Search results for: concrete damaged plasticity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2396

Search results for: concrete damaged plasticity

2306 Corrosion Resistance Evaluation of Reinforcing Bars: A Comparative Study of Fusion Bonded Epoxy Coated, Cement Polymer Composite Coated and Dual Zinc Epoxy Coated Rebar for Application in Reinforced Concrete Structures

Authors: Harshit Agrawal, Salman Muhammad

Abstract:

Degradation to reinforced concrete (RC), primarily due to corrosion of embedded reinforcement, has been a major cause of concern worldwide. Among several ways to control corrosion, the use of coated reinforcement has gained significant interest in field applications. However, the choice of proper coating material and the effect of damage over coating are yet to be addressed for effective application of coated reinforcements. The present study aims to investigate and compare the performance of three different types of coated reinforcements —Fusion-Bonded Epoxy Coating (FBEC), Cement Polymer Composite Coating (CPCC), and Dual Zinc-Epoxy Coating (DZEC) —in concrete structures. The aim is to assess their corrosion resistance, durability, and overall effectiveness as coated reinforcement materials both in undamaged and simulated damaged conditions. Through accelerated corrosion tests, electrochemical analysis, and exposure to aggressive marine environments, the study evaluates the long-term performance of each coating system. This research serves as a crucial guide for engineers and construction professionals in selecting the most suitable corrosion protection for reinforced concrete, thereby enhancing the durability and sustainability of infrastructure.

Keywords: corrosion, reinforced concrete, coated reinforcement, seawater exposure, electrochemical analysis, service life, corrosion prevention

Procedia PDF Downloads 46
2305 A Study on Marble Based Geopolymer Mortar / Concrete

Authors: Wei-Hao Lee, Ta-Wui Cheng, Yung-Chin Ding, Tai-Tien Wang

Abstract:

The purpose of this study is trying to use marble wastes as the raw material to fabricate geopolymer green mortar / concrete. Experiment results show that using marble to make geopolymer mortar and concrete, the compressive strength after 28 days curing can reach 35 MPa and 25 MPa, respectively. The characteristics of marble-based geopolymer green mortar and concrete will keep testing for a long term in order to understand the effect parameters. The study is based on resource recovery and recycling. Its basic characteristics are low consumption, low carbon dioxide emission and high efficiency that meet the international tendency 'Circular Economy.' By comparing with Portland cement mortar and concrete, production 1 ton of marble-based geopolymer mortar and concrete, they can be saved around 50.3% and 49.6% carbon dioxide emission, respectively. Production 1 m3 of marble-based geopolymer concrete costs about 62 USD that cheaper than that of traditional Portland concrete. It is proved that the marble-based geopolymer concrete has great potential for further engineering development.

Keywords: marble, geopolymer, geopolymer concrete, CO₂ emission

Procedia PDF Downloads 410
2304 Properties of Self-Compacting Concrete Mixed with Fly Ash

Authors: Abhinandan Singh Gill, Gurbir Kaur Jawanda

Abstract:

Since the introduction of self-consolidating concrete (SCC) in Japan during the late 1980’s, acceptance and usage of this concrete in the construction industry has been steadily gaining momentum. In the United States, the usage of SCC has been spearheaded by the precast concrete industry. Good SCC must possess the following key fresh properties: filling ability, passing ability, and resistance to segregation. Self-compacting concrete is one of 'the most revolutionary developments' in concrete research; this concrete is able to flow and to fill the most restocked places of the form work without vibration. There are several methods for testing its properties. In the fresh state: the most frequently used are slump flow test, L box and V-funnel. This work presents properties of self-compacting concrete, mixed with fly ash. The test results for acceptance characteristics of self-compacting concrete such as slump flow; V-funnel and L-Box are presented. Further, the compressive strength at the ages of 7, 28 days was also determined and results are included here.

