Search results for: chebyshev collocation method(CCA)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 89

Search results for: chebyshev collocation method(CCA)

89 Chebyshev Polynomials Relad with Fibonacci and Lucas Polynomials

Authors: Vandana N. Purav

Abstract:

Fibonacci and Lucas polynomials are special cases of Chebyshev polynomial. There are two types of Chebyshev polynomials, a Chebyshev polynomial of first kind and a Chebyshev polynomial of second kind. Chebyshev polynomial of second kind can be derived from the Chebyshev polynomial of first kind. Chebyshev polynomial is a polynomial of degree n and satisfies a second order homogenous differential equation. We consider the difference equations which are related with Chebyshev, Fibonacci and Lucas polynomias. Thus Chebyshev polynomial of second kind play an important role in finding the recurrence relations with Fibonacci and Lucas polynomials.

Keywords:

Procedia PDF Downloads 368
88 Convergence Analysis of Cubic B-Spline Collocation Method for Time Dependent Parabolic Advection-Diffusion Equations

Authors: Bharti Gupta, V. K. Kukreja

Abstract:

A comprehensive numerical study is presented for the solution of time-dependent advection diffusion problems by using cubic B-spline collocation method. The linear combination of cubic B-spline basis, taken as approximating function, is evaluated using the zeros of shifted Chebyshev polynomials as collocation points in each element to obtain the best approximation. A comparison, on the basis of efficiency and accuracy, with the previous techniques is made which confirms the superiority of the proposed method. An asymptotic convergence analysis of technique is also discussed, and the method is found to be of order two. The theoretical analysis is supported with suitable examples to show second order convergence of technique. Different numerical examples are simulated using MATLAB in which the 3-D graphical presentation has taken at different time steps as well as different domain of interest.

Keywords: cubic B-spline basis, spectral norms, shifted Chebyshev polynomials, collocation points, error estimates

Procedia PDF Downloads 223
87 Numerical Solution of Two-Dimensional Solute Transport System Using Operational Matrices

Authors: Shubham Jaiswal

Abstract:

In this study, the numerical solution of two-dimensional solute transport system in a homogeneous porous medium of finite-length is obtained. The considered transport system have the terms accounting for advection, dispersion and first-order decay with first-type boundary conditions. Initially, the aquifer is considered solute free and a constant input-concentration is considered at inlet boundary. The solution is describing the solute concentration in rectangular inflow-region of the homogeneous porous media. The numerical solution is derived using a powerful method viz., spectral collocation method. The numerical computation and graphical presentations exhibit that the method is effective and reliable during solution of the physical model with complicated boundary conditions even in the presence of reaction term.

Keywords: two-dimensional solute transport system, spectral collocation method, Chebyshev polynomials, Chebyshev differentiation matrix

Procedia PDF Downloads 232
86 Chebyshev Wavelets and Applications

Authors: Emanuel Guariglia

Abstract:

In this paper we deal with Chebyshev wavelets. We analyze their properties computing their Fourier transform. Moreover, we discuss the differential properties of Chebyshev wavelets due the connection coefficients. The differential properties of Chebyshev wavelets, expressed by the connection coefficients (also called refinable integrals), are given by finite series in terms of the Kronecker delta. Moreover, we treat the p-order derivative of Chebyshev wavelets and compute its Fourier transform. Finally, we expand the mother wavelet in Taylor series with an application both in fractional calculus and fractal geometry.

Keywords: Chebyshev wavelets, Fourier transform, connection coefficients, Taylor series, local fractional derivative, Cantor set

Procedia PDF Downloads 123
85 Chebyshev Collocation Method for Solving Heat Transfer Analysis for Squeezing Flow of Nanofluid in Parallel Disks

Authors: Mustapha Rilwan Adewale, Salau Ayobami Muhammed

Abstract:

