmaras models. The first model is based on the local equilibrium hypothesis for small scales and hypothesis of Boussinesq, such that the energy is injected into spectrum of the turbulence, being equal to the energy dissipated by the convective effects. The Spalart-Allmaras model, use only one transport equation for turbulent viscosity. The results were compared with numerical data, validating the effect of heat-transfer together with turbulence models. The IBM/VPM is a powerful tool to simulate flow around complex geometries. The results showed a good numerical convergence in relation the references adopted.

Keywords: immersed boundary method, mixed convection, turbulence methods, virtual physical model

Procedia PDF Downloads 93
247 Comparative Economic Analysis of Floating Photovoltaic Systems Using a Synthesis Approach

Authors: Ching-Feng Chen

Abstract:

The floating photovoltaic (FPV) system highlights economic benefits and energy performance to carbon dioxide (CO₂) discharges. Due to land resource scarcity and many negligent water territories, such as reservoirs, dams, and lakes in Japan and Taiwan, both countries are actively developing FPV and responding to the pricing of the emissions trading systems (ETS). This paper performs a case study through a synthesis approach to compare the economic indicators between the FPVs of Taiwan’s Agongdian Reservoir and Japan’s Yamakura Dam. The research results show that the metrics of the system capacity, installation costs, bank interest rates, and ETS and Electricity Bills affect FPV operating gains. In the post-Feed-In-Tariff (FIT) phase, investing in FPV in Japan is more profitable than in Taiwan. The former’s positive net present value (NPV), eminent internal rate of return (IRR) (11.6%), and benefit-cost ratio (BCR) above 1 (2.0) at the discount rate of 10% indicate that investing the FPV in Japan is more favorable than in Taiwan. In addition, the breakeven point is modest (about 61.3%.). The presented methodology in the study helps investors evaluate schemes’ pros and cons and determine whether a decision is beneficial while funding PV or FPV projects.

Keywords: carbon border adjustment mechanism, floating photovoltaic, emissions trading systems, net present value, internal rate of return, benefit-cost ratio

Procedia PDF Downloads 49
246 An Enhanced SAR-Based Tsunami Detection System

Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah

Abstract:

Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.

Keywords: detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter

Procedia PDF Downloads 358
245 Development of Equivalent Inelastic Springs to Model C-Devices

Authors: Oday Al-Mamoori, J. Enrique Martinez-Rueda

Abstract:

'C' shape yielding devices (C-devices) are effective tools for introducing supplemental sources of energy dissipation by hysteresis. Studies have shown that C-devices made of mild steel can be successfully applied as integral parts of seismic retrofitting schemes. However, explicit modelling of these devices can become cumbersome, expensive and time consuming. The device under study in this article has been previously used in non-invasive dissipative bracing for seismic retrofitting. The device is cut from a mild steel plate and has an overall shape that resembles that of a rectangular portal frame with circular interior corner transitions to avoid stress concentration and to control the extension of the dissipative region of the device. A number of inelastic finite element (FE) analyses using either inelastic 2D plane stress elements or inelastic fibre frame elements are reported and used to calibrate a 1D equivalent inelastic spring model that effectively reproduces the cyclic response of the device. The more elaborate FE model accounts for the frictional forces developed between the steel plate and the bolts used to connect the C-device to structural members. FE results also allow the visualization of the inelastic regions of the device where energy dissipation is expected to occur. FE analysis results are in a good agreement with experimental observations.

Keywords: C-device, equivalent nonlinear spring, FE analyses, reversed cyclic tests

Procedia PDF Downloads 112
244 Knowledge Diffusion via Automated Organizational Cartography: Autocart

Authors: Mounir Kehal, Adel Al Araifi

Abstract:

The post-globalisation epoch has placed businesses everywhere in new and different competitive situations where knowledgeable, effective and efficient behaviour has come to provide the competitive and comparative edge. Enterprises have turned to explicit- and even conceptualising on tacit- Knowledge Management to elaborate a systematic approach to develop and sustain the Intellectual Capital needed to succeed. To be able to do that, you have to be able to visualize your organization as consisting of nothing but knowledge and knowledge flows, whilst being presented in a graphical and visual framework, referred to as automated organizational cartography. Hence, creating the ability of further actively classifying existing organizational content evolving from and within data feeds, in an algorithmic manner, potentially giving insightful schemes and dynamics by which organizational know-how is visualised. It is discussed and elaborated on most recent and applicable definitions and classifications of knowledge management, representing a wide range of views from mechanistic (systematic, data driven) to a more socially (psychologically, cognitive/metadata driven) orientated. More elaborate continuum models, for knowledge acquisition and reasoning purposes, are being used for effectively representing the domain of information that an end user may contain in their decision making process for utilization of available organizational intellectual resources (i.e. Autocart). In this paper we present likewise an empirical research study conducted previously to try and explore knowledge diffusion in a specialist knowledge domain.

Keywords: knowledge management, knowledge maps, knowledge diffusion, organizational cartography

Procedia PDF Downloads 395
243 Hybrid Localization Schemes for Wireless Sensor Networks

Authors: Fatima Babar, Majid I. Khan, Malik Najmus Saqib, Muhammad Tahir

Abstract:

This article provides range based improvements over a well-known single-hop range free localization scheme, Approximate Point in Triangulation (APIT) by proposing an energy efficient Barycentric coordinate based Point-In-Triangulation (PIT) test along with PIT based trilateration. These improvements result in energy efficiency, reduced localization error and improved localization coverage compared to APIT and its variants. Moreover, we propose to embed Received signal strength indication (RSSI) based distance estimation in DV-Hop which is a multi-hop localization scheme. The proposed localization algorithm achieves energy efficiency and reduced localization error compared to DV-Hop and its available improvements. Furthermore, a hybrid multi-hop localization scheme is also proposed that utilize Barycentric coordinate based PIT test and both range based (Received signal strength indicator) and range free (hop count) techniques for distance estimation. Our experimental results provide evidence that proposed hybrid multi-hop localization scheme results in two to five times reduction in the localization error compare to DV-Hop and its variants, at reduced energy requirements.

Keywords: Localization, Trilateration, Triangulation, Wireless Sensor Networks

Procedia PDF Downloads 443
242 ANSYS FLUENT Simulation of Natural Convection and Radiation in a Solar Enclosure

Authors: Sireetorn Kuharat, Anwar Beg

Abstract:

In this study, multi-mode heat transfer characteristics of spacecraft solar collectors are investigated computationally. Two-dimensional steady-state incompressible laminar Newtonian viscous convection-radiative heat transfer in a rectangular solar collector geometry. The ANSYS FLUENT finite volume code (version 17.2) is employed to simulate the thermo-fluid characteristics. Several radiative transfer models are employed which are available in the ANSYS workbench, including the classical Rosseland flux model and the more elegant P1 flux model. Mesh-independence tests are conducted. Validation of the simulations is conducted with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation. The influence of aspect ratio, Prandtl number (Pr), Rayleigh number (Ra) and radiative flux model on temperature, isotherms, velocity, the pressure is evaluated and visualized in color plots. Additionally, the local convective heat flux is computed and solutions are compared with the MAC solver for various buoyancy effects (e.g. Ra = 10,000,000) achieving excellent agreement. The P1 model is shown to better predict the actual influence of solar radiative flux on thermal fluid behavior compared with the limited Rosseland model. With increasing Rayleigh numbers the hot zone emanating from the base of the collector is found to penetrate deeper into the collector and rises symmetrically dividing into two vortex regions with very high buoyancy effect (Ra >100,000). With increasing Prandtl number (three gas cases are examined respectively hydrogen gas mixture, air and ammonia gas) there is also a progressive incursion of the hot zone at the solar collector base higher into the solar collector space and simultaneously a greater asymmetric behavior of the dual isothermal zones. With increasing aspect ratio (wider base relative to the height of the solar collector geometry) there is a greater thermal convection pattern around the whole geometry, higher temperatures and the elimination of the cold upper zone associated with lower aspect ratio.

Keywords: thermal convection, radiative heat transfer, solar collector, Rayleigh number

Procedia PDF Downloads 97