Keywords: compressive strength, fly ash, self-compacting concrete, slump flow test, super plasticizer

Procedia PDF Downloads 380
2303 Mechanical Behavior of Corroded RC Beams Strengthened by NSM CFRP Rods

Authors: Belal Almassri, Amjad Kreit, Firas Al Mahmoud, Raoul François

Abstract:

Corrosion of steel in reinforced concrete leads to several major defects. Firstly, a reduction in the crosssectional area of the reinforcement and in its ductility results in premature bar failure. Secondly, the expansion of the corrosion products causes concrete cracking and steel–concrete bond deterioration and also affects the bending stiffness of the reinforced concrete members, causing a reduction in the overall load-bearing capacity of the reinforced concrete beams. This paper investigates the validity of a repair technique using Near Surface Mounted (NSM) carbon-fibre-reinforced polymer (CFRP) rods to restore the mechanical performance of corrosion-damaged RC beams. In the NSM technique, the CFRP rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. Experimental results were obtained on two beams: a corroded beam that had been exposed to natural corrosion for 25 years and a control beam, (both are 3 m long) repaired in bending only. Each beam was repaired with one 6-mm-diameter NSM CFRP rod. The beams were tested in a three-point bending test up to failure. Overall stiffness and crack maps were studied before and after the repair. Ultimate capacity, ductility and failure mode were also reviewed. Finally some comparisons were made between repaired and non-repaired beams in order to assess the effectiveness of the NSM technique. The experimental results showed that the NSM technique improved the overall characteristics (ultimate load capacity and stiffness) of the control and corroded beams and allowed sufficient ductility to be restored to the repaired corroded elements, thus restoring the safety margin, despite the non-classical mode of failure that occurred in the corroded beam, with the separation of the concrete cover due to corrosion products.

Keywords: carbon fibre, corrosion, strength, mechanical testing

Procedia PDF Downloads 426
2302 Effect of Concrete Strength on the Bond Between Carbon Fiber Reinforced Polymer and Concrete in Hot Weather

Authors: Usama Mohamed Ahamed

Abstract:

This research deals with the bond behavior of carbon FRP composite wraps adhered/bonded to the surface of the concrete. Four concrete mixes were designed to achieve a concrete compressive strength of 18, 22.5,25 and 30 MP after 28 days of curing. The focus of the study is on bond degradation when the hybrid structure is exposed to hot weather conditions. Specimens were exposed to 50 0C temperature duration 6 months and other specimens were sustained in laboratory temperature ( 20-24) 0C. Upon removing the specimens from their conditioning environment, tension tests were performed in the machine using a specially manufactured concrete cube holder. A lightweight mortar layer is used to protect the bonded carbon FRP layer on the concrete surface. The results show that the higher the concrete's compressive, the higher the bond strength. The high temperature decreases the bond strength between concrete and carbon fiber-reinforced polymer. The use of a protection layer is essential for concrete exposed to hot weather.

Keywords: concrete, bond, hot weather and carbon fiber, carbon fiber reinforced polymers

Procedia PDF Downloads 58
2301 Influence of the Reliability Index on the Safety Factor of the Concrete Contribution to Shear Strength of HSC Beams

Authors: Ali Sagiroglu, Sema Noyan Alacali, Guray Arslan

Abstract:

This paper presents a study on the influence of the safety factor in the concrete contribution to shear strength of high-strength concrete (HSC) beams according to TS500. In TS500, the contribution of concrete to shear strength is obtained by reducing diagonal cracking strength with a safety factor of 0.8. It was investigated that the coefficient of 0.8 considered in determining the contribution of concrete to the shear strength corresponds to which value of failure probability. Also, the changes in the reduction factor depending on different coefficients of variation of concrete were examined.

Keywords: reinforced concrete, beam, shear strength, failure probability, safety factor

Procedia PDF Downloads 786
2300 Structural Performance of Prefabricated Concrete and Reinforced Concrete Structural Walls under Blast Loads

Authors: S. Kamil Akin, Turgut Acikara

Abstract:

In recent years the world and our country has experienced several explosion events occurred due to terrorist attacks and accidents. In these explosion events many people have lost their lives and many buildings have been damaged. If structures were designed taking the blast loads into account, these results may not have happened or the casualties would have been less. In this thesis analysis of the protection walls have been conducted to prevent the building damage from blast loads. These analyzes was carried out for two different types of wall, concrete and reinforced concrete. Analyses were carried out on four different thicknesses of each wall element. In each wall element the stresses and displacements of the exposed surface due to the detonation charge has been calculated. The limit shear stress and displacement of the wall element according to their material properties has been taken into account. As the result of the analyses the standoff distances and TNT equivalent amount has been determined. According to equivalent TNT amounts and standoff distances the structural response of the protective wall elements has been observed. These structural responses have been observed by ABAQUS finite element package. Explosion loads were brought into effect to the protective wall element models by using the ABAQUS / CONWEP.