This study focuses on the heat transfer analysis of magneto-hydrodynamics (MHD) squeezing flow between parallel disks, considering a viscous incompressible fluid. The upper disk exhibits both upward and downward motion, while the lower disk remains stationary but permeable. By employing similarity transformations, a system of nonlinear ordinary differential equations is derived to describe the flow behavior. To solve this system, a numerical approach, namely the Chebyshev collocation method, is utilized. The study investigates the influence of flow parameters and compares the obtained results with existing literature. The significance of this research lies in understanding the heat transfer characteristics of MHD squeezing flow, which has practical implications in various engineering and industrial applications. By employing the similarity transformations, the complex governing equations are simplified into a system of nonlinear ordinary differential equations, facilitating the analysis of the flow behavior. To obtain numerical solutions for the system, the Chebyshev collocation method is implemented. This approach provides accurate approximations for the nonlinear equations, enabling efficient computations of the heat transfer properties. The obtained results are compared with existing literature, establishing the validity and consistency of the numerical approach. The study's major findings shed light on the influence of flow parameters on the heat transfer characteristics of the squeezing flow. The analysis reveals the impact of parameters such as magnetic field strength, disk motion amplitude, fluid viscosity on the heat transfer rate between the disks, the squeeze number(S), suction/injection parameter(A), Hartman number(M), Prandtl number(Pr), modified Eckert number(Ec), and the dimensionless length(δ). These findings contribute to a comprehensive understanding of the system's behavior and provide insights for optimizing heat transfer processes in similar configurations. In conclusion, this study presents a thorough heat transfer analysis of magneto-hydrodynamics squeezing flow between parallel disks. The numerical solutions obtained through the Chebyshev collocation method demonstrate the feasibility and accuracy of the approach. The investigation of flow parameters highlights their influence on heat transfer, contributing to the existing knowledge in this field. The agreement of the results with previous literature further strengthens the reliability of the findings. These outcomes have practical implications for engineering applications and pave the way for further research in related areas.

Keywords: squeezing flow, magneto-hydro-dynamics (MHD), chebyshev collocation method(CCA), parallel manifolds, finite difference method (FDM)

Procedia PDF Downloads 75
84 Numerical Solution of Space Fractional Order Solute Transport System

Authors: Shubham Jaiswal

Abstract:

In the present article, a drive is taken to compute the solution of spatial fractional order advection-dispersion equation having source/sink term with given initial and boundary conditions. The equation is converted to a system of ordinary differential equations using second-kind shifted Chebyshev polynomials, which have finally been solved using finite difference method. The striking feature of the article is the fast transportation of solute concentration as and when the system approaches fractional order from standard order for specified values of the parameters of the system.

Keywords: spatial fractional order advection-dispersion equation, second-kind shifted Chebyshev polynomial, collocation method, conservative system, non-conservative system

Procedia PDF Downloads 261
83 Collocation Assessment between GEO and GSO Satellites

Authors: A. E. Emam, M. Abd Elghany

Abstract:

The change in orbit evolution between collocated satellites (X, Y) inside +/-0.09 ° E/W and +/- 0.07 ° N/S cluster, after one of these satellites is placed in an inclined orbit (satellite X) and the effect of this change in the collocation safety inside the cluster window has been studied and evaluated. Several collocation scenarios had been studied in order to adjust the location of both satellites inside their cluster to maximize the separation between them and safe the mission.

Keywords: satellite, GEO, collocation, risk assessment

Procedia PDF Downloads 396
82 Numerical Wave Solutions for Nonlinear Coupled Equations Using Sinc-Collocation Method

Authors: Kamel Al-Khaled

Abstract:

In this paper, numerical solutions for the nonlinear coupled Korteweg-de Vries, (abbreviated as KdV) equations are calculated by Sinc-collocation method. This approach is based on a global collocation method using Sinc basis functions. First, discretizing time derivative of the KdV equations by a classic finite difference formula, while the space derivatives are approximated by a $\theta-$weighted scheme. Sinc functions are used to solve these two equations. Soliton solutions are constructed to show the nature of the solution. The numerical results are shown to demonstrate the efficiency of the newly proposed method.

