Search results for: characteristic length
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3927

Search results for: characteristic length

3657 Optimization of Human Hair Concentration for a Natural Rubber Based Composite

Authors: Richu J. Babu, Sony Mathew, Sharon Rony Jacob, Soney C. George, Jibin C. Jacob

Abstract:

Human hair is a non-biodegradable waste available in plenty throughout the world but is rarely explored for applications in engineering fields. Tensile strength of human hair ranges from 170 to 220 MPa. This property of human hair can be made use in the field of making bio-composites[1]. The composite is prepared by commixing the human hair and natural rubber in a two roll mill along with additives followed by vulcanization. Here the concentration of the human hair is varied by fine-tuning the fiber length as 20 mm and sundry tests like tensile, abrasion, tear and hardness were conducted. While incrementing the fiber length up to a certain range the mechanical properties shows superior amendments.

Keywords: human hair, natural rubber, composite, vulcanization, fiber loading

Procedia PDF Downloads 350
3656 An Analytical Study of Small Unmanned Arial Vehicle Dynamic Stability Characteristics

Authors: Abdelhakam A. Noreldien, Sakhr B. Abudarag, Muslim S. Eltoum, Salih O. Osman

Abstract:

This paper presents an analytical study of Small Unmanned Aerial Vehicle (SUAV) dynamic stability derivatives. Simulating SUAV dynamics and analyzing its behavior at the earliest design stages is too important and more efficient design aspect. The approach suggested in this paper is using the wind tunnel experiment to collect the aerodynamic data and get the dynamic stability derivatives. AutoCAD Software was used to draw the case study (wildlife surveillance SUAV). The SUAV is scaled down to be 0.25% of the real SUAV dimensions and converted to a wind tunnel model. The model was tested in three different speeds for three different attitudes which are; pitch, roll and yaw. The wind tunnel results were then used to determine the case study stability derivative values, and hence it used to calculate the roots of the characteristic equation for both longitudinal and lateral motions. Finally, the characteristic equation roots were found and discussed in all possible cases.

Keywords: model, simulating, SUAV, wind tunnel

Procedia PDF Downloads 345
3655 A Study of Standing-Wave Thermoacoustic Refrigerator

Authors: Patcharin Saechan, Isares Dhuchakallaya

Abstract:

Thermoacoustic refrigerator is a cooling device which uses the acoustic waves to produce the cooling effect. The aim of this paper is to explore the experimental and numerical feasibility of a standing-wave thermoacoustic refrigerator. The effects of the stack length, position of stack and operating frequency on the cooling performance are carried out. The circular pore stacks are tested under the atmospheric pressure. A low-cost loudspeaker is used as an acoustic driver. The results show that the location of stack installed in resonator tube has a greater effect on the cooling performance than the stack length and operating frequency, respectively. The temperature difference across the ends of the stack can be generated up to 13.7°C, and the temperature of cold-end is dropped down by 5.3°C from the ambient temperature.

Keywords: cooling performance, refrigerator, standing-wave, thermoacoustics

Procedia PDF Downloads 170
3654 Aspects of the Reproductive Biology of Brook Trout Neolissochilus stracheyi (Day, 1871) in Northern, Thailand

Authors: Thapanee Pholdee, Apinun Suvarnaraksha

Abstract:

Reproductive biology of Brook trout, Neolissochilus stracheyi (Day, 1871), were sampled in the Northern of Thailand during October 2010 - September 2011 from the fisherman, using gillnet of various mesh sizes. For the study of relationships between total length and body weight, spawning seasons, sex ratio and fecundity. At least 66 fish samples were used every month. The result showed that the total 821 Brook trout had 7.4-61(23.32±5.91 cm). There were 353 males that had fish samples there were 8.5-45.1 cm of TL (22.36±5.91cm) and 468 females that had 7.4±61 cm of TL (24.04±7.09 cm). The relationships equation between total length and weight was W = 0.008TL³.⁰⁶⁴ (r² = 0.940) for total fish, W=0.007TL³.¹⁰⁷ (r² = 0.946) for females and W=0.010TL³.⁰⁰³ (r² = 0.930) for males. The relative condition factor (K) of male and female was 1.090±0.067 and 1.116±0.102 respectively. The max of GSI was in June for male and female. The spawning season was found all year round with three peaks: January, June, and August. Estimated fecundity of mature ovaries ranged from 220 to 3,500 eggs. The estimated average fecundity was 1404.55 ±651.51 eggs. The relationships between fecundity and total length revealed F= 121.1TL-2100 and relationships between fecundity and weight revealed F= 4.535 + 128.78. The results from studies can be further applied to the economic culture, conservation, and management of the Brook trout in Northern, Thailand.