Keywords: blast loading, blast wave, TNT equivalent method, CONWEP, finite element analysis, detonation

Procedia PDF Downloads 411
2299 Evaluation of the Mechanical and Microstructural Properties of Sustainable Concrete Exposed to Acid Solution

Authors: Adil Tamimi

Abstract:

Limestone powder is a natural material that is available in many parts of the world. In this research self-compacting concrete was designed and prepared using limestone powder. The resulted concrete was exposed to the hydrochloric acid solution and compared with reference concrete. Mechanical properties of both fresh and hardened concrete have been evaluated. Scanning Electron Microscopy “SEM” has been unitized to analyse the morphological development of the hydration products. In sulphuric acid solution, a large formation of gypsum was detected in both samples of self-compacting concrete and conventional concrete. The Higher amount of thaumasite and ettringite was also detected in the SCC sample. In hydrochloric acid solution, monochloroaluminate was detected.

Keywords: self-compacting concrete, mechanical properties, Scanning Electron Microscopy, acid solution

Procedia PDF Downloads 473
2298 Strength & Density of an Autoclaved Aerated Concrete Using Various Air Entraining Agent

Authors: Shashank Gupta, Shiva Garg

Abstract:

The purpose of the present paper is to study the changes in the strength characteristics of autoclaved aerated concrete (AAC) and also the density when different expansion agents are used. The expansion agent so used releases air in the concrete thereby making it lighter by reducing its density. It also increases the workability of the concrete. The various air entraining agents used for this study are hydrogen peroxide, oleic acid, and olive oil. The addition of these agents causes the concrete to rise like cake but it reduces the strength of concrete due to the formation of air voids. The amount of agents chosen for concrete production are 0.5%, 1%, 1.5% by weight of cement.

Keywords: AAC, olive oil, hydrogen peroxide, oleic acid, steam curing

Procedia PDF Downloads 327
2297 Early-Age Mechanical and Thermal Performance of GGBS Concrete

Authors: Kangkang Tang

Abstract:

A large amount of blast furnace slag is generated in China. Most ground granulated blast furnace slag (GGBS) however ends up in low-grade applications. Blast furnace slag, ground to an appropriate fineness, can be used as a partial replacement of cementitious material in concrete. The potential for using GGBS in structural concrete, e.g. concrete beams and columns, is investigated at Xi’an Jiaotong-Liverpool University (XJTLU). With 50% of CEM I replaced with GGBS, peak hydration temperatures determined in a suspended concrete slab reduced by 20%. This beneficiary effect has not been further improved with 70% of CEM I replaced with GGBS. Partial replacement of CEM I with GGBS also has a retardation effect on the early-age strength of concrete. More GGBS concrete mixes will be conducted to identify an ‘optimum’ replacement level which will lead to a reduced thermal loading, without significantly compromising the early-age strength of concrete.

Keywords: thermal effect, GGBS, concrete strength and testing, sustainability

Procedia PDF Downloads 373
2296 Microstructural Properties of the Interfacial Transition Zone and Strength Development of Concrete Incorporating Recycled Concrete Aggregate

Authors: S. Boudali, A. M. Soliman, B. Abdulsalam, K. Ayed, D. E. Kerdal, S. Poncet

Abstract:

This study investigates the potential of using crushed concrete as aggregates to produce green and sustainable concrete. Crushed concrete was sieved to powder fine recycled aggregate (PFRA) less than 80 µm and coarse recycled aggregates (CRA). Physical, mechanical, and microstructural properties for PFRA and CRA were evaluated. The effect of the additional rates of PFRA and CRA on strength development of recycled aggregate concrete (RAC) was investigated. Additionally, the characteristics of interfacial transition zone (ITZ) between cement paste and recycled aggregate were also examined. Results show that concrete mixtures made with 100% of CRA and 40% PFRA exhibited similar performance to that of the control mixture prepared with 100% natural aggregate (NA) and 40% natural pozzolan (NP). Moreover, concrete mixture incorporating recycled aggregate exhibited a slightly higher later compressive strength than that of the concrete with NA. This was confirmed by the very dense microstructure for concrete mixture incorporating recycled concrete aggregates compared to that of conventional concrete mixture.