Keywords: Nonlinear coupled KdV equations, Soliton solutions, Sinc-collocation method, Sinc functions

Procedia PDF Downloads 524
81 Fractional Order Differentiator Using Chebyshev Polynomials

Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh Kumar Pandey

Abstract:

A discrete time fractional orderdifferentiator has been modeled for estimating the fractional order derivatives of contaminated signal. The proposed approach is based on Chebyshev’s polynomials. We use the Riemann-Liouville fractional order derivative definition for designing the fractional order SG differentiator. In first step we calculate the window weight corresponding to the required fractional order. Then signal is convoluted with this calculated window’s weight for finding the fractional order derivatives of signals. Several signals are considered for evaluating the accuracy of the proposed method.

Keywords: fractional order derivative, chebyshev polynomials, signals, S-G differentiator

Procedia PDF Downloads 648
80 Collocation Method Using Quartic B-Splines for Solving the Modified RLW Equation

Authors: A. A. Soliman

Abstract:

The Modified Regularized Long Wave (MRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. The temporal evaluation of a Maxwellian initial pulse is then studied.

Keywords: collocation method, MRLW equation, Quartic B-splines, solitons

Procedia PDF Downloads 303
79 Linear Stability of Convection in an Inclined Channel with Nanofluid Saturated Porous Medium

Authors: D. Srinivasacharya, Nidhi Humnekar

Abstract:

The goal of this research is to numerically investigate the convection of nanofluid flow in an inclined porous channel. Brownian motion and thermophoresis effects are accounted for by nanofluid. In addition, the flow in the porous region governs Brinkman’s equation. The perturbed state of the generalized eigenvalue problem is obtained using normal mode analysis, and Chebyshev spectral collocation was used to solve this problem. For various values of the governing parameters, the critical wavenumber and critical Rayleigh number are calculated, and preferred modes are identified.

Keywords: Brinkman model, inclined channel, nanofluid, linear stability, porous media

Procedia PDF Downloads 112
78 Collocation Method for Coupled System of Boundary Value Problems with Cubic B-Splines

Authors: K. N. S. Kasi Viswanadham

Abstract:

Coupled system of second order linear and nonlinear boundary value problems occur in various fields of Science and Engineering. In the formulation of the problem, any one of 81 possible types of boundary conditions may occur. These 81 possible boundary conditions are written as a combination of four boundary conditions. To solve a coupled system of boundary value problem with these converted boundary conditions, a collocation method with cubic B-splines as basis functions has been developed. In the collocation method, the mesh points of the space variable domain have been selected as the collocation points. The basis functions have been redefined into a new set of basis functions which in number match with the number of mesh points in the space variable domain. The solution of a non-linear boundary value problem has been obtained as the limit of a sequence of solutions of linear boundary value problems generated by quasilinearization technique. Several linear and nonlinear boundary value problems are presented to test the efficiency of the proposed method and found that numerical results obtained by the present method are in good agreement with the exact solutions available in the literature.

Keywords: collocation method, coupled system, cubic b-splines, mesh points

Procedia PDF Downloads 209
77 Optimal Control of Volterra Integro-Differential Systems Based on Legendre Wavelets and Collocation Method

Authors: Khosrow Maleknejad, Asyieh Ebrahimzadeh

Abstract:

In this paper, the numerical solution of optimal control problem (OCP) for systems governed by Volterra integro-differential (VID) equation is considered. The method is developed by means of the Legendre wavelet approximation and collocation method. The properties of Legendre wavelet accompany with Gaussian integration method are utilized to reduce the problem to the solution of nonlinear programming one. Some numerical examples are given to confirm the accuracy and ease of implementation of the method.

Keywords: collocation method, Legendre wavelet, optimal control, Volterra integro-differential equation

Procedia PDF Downloads 388
76 Magnetohydrodynamic Flow over an Exponentially Stretching Sheet

Authors: Raj Nandkeolyar, Precious Sibanda

Abstract:

The flow of a viscous, incompressible, and electrically conducting fluid under the influence of aligned magnetic field acting along the direction of fluid flow over an exponentially stretching sheet is investigated numerically. The nonlinear partial differential equations governing the flow model is transformed to a set of nonlinear ordinary differential equations using suitable similarity transformation and the solution is obtained using a local linearization method followed by the Chebyshev spectral collocation method. The effects of various parameters affecting the flow and heat transfer as well as the induced magnetic field are discussed using suitable graphs and tables.

Keywords: aligned magnetic field, exponentially stretching sheet, induced magnetic field, magnetohydrodynamic flow

Procedia PDF Downloads 454
75 A Numerical Solution Based on Operational Matrix of Differentiation of Shifted Second Kind Chebyshev Wavelets for a Stefan Problem

Authors: Rajeev, N. K. Raigar

Abstract:

In this study, one dimensional phase change problem (a Stefan problem) is considered and a numerical solution of this problem is discussed. First, we use similarity transformation to convert the governing equations into ordinary differential equations with its boundary conditions. The solutions of ordinary differential equation with the associated boundary conditions and interface condition (Stefan condition) are obtained by using a numerical approach based on operational matrix of differentiation of shifted second kind Chebyshev wavelets. The obtained results are compared with existing exact solution which is sufficiently accurate.

Keywords: operational matrix of differentiation, similarity transformation, shifted second kind chebyshev wavelets, stefan problem

Procedia PDF Downloads 403
74 A Proof for Goldbach's Conjecture

Authors: Hashem Sazegar

Abstract:

In 1937, Vinograd of Russian Mathematician proved that each odd large number can be shown by three primes. In 1973, Chen Jingrun proved that each odd number can be shown by one prime plus a number that has maximum two primes. In this article, we state one proof for Goldbach’conjecture. Introduction: Bertrand’s postulate state for every positive integer n, there is always at least one prime p, such that n < p < 2n. This was first proved by Chebyshev in 1850, which is why postulate is also called the Bertrand-Chebyshev theorem. Legendre’s conjecture states that there is a prime between n2 and (n+1)2 for every positive integer n, which is one of the four Landau’s problems. The rest of these four basic problems are; (i) Twin prime conjecture: There are infinitely many primes p such that p+2 is a prime. (ii) Goldbach’s conjecture: Every even integer n > 2 can be written asthe sum of two primes. (iii) Are there infinitely many primes p such that p−1 is a perfect square? Problems (i), (ii), and (iii) are open till date.

Keywords: Bertrand-Chebyshev theorem, Landau’s problems, twin prime, Legendre’s conjecture, Oppermann’s conjecture

Procedia PDF Downloads 402
73 An Efficient Algorithm of Time Step Control for Error Correction Method

Authors: Youngji Lee, Yonghyeon Jeon, Sunyoung Bu, Philsu Kim

Abstract:

The aim of this paper is to construct an algorithm of time step control for the error correction method most recently developed by one of the authors for solving stiff initial value problems. It is achieved with the generalized Chebyshev polynomial and the corresponding error correction method. The main idea of the proposed scheme is in the usage of the duplicated node points in the generalized Chebyshev polynomials of two different degrees by adding necessary sample points instead of re-sampling all points. At each integration step, the proposed method is comprised of two equations for the solution and the error, respectively. The constructed algorithm controls both the error and the time step size simultaneously and possesses a good performance in the computational cost compared to the original method. Two stiff problems are numerically solved to assess the effectiveness of the proposed scheme.

Keywords: stiff initial value problem, error correction method, generalized Chebyshev polynomial, node points

Procedia PDF Downloads 573
72 Collocation Errors Made by Saudi Learners of English

Authors: Pakenam Shiha, Nadine Lacsina

Abstract:

Systematic and in-depth analysis of ESL learners’ lexical errors, in general, and of collocation errors, in particular, are relatively rare. Analysis as such proves crucial in understanding how ESL learners construct and use these fixed expressions. Collocational competence of ESL learners is necessary for achieving a native-like proficiency level, which is one of the objectives of foundation programs. This study aims to examine the collocational competence of 50 Saudi foundation program students and identify the collocation errors that they often make. Furthermore, using a questionnaire, the challenges that students encounter in learning collocations and the ways in which their L1 affects their ability to recognize these expressions are identified. To identify the lexical errors and the collocational competence of the students a collocation test was administered. The 150-item lexical collocation test consists of verb-noun and adjective-noun structures. Results of the study reveal that there is a significant difference between the scores of students in the verb-noun and adjective-noun structures. The majority of errors were recorded in the adjective-noun structures due to the students’ L1 influence on the English collocations and the inability to distinguish between synonyms. Moreover, some challenges that students encountered were problems in translation, non-exposure to certain collocations, and degree of L1-L2 difference. All in all, the findings of this study can be interpreted in relation to the student's proficiency level and L2 instruction. Other findings of the study provide insights into language pedagogy—specifically strategies to help students learn collocations more effectively.