Keywords: compressive strength, recycled concrete aggregates, microstructure, interfacial transition zone, powder fine recycled aggregate

Procedia PDF Downloads 308
2295 Bearing Capacity of Sulphuric Acid Content Soil

Authors: R. N. Khare, J. P. Sahu, Rajesh Kumar Tamrakar

Abstract:

Tests were conducted to determine the property of soil with variation of H2SO4 content for soils under different stage. The soils had varying amounts of plasticity’s ranging from low to high plasticity. The unsaturated soil behavior was investigated for different conditions, covering a range of compactive efforts and water contents. The soil characteristic curves were more sensitive to changes in compaction effort than changes in compaction water content. In this research paper two types of water (Ground water Ph =7.9, Turbidity= 13 ppm; Cl =2.1mg/l and surface water Ph =8.65; Turbidity=18.5; Cl=1mg/l) were selected of Bhilai Nagar, State-Chhattisgarh, India which is mixed with a certain type of soil. Results shows that by the presence of ground water day by day the particles are becoming coarser in 7 days thereafter its size reduces; on the other hand by the presence of surface water the courser particles are disintegrating, finer particles are accumulating and also the dry density is reduces. Plasticity soils retained the smallest water content and the highest plasticity soils retained the highest water content at a specified suction. In addition, soil characteristic for soils to be compacted in the laboratory and in the field are still under process for analyzing the bearing capacity. The bearing capacity was reduced 2 to 3 times in the presence of H2SO4.

Keywords: soil compaction, H2SO4, soil water, water conditions

Procedia PDF Downloads 503
2294 Analysis of Sulphur-Oxidizing Bacteria Attack on Concrete Based on Waste Materials

Authors: A. Eštoková, M. Kovalčíková, A. Luptáková, A. Sičáková, M. Ondová

Abstract:

Concrete durability as an important engineering property of concrete, determining the service life of concrete structures very significantly, can be threatened and even lost due to the interactions of concrete with external environment. Bio-corrosion process caused by presence and activities of microorganisms producing sulphuric acid is a special type of sulphate deterioration of concrete materials. The effects of sulphur-oxidizing bacteria Acidithiobacillus thiooxidans on various concrete samples, based on silica fume and zeolite, were investigated in laboratory during 180 days. A laboratory study was conducted to compare the performance of concrete samples in terms of the concrete deterioration influenced by the leaching of calcium and silicon compounds from the cement matrix. The changes in the elemental concentrations of calcium and silicon in both solid samples and liquid leachates were measured by using X – ray fluorescence method. Experimental studies confirmed the silica fume based concrete samples were found out to have the best performance in terms of both silicon and calcium ions leaching.

Keywords: biocorrosion, concrete, leaching, bacteria

Procedia PDF Downloads 422
2293 Compressive Strength Development of Normal Concrete and Self-Consolidating Concrete Incorporated with GGBS

Authors: M. Nili, S. Tavasoli, A. R. Yazdandoost

Abstract:

In this paper, an experimental investigation on the effect of Isfahan Ground Granulate Blast Furnace Slag (GGBS) on the compressive strength development of self-consolidating concrete (SCC) and normal concrete (NC) was performed. For this purpose, Portland cement type I was replaced with GGBS in various Portions. For NC and SCC Mixes, 10*10*10 cubic cm specimens were tested in 7, 28 and 91 days. It must be stated that in this research water to cement ratio was 0.44, cement used in cubic meter was 418 Kg/m³ and Superplasticizer (SP) Type III used in SCC based on Poly-Carboxylic acid. The results of experiments have shown that increasing GGBS Percentages in both types of concrete reduce Compressive strength in early ages.

Keywords: compressive strength, GGBS, normal concrete, self-consolidating concrete

Procedia PDF Downloads 402
2292 Understanding the Damage Evolution and the Risk of Failure of Pyrrhotite Containing Concrete Foundations

Authors: Marisa Chrysochoou, James Mahoney, Kay Wille

Abstract:

Pyrrhotite is an iron-sulfide mineral which releases sulfuric acid when exposed to water and oxygen. The presence of this mineral in concrete foundations across Connecticut and Massachusetts in the US is causing in some cases premature failure. This has resulted in a devastating crisis for all parties affected by this type of failure which can take up to 15-25 years before internal damage becomes visible on the surface. This study shares laboratory results aimed to investigate the fundamental mechanisms of pyrrhotite reaction and to further the understanding of its deterioration kinetics within concrete. This includes the following analyses: total sulfur, wavelength dispersive X-ray fluorescence, expansion, reaction rate combined with ion-chromatography, as well as damage evolution using electro-chemical acceleration. This information is coupled to a statistical analysis of over 150 analyzed concrete foundations. Those samples were obtained and process using a developed and validated sampling method that is minimally invasive to the foundation in use, provides representative samples of the concrete matrix across the entire foundation, and is time and cost-efficient. The processed samples were then analyzed using a developed modular testing method based on total sulfur and wavelength dispersive X-ray fluorescence analysis to quantify the amount of pyrrhotite. As part of the statistical analysis the results were grouped into the following three categories: no damage observed and no pyrrhotite detected, no damage observed and pyrrhotite detected and damaged observed and pyrrhotite detected. As expected, a strong correlation between amount of pyrrhotite, age of the concrete and damage is observed. Information from the laboratory investigation and from the statistical analysis of field samples will aid in forming a scientific basis to support the decision process towards sustainable financial and administrative solutions by state and local stakeholders.