Keywords: collocations, ESL, applied linguistics, lexical collocations

Procedia PDF Downloads 122
71 A Hybrid Block Multistep Method for Direct Numerical Integration of Fourth Order Initial Value Problems

Authors: Adamu S. Salawu, Ibrahim O. Isah

Abstract:

Direct solution to several forms of fourth-order ordinary differential equations is not easily obtained without first reducing them to a system of first-order equations. Thus, numerical methods are being developed with the underlying techniques in the literature, which seeks to approximate some classes of fourth-order initial value problems with admissible error bounds. Multistep methods present a great advantage of the ease of implementation but with a setback of several functions evaluation for every stage of implementation. However, hybrid methods conventionally show a slightly higher order of truncation for any k-step linear multistep method, with the possibility of obtaining solutions at off mesh points within the interval of solution. In the light of the foregoing, we propose the continuous form of a hybrid multistep method with Chebyshev polynomial as a basis function for the numerical integration of fourth-order initial value problems of ordinary differential equations. The basis function is interpolated and collocated at some points on the interval [0, 2] to yield a system of equations, which is solved to obtain the unknowns of the approximating polynomial. The continuous form obtained, its first and second derivatives are evaluated at carefully chosen points to obtain the proposed block method needed to directly approximate fourth-order initial value problems. The method is analyzed for convergence. Implementation of the method is done by conducting numerical experiments on some test problems. The outcome of the implementation of the method suggests that the method performs well on problems with oscillatory or trigonometric terms since the approximations at several points on the solution domain did not deviate too far from the theoretical solutions. The method also shows better performance compared with an existing hybrid method when implemented on a larger interval of solution.

Keywords: Chebyshev polynomial, collocation, hybrid multistep method, initial value problems, interpolation

Procedia PDF Downloads 122
70 Edge Detection in Low Contrast Images

Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh K. Pandey

Abstract:

The edges of low contrast images are not clearly distinguishable to the human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images.

Keywords: low contrast image, fractional order differentiator, Laplacian of Gaussian (LoG) method, chebyshev polynomial

Procedia PDF Downloads 636
69 Convergence of Sinc Methods Applied to Kuramoto-Sivashinsky Equation

Authors: Kamel Al-Khaled

Abstract:

A comparative study of the Sinc-Galerkin and Sinc-Collocation methods for solving the Kuramoto-Sivashinsky equation is given. Both approaches depend on using Sinc basis functions. Firstly, a numerical scheme using Sinc-Galerkin method is developed to approximate the solution of Kuramoto-Sivashinsky equation. Sinc approximations to both derivatives and indefinite integrals reduces the solution to an explicit system of algebraic equations. The error in the solution is shown to converge to the exact solution at an exponential. The convergence proof of the solution for the discrete system is given using fixed-point iteration. Secondly, a combination of a Crank-Nicolson formula in the time direction, with the Sinc-collocation in the space direction is presented, where the derivatives in the space variable are replaced by the necessary matrices to produce a system of algebraic equations. The methods are tested on two examples. The demonstrated results show that both of the presented methods more or less have the same accuracy.

Keywords: Sinc-Collocation, nonlinear PDEs, numerical methods, fixed-point

Procedia PDF Downloads 471
68 An Efficient Collocation Method for Solving the Variable-Order Time-Fractional Partial Differential Equations Arising from the Physical Phenomenon

Authors: Haniye Dehestani, Yadollah Ordokhani

Abstract:

In this work, we present an efficient approach for solving variable-order time-fractional partial differential equations, which are based on Legendre and Laguerre polynomials. First, we introduced the pseudo-operational matrices of integer and variable fractional order of integration by use of some properties of Riemann-Liouville fractional integral. Then, applied together with collocation method and Legendre-Laguerre functions for solving variable-order time-fractional partial differential equations. Also, an estimation of the error is presented. At last, we investigate numerical examples which arise in physics to demonstrate the accuracy of the present method. In comparison results obtained by the present method with the exact solution and the other methods reveals that the method is very effective.

Keywords: collocation method, fractional partial differential equations, legendre-laguerre functions, pseudo-operational matrix of integration

Procedia PDF Downloads 166
67 Turkish University Level EFL Learners’ Collocational Knowledge at Receptive and Productive Levels

Authors: Nazife Duygu Bagci

Abstract:

Collocations are an important part of vocabulary knowledge, and it is a subject that has recently attracted attention, while still in need of more research. The aim of this study is to answer three research questions related to the collocational knowledge of Turkish university level EFL learners at different proficiency levels of English. The first research question aims to compare the pre-intermediate (PIN) and the advanced (ADV) level learners’ collocational knowledge at receptive and productive levels. The second one is to analyze the performance of the PIN and the ADV students in two main collocation categories; lexical and grammatical. Lastly, the performance of both groups are focused on to find the collocation type (among verb-noun, adjective- noun, adjective-preposition, noun-preposition collocation types) they show the best performance in. Two offline tests were used to answer these questions. The results show that there is a significant difference between the PIN and the ADV groups at both receptive and productive levels. It can be concluded that proficiency is an important criterion in collocational knowledge, and learners do not necessarily know the collocates of the vocabulary items that they know. Although there is no significant difference between the PIN group’s performance in lexical and grammatical collocations, the ADV group showed a better performance in lexical collocations. Lastly, the PIN group at receptive and the ADV group at both receptive and productive levels showed the best performance in verb-noun collocations, which is in line with the previous research focusing on different collocation types.

Keywords: collocational knowledge, EFL, language proficiency, testing

Procedia PDF Downloads 389
66 Effect of Coriolis Force on Magnetoconvection in an Anisotropic Porous Medium

Authors: N. F. M. Mokhtar, N. Z. A. Hamid

Abstract:

This paper reports an analytical investigation of the stability and thermal convection in a horizontal anisotropic porous medium in the presence of Coriolis force and magnetic field. The Darcy model is used in the momentum equation and Boussinesq approximation is considered for the density variation of the porous medium. The upper and lower boundaries of the porous medium are assumed to be conducting to temperature perturbation and we used first order Chebyshev polynomial Tau method to solve the resulting eigenvalue problem. Analytical solution is obtained for the case of stationary convection. It is found that the porous layer system becomes unstable when the mechanical anisotropy parameter elevated and increasing the Coriolis force and magnetic field help to stabilize the anisotropy porous medium.

Keywords: anisotropic, Chebyshev tau method, Coriolis force, Magnetic field

Procedia PDF Downloads 214
65 Numerical Approach for Solving the Hyper Singular Integral Equation in the Analysis of a Central Symmetrical Crack within an Infinite Strip

Authors: Ikram Slamani, Hicheme Ferdjani

Abstract:

This study focuses on analyzing a Griffith crack situated at the center of an infinite strip. The problem is reformulated as a hyper-singular integral equation and solved numerically using second-order Chebyshev polynomials. The primary objective is to calculate the stress intensity factor in mode 1, denoted as K1. The obtained results reveal the influence of the strip width and crack length on the stress intensity factor, assuming stress-free edges. Additionally, a comparison is made with relevant literature to validate the findings.

Keywords: center crack, Chebyshev polynomial, hyper singular integral equation, Griffith, infinite strip, stress intensity factor

Procedia PDF Downloads 144
64 Implicit Off-Grid Block Method for Solving Fourth and Fifth Order Ordinary Differential Equations Directly

Authors: Olusola Ezekiel Abolarin, Gift E. Noah

Abstract:

This research work considered an innovative procedure to numerically approximate higher-order Initial value problems (IVP) of ordinary differential equations (ODE) using the Legendre polynomial as the basis function. The proposed method is a half-step, self-starting Block integrator employed to approximate fourth and fifth order IVPs without reduction to lower order. The method was developed through a collocation and interpolation approach. The basic properties of the method, such as convergence, consistency and stability, were well investigated. Several test problems were considered, and the results compared favorably with both exact solutions and other existing methods.