Keywords: concrete, pyrrhotite, risk of failure, statistical analysis

Procedia PDF Downloads 39
2291 Unconfined Strength of Nano Reactive Silica Sand Powder Concrete

Authors: Hossein Kabir, Mojtaba Sadeghi

Abstract:

Nowadays, high-strength concrete is an integral element of a variety of high-rise buildings. On the other hand, finding a suitable aggregate size distribution is a great concern; hence, the concrete mix proportion is presented that has no coarse aggregate, which still withstands enough desirable strength. Nano Reactive Silica sand powder concrete (NRSSPC) is a type of concrete with no coarse material in its own composition. In this concrete, the only aggregate found in the mix design is silica sand powder with a size less than 150 mm that is infinitesimally small regarding the normal concrete. The research aim is to find the compressive strength of this particular concrete under the applied different conditions of curing and consolidation to compare the approaches. In this study, the young concrete specimens were compacted with a pressing or vibrating process. It is worthwhile to mention that in order to show the influence of temperature in the curing process, the concrete specimen was cured either in 20 ⁰C lime water or autoclaved in 90 ⁰C oven.

Keywords: reactive silica sand powder concrete (RSSPC), consolidation, compressive strength, normal curing, thermal accelerated curing

Procedia PDF Downloads 218
2290 The Use of Seashell by-Products in Pervious Concrete Pavers

Authors: Dang Hanh Nguyen, Nassim Sebaibi, Mohamed Boutouil, Lydia Leleyter, Fabienne Baraud

Abstract:

Pervious concrete is a green alternative to conventional pavements with minimal fine aggregate and a high void content. Pervious concrete allows water to infiltrate through the pavement, thereby reducing the runoff and the requirement for stormwater management systems. Seashell By-Products (SBP) are produced in an important quantity in France and are considered as waste. This work investigated to use SBP in pervious concrete and produce an even more environmentally friendly product, Pervious Concrete Pavers. The research methodology involved substituting the coarse aggregate in the previous concrete mix design with 20%, 40% and 60% SBP. The testing showed that pervious concrete containing less than 40% SBP had strengths, permeability and void content which are comparable to the pervious concrete containing with only natural aggregate. The samples that contained 40% SBP or higher had a significant loss in strength and an increase in permeability and a void content from the control mix pervious concrete. On the basis of the results in this research, it was found that the natural aggregate can be substituted by SBP without affecting the delicate balance of a pervious concrete mix. Additional, it is recommended that the optimum replacement percentage for SBP in pervious concrete is 40 % direct replacement of natural coarse aggregate while maintaining the structural performance and drainage capabilities of the pervious concrete.

Keywords: seashell by-products, pervious concrete pavers, permeability, mechanical strength

Procedia PDF Downloads 450
2289 Production Cement Mortar and Concrete by Using Nano Clay

Authors: Mohammad Ashraf, Kawther Mohamed

Abstract:

This research tackles a new kind of additions (Nano Clay) and its effect on the features of concrete and both fresh and hardened cement mortar, as well as setting an optimal percentage of adding it to achieve the desired results and obtain on a strong concrete and mortar can be used for skyscrapers. The cementations additions are mineral materials in the form of a fine powder, added to concrete or cement mortar as partly cement substitutes, which means to be added instead of an equivalent amount of cement in order to improve and enhance some features of concrete or both the newly made and hardened cementations materials.

Keywords: nano clay in structure engineering, nanotechnology in construction industry, advanced additions in concrete, special concrete for skyscrapers

Procedia PDF Downloads 297
2288 Collapse Surface Definition of Clayey Sands

Authors: Omid Naeemifar, Ibrahim Naeimifar, Roza Rahbari

Abstract:

It has been shown that a certain collapse surface may be defined for loose sands in the three dimensional space in which the sample sand experiences collapse and instability leading to an unsteady and strain-softening behaviour. The unsteady state due to collapse surface may lead to such phenomena in the sand as liquefaction and flow behaviour during undrained loading. Investigating the existence of the collapse surface in Firoozkooh 161 sand and its different clay mixtures with various plasticities, the present study aims to carry out an in-depth investigation of the effects of clay percent and its plasticity on the clayey sand behaviours. The results obtained indicate that collapse surface characteristics largely depend on fine percent and its plasticity. Interesting findings are also reported in this paper on the effects of fine sand percent and its plasticity on the behavioural characteristics and liquefaction potential of clayey sands.

Keywords: critical state, collapse surface, liquefaction, clayey sand

Procedia PDF Downloads 262
2287 Seismic Fragility of Weir Structure Considering Aging Degradation of Concrete Material

Authors: HoYoung Son, DongHoon Shin, WooYoung Jung

Abstract:

This study presented the seismic fragility framework of concrete weir structure subjected to strong seismic ground motions and in particular, concrete aging condition of the weir structure was taken into account in this study. In order to understand the influence of concrete aging on the weir structure, by using probabilistic risk assessment, the analytical seismic fragility of the weir structure was derived for pre- and post-deterioration of concrete. The performance of concrete weir structure after five years was assumed for the concrete aging or deterioration, and according to after five years’ condition, the elastic modulus was simply reduced about one–tenth compared with initial condition of weir structures. A 2D nonlinear finite element analysis was performed considering the deterioration of concrete in weir structures using ABAQUS platform, a commercial structural analysis program. Simplified concrete degradation was resulted in the increase of almost 45% of the probability of failure at Limit State 3, in comparison to initial construction stage, by analyzing the seismic fragility.

Keywords: weir, FEM, concrete, fragility, aging

Procedia PDF Downloads 461
2286 Effect of Strength Class of Concrete and Curing Conditions on Capillary Water Absorption of Self-Compacting and Conventional Concrete

Authors: E. Ebru Demirci, Remzi Şahin

Abstract:

The purpose of this study is to compare Self Compacting Concrete (SCC) and Conventional Concrete (CC) in terms of their capillary water absorption. During the comparison of SCC and CC, the effects of two different factors were also investigated: concrete strength class and curing condition. In the study, both SCC and CC were produced in three different concrete classes (C25, C50 and C70) and the other parameter (i.e curing condition) was determined as two levels: moisture and air curing. It was observed that, for both curing environments and all strength classes of concrete, SCCs had lower capillary water absorption values than that of CCs. It was also detected that, for both SCC and CC, capillary water absorption values of samples kept in moisture curing were significantly lower than that of samples stored in air curing. Additionally, it was determined that capillary water absorption values for both SCC and CC decrease with increasing strength class of concrete for both curing environments.

Keywords: capillary water absorption, curing condition, reinforced concrete beam, self-compacting concrete

Procedia PDF Downloads 303
2285 Experimental and Analytical Design of Rigid Pavement Using Geopolymer Concrete

Authors: J. Joel Bright, P. Peer Mohamed, M. Aswin SAangameshwaran

Abstract:

The increasing usage of concrete produces 80% of carbon dioxide in the atmosphere. Hence, this results in various environmental effects like global warming. The amount of the carbon dioxide released during the manufacture of OPC due to the calcination of limestone and combustion of fossil fuel is in the order of one ton for every ton of OPC produced. Hence, to minimize this Geo Polymer Concrete was introduced. Geo polymer concrete is produced with 0% cement, and hence, it is eco-friendly and it also uses waste product from various industries like thermal power plant, steel manufacturing plant, and paper waste materials. This research is mainly about using Geo polymer concrete for pavement which gives very high strength than conventional concrete and at the same time gives way for sustainable development.

Keywords: activator solution, GGBS, fly ash, metakaolin

Procedia PDF Downloads 423
2284 Study on Brick Aggregate Made Pervious Concrete at Zero Fine Level

Authors: Monjurul Hasan, Golam Kibria, Abdus Salam

Abstract:

Pervious concrete is a form of lightweight porous concrete, obtained by eliminating the fine aggregate from the normal concrete mix. The advantages of this type of concrete are lower density, lower cost due to lower cement content, lower thermal conductivity, relatively low drying shrinkage, no segregation and capillary movement of water. In this paper an investigation is made on the mechanical response of the pervious concrete at zero fine level (zero fine concrete) made with local brick aggregate. Effect of aggregate size variation on the strength, void ratio and permeability of the zero fine concrete is studied. Finally, a comparison is also presented between the stone aggregate made pervious concrete and brick aggregate made pervious concrete. In total 75 concrete cylinder were tested for compressive strength, 15 cylinder were tested for void ratio and 15 cylinder were tested for permeability test. Mix proportion (cement: Coarse aggregate) was kept fixed at 1:6 (by weights), where water cement ratio was valued 0.35 for preparing the sample specimens. The brick aggregate size varied among 25mm, 19mm, 12mm. It has been found that the compressive strength decreased with the increment of aggregate size but permeability increases and concrete made with 19mm maximum aggregate size yields the optimum value. No significant differences on the strength and permeability test are observed between the brick aggregate made zero fine concrete and stone aggregate made zero fine concrete.

Keywords: pervious concrete, brick aggregate concrete, zero fine concrete, permeability, porosity

Procedia PDF Downloads 513
2283 Influence of the Mixer on the Rheological Properties of the Fresh Concrete

Authors: Alexander Nitsche, Piotr-Robert Lazik, Harald Garrecht

Abstract:

The viscosity of the concrete has a great influence on the properties of the fresh concrete. Fresh concretes with low viscosity have a good flowability, whereas high viscosity has a lower flowability. Clearly, viscosity is directly linked to other parameters such as consistency, compaction, and workability of the concrete. The above parameters also depend very much on the energy induced during the mixing process and, of course, on the installation of the mixer itself. The University of Stuttgart has decided to investigate the influence of different mixing systems on the viscosity of various types of concrete, such as road concrete, self-compacting concrete, and lightweight concrete, using a rheometer and other testing methods. Each type is tested with three different mixers, and the rheological properties, namely consistency, and viscosity are determined. The aim of the study is to show that different types of concrete mixed with different types of mixers reach completely different yield points. Therefore, a 3 step procedure will be introduced. At first, various types of concrete mixtures and their differences are introduced. Then, the chosen suspension mixer and conventional mixers, which are going to be used in this paper, will be discussed. Lastly, the influence of the mixing system on the rheological properties of each of the select mix designs, as well as on fresh concrete, in general, will be presented.

Keywords: rheological properties, flowability, suspension mixer, viscosity

Procedia PDF Downloads 114
2282 Confinement of Concrete Filled Steel Tubular Beams Using U-Links

Authors: Madiha Z. Ammari, Abdul Qader AlNajmi

Abstract:

A new system of U-links was used in this study to confine the concrete core in concrete-filled steel beams. This system aims to employ the separation expected between the steel tube and the concrete core in the compression side of the section in the plastic hinge zone. A total of six rectangular CFT beam specimens were tested under flexure using different D/t ratios and different diameters for the U-links to examine their effect on the flexural behavior of these beams. The ultimate flexural strength of the CFT beam specimens with U-links showed an increase of strength about 47% of the specimen with D/t ratio equals 37.5 above standard CFT beam specimen without U-links inside. State of concrete inside the tubes has shown no crushing of concrete when those beams were cut open at the location of the plastic hinge. Strain measurements revealed that the compressive strain of concrete was 5-6 times the concrete crushing strain.

Keywords: concrete-filled tubes, U-links, plated studies, beams, flexural strength, concrete, confinement

Procedia PDF Downloads 319
2281 Theoretical Stress-Strain Model for Confined Concrete by Rectangular Reinforcement

Authors: Mizam Dogan, Hande Gökdemir

Abstract:

In reinforced concrete elements, reinforcement steel bars are placed in concrete both longitudinal and lateral directions. The lateral reinforcement (called as confinement) which is used for confining circular RC elements is in a spiral shape. If the cross section of RC element is rectangular, stirrups should be rectangular too. At very high compressive stresses concrete will reach its limit strain value and therefore concrete outside the lateral reinforcement, which is not confined, will crush and start to spell. At this stage, concrete core of the RC element tries to expand laterally as a reason of high Poisson’s ratio value of concrete. Such a deformation is prevented by the lateral reinforcement which applies lateral passive pressure on concrete. At very high compressive stresses, the strength of reinforced column member rises to four times σ 2. This increase in strength of member is related to the properties of rectangular stirrups. In this paper, effect of stirrup step spacing to column behavior is calculated and presented confined concrete model is proved by numerical solutions.