Keywords: initial value problem, ordinary differential equation, implicit off-grid block method, collocation, interpolation

Procedia PDF Downloads 84
63 Starting Order Eight Method Accurately for the Solution of First Order Initial Value Problems of Ordinary Differential Equations

Authors: James Adewale, Joshua Sunday

Abstract:

In this paper, we developed a linear multistep method, which is implemented in predictor corrector-method. The corrector is developed by method of collocation and interpretation of power series approximate solutions at some selected grid points, to give a continuous linear multistep method, which is evaluated at some selected grid points to give a discrete linear multistep method. The predictors were also developed by method of collocation and interpolation of power series approximate solution, to give a continuous linear multistep method. The continuous linear multistep method is then solved for the independent solution to give a continuous block formula, which is evaluated at some selected grid point to give discrete block method. Basic properties of the corrector were investigated and found to be zero stable, consistent and convergent. The efficiency of the method was tested on some linear, non-learn, oscillatory and stiff problems of first order, initial value problems of ordinary differential equations. The results were found to be better in terms of computer time and error bound when compared with the existing methods.

Keywords: predictor, corrector, collocation, interpolation, approximate solution, independent solution, zero stable, consistent, convergent

Procedia PDF Downloads 501
62 Approximations of Fractional Derivatives and Its Applications in Solving Non-Linear Fractional Variational Problems

Authors: Harendra Singh, Rajesh Pandey

Abstract:

The paper presents a numerical method based on operational matrix of integration and Ryleigh method for the solution of a class of non-linear fractional variational problems (NLFVPs). Chebyshev first kind polynomials are used for the construction of operational matrix. Using operational matrix and Ryleigh method the NLFVP is converted into a system of non-linear algebraic equations, and solving these equations we obtained approximate solution for NLFVPs. Convergence analysis of the proposed method is provided. Numerical experiment is done to show the applicability of the proposed numerical method. The obtained numerical results are compared with exact solution and solution obtained from Chebyshev third kind. Further the results are shown graphically for different fractional order involved in the problems.

Keywords: non-linear fractional variational problems, Rayleigh-Ritz method, convergence analysis, error analysis

Procedia PDF Downloads 298
61 Modelling of Polymeric Fluid Flows between Two Coaxial Cylinders Taking into Account the Heat Dissipation

Authors: Alexander Blokhin, Ekaterina Kruglova, Boris Semisalov

Abstract:

Mathematical model based on the mesoscopic theory of polymer dynamics is developed for numerical simulation of the flows of polymeric liquid between two coaxial cylinders. This model is a system of nonlinear partial differential equations written in the cylindrical coordinate system and coupled with the heat conduction equation including a specific dissipation term. The stationary flows similar to classical Poiseuille ones are considered, and the resolving equations for the velocity of flow and for the temperature are obtained. For solving them, a fast pseudospectral method is designed based on Chebyshev approximations, that enables one to simulate the flows through the channels with extremely small relative values of the radius of inner cylinder. The numerical analysis of the dependance of flow on this radius and on the values of dissipation constant is done.

Keywords: dynamics of polymeric liquid, heat dissipation, singularly perturbed problem, pseudospectral method, Chebyshev polynomials, stabilization technique

Procedia PDF Downloads 290
60 Constant Order Predictor Corrector Method for the Solution of Modeled Problems of First Order IVPs of ODEs

Authors: A. A. James, A. O. Adesanya, M. R. Odekunle, D. G. Yakubu

Abstract:

This paper examines the development of one step, five hybrid point method for the solution of first order initial value problems. We adopted the method of collocation and interpolation of power series approximate solution to generate a continuous linear multistep method. The continuous linear multistep method was evaluated at selected grid points to give the discrete linear multistep method. The method was implemented using a constant order predictor of order seven over an overlapping interval. The basic properties of the derived corrector was investigated and found to be zero stable, consistent and convergent. The region of absolute stability was also investigated. The method was tested on some numerical experiments and found to compete favorably with the existing methods.

Keywords: interpolation, approximate solution, collocation, differential system, half step, converges, block method, efficiency

Procedia PDF Downloads 337