Keywords: confined concrete, concrete column, stress-strain, stirrup, solid, frame

Procedia PDF Downloads 422
2280 Utilization of Discarded PET and Concrete Aggregates in Construction Causes: A Green Approach

Authors: Arjun, A. D. Singh

Abstract:

The purpose of this study is to resolve the solid waste problems caused by plastics and concrete demolition as well. In order to that mechanical properties of polymer concrete; in particular, polymer concrete made of unsaturated polyester resins from recycled polyethylene terephthalate (PET) plastic waste and recycled concrete aggregates is carried out. Properly formulated unsaturated polyester based on recycled PET is mixed with inorganic aggregates to produce polymer concrete. Apart from low manufacturing cost, polymer concrete blend has acceptable properties, to go through it. The prior objectives of the paper is to investigate the mechanical properties, i.e. compressive strength, splitting tensile strength, and the flexural strength of polymer concrete blend using an unsaturated polyester resin based on recycled PET. The relationships between the mechanical properties are also analyzed.

Keywords: polyethylene terephthalate (PET), concrete aggregates, compressive strength, splitting tensile strength

Procedia PDF Downloads 535
2279 Effect of Crashed Stone on Properties of Fly Ash Based-Geopolymer Concrete with Local Alkaline Activator in Egypt

Authors: O. M. Omar, G. D. Abd Elhameed, A. M. Heniegal, H. A. Mohamadien

Abstract:

Green concrete are generally composed of recycling materials as hundred or partial percent substitutes for aggregate, cement, and admixture in concrete. To reduce greenhouse gas emissions, efforts are needed to develop environmentally friendly construction materials. Using of fly ash based geopolymer as an alternative binder can help reduce CO2 emission of concrete. The binder of geopolymer concrete is different from the ordinary Portland cement concrete. Geopolymer Concrete specimens were prepared with different concentration of NaOH solution M10, M14, and, M16 and cured at 60 ºC in duration of 24 hours and 8 hours, in addition to the curing in direct sunlight. Thus, it is necessary to study the effects of the geopolymer binder on the behavior of concrete. Concrete is made by using geopolymer technology is environmental friendly and could be considered as part of the sustainable development. In this study the Local Alkaline Activator in Egypt and dolomite as coarse aggregate in fly ash based-geopolymer concrete was investigated. This paper illustrates the development of mechanical properties. Since the gained compressive strength for geopolymer concrete at 28 days was in the range of 22.5MPa – 43.9MPa.

Keywords: geopolymer, molarity, sodium hydroxide, sodium silicate

Procedia PDF Downloads 260
2278 An Approach to Make Low-Cost Self-Compacting Geo-Polymer Concrete

Authors: Ankit Chakraborty, Raj Shah, Prayas Variya

Abstract:

Self-compacting geo-polymer concrete is a blended version of self-compacting concrete developed in Japan by Okamura. H. in 1986 and geo-polymer concrete proposed by Davidovits in 1999. This method is eco-friendly as there is low CO₂ emission and reduces labor cost due to its self-compacting property and zero percent cement content. We are making an approach to reduce concreting cost and make concreting eco-friendly by replacing cement fully and sand by a certain amount of industrial waste. It will reduce overall concreting cost due to its self-compatibility and replacement of materials, forms eco-friendly concreting technique and gives better fresh property and hardened property results compared to self-compacting concrete and geo-polymer concrete.

Keywords: geopolymer concrete, low cost concreting, low carbon emission, self compactability

Procedia PDF Downloads 207
2277 Assessment of Vermiculite Concrete Containing Bio-Polymer Aggregate

Authors: Aliakbar Sayadi, Thomas R. Neitzert, G. Charles Clifton, Min Cheol Han

Abstract:

The present study aims to assess the performance of vermiculite concrete containing poly-lactic acid beads as an eco-friendly aggregate. Vermiculite aggregate was replaced by poly-lactic acid in percentages of 0%, 20%, 40%, 60% and 80%. Mechanical and thermal properties of concrete were investigated. Test results indicated that the inclusion of poly-lactic acid decreased the PH value of concrete and all the poly-lactic acid particles were dissolved due to the formation of sodium lactide and lactide oligomers when subjected to the high alkaline environment of concrete. In addition, an increase in thermal conductivity value of concrete was observed as the ratio of poly-lactic acid increased. Moreover, a set of equations was proposed to estimate the water-cement ratio, cement content and water absorption ratio of concrete.

Keywords: poly-lactic acid (PLA), vermiculite concrete, eco-friendly, mechanical properties

Procedia PDF Downloads 372