Keywords: reproductive biology, Neolissochilus stracheyi, Northern Thailand, Brook trout

Procedia PDF Downloads 277
3653 Optimal Design of Polymer Based Piezoelectric Actuator with Varying Thickness and Length Ratios

Authors: Vineet Tiwari, R. K. Dwivedi, Geetika Srivastava

Abstract:

Piezoelectric cantilevers are exploited for their use in sensors and actuators. In this study, a unimorph cantilever beam is considered as a study element with a piezoelectric polymer Polyvinylidene fluoride (PVDF) layer bonded to a substrate layer. The different substrates like polysilicon, stainless steel and silicon nitride are tried for the study. An effort has been made to optimize and study the effect of the various parameters of the device in order to achieve maximum tip deflection. The variation of the tip displacement of the cantilever with respect to the length ratio of the nonpiezoelectric layer to the piezoelectric layer has been studied. The electric response of this unimorph cantilever beam is simulated with the help of finite element analysis software COMSOL Multiphysics.

Keywords: actuators, cantilever, piezoelectric, sensors, PVDF

Procedia PDF Downloads 403
3652 Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media

Authors: M. Ghanbari, S. Hossainpour, G. Rezazadeh

Abstract:

In this paper, longitudinal vibration of a micro-beam in micro-scale fluid media has been investigated. The proposed mathematical model for this study is made up of a micro-beam and a micro-plate at its free end. An AC voltage is applied to the pair of piezoelectric layers on the upper and lower surfaces of the micro-beam in order to actuate it longitudinally. The whole structure is bounded between two fixed plates on its upper and lower surfaces. The micro-gap between the structure and the fixed plates is filled with fluid. Fluids behave differently in micro-scale than macro, so the fluid field in the gap has been modeled based on micro-polar theory. The coupled governing equations of motion of the micro-beam and the micro-scale fluid field have been derived. Due to having non-homogenous boundary conditions, derived equations have been transformed to an enhanced form with homogenous boundary conditions. Using Galerkin-based reduced order model, the enhanced equations have been discretized over the beam and fluid domains and solve simultaneously in order to obtain force response of the micro-beam. Effects of micro-polar parameters of the fluid as characteristic length scale, coupling parameter and surface parameter on the response of the micro-beam have been studied.

Keywords: micro-polar theory, Galerkin method, MEMS, micro-fluid

Procedia PDF Downloads 152
3651 Natural Convection of a Nanofluid in a Conical Container

Authors: Brahim Mahfoud, Ali Bendjaghlouli

Abstract:

Natural convection is simulated in a truncated cone filled with nanofluid. Inclined and top walls have constant temperature where the heat source is located on the bottom wall of the conical container which is thermally insulated. A finite volume approach is used to solve the governing equations using the SIMPLE algorithm for different parameters such as Rayleigh number, inclination angle of inclined walls of the enclosure and heat source length. The results showed an enhancement in cooling system by using a nanofluid, when conduction regime is assisted. The inclination angle of inclined sidewall and heat source length affect the heat transfer rate and the maximum temperature.

Keywords: heat source, truncated cone, nanofluid, natural convection

Procedia PDF Downloads 339
3650 Design of a Vehicle Door Structure Based on Finite Element Method

Authors: Tawanda Mushiri, Charles Mbohwa

Abstract:

The performance of door assembly is very significant for the vehicle design. In the present paper, the finite element method is used in the development processes of the door assembly. The stiffness, strength, modal characteristic, and anti-extrusion of a newly developed passenger vehicle door assembly are calculated and evaluated by several finite element analysis commercial software. The structural problems discovered by FE analysis have been modified and finally achieved the expected door structure performance target of this new vehicle. The issue in focus is to predict the performance of the door assembly by powerful finite element analysis software, and optimize the structure to meet the design targets. It is observed that this method can be used to forecast the performance of vehicle door efficiently when it’s designed. In order to reduce lead time and cost in the product development of vehicles more development will be made virtually.

Keywords: vehicle door, structure, strength, stiffness, modal characteristic, anti-extrusion, Finite Element Method

Procedia PDF Downloads 394
3649 Analysis of Factors Influencing the Response Time of an Aspirating Gaseous Agent Concentration Detection Method

Authors: Yu Guan, Song Lu, Wei Yuan, Heping Zhang

Abstract:

Gas fire extinguishing system is widely used due to its cleanliness and efficiency, and since its spray will be affected by many factors such as convection and obstacles in jetting region, so in order to evaluate its effectiveness, detecting concentration distribution in the jetting area is indispensable, which is commonly achieved by aspirating concentration detection technique. During the concentration measurement, the response time of detector is a very important parameter, especially for those fire-extinguishing systems with rapid gas dispersion. Long response time will not only underestimate its concentration but also prolong the change of concentration with time. Therefore it is necessary to analyze the factors influencing the response time. In the paper, an aspirating concentration detection method was introduced, which is achieved by using a small critical nozzle and a laminar flowmeter, and because of the response time is mainly related to the gas transport process from sampling site to the sensor, the effects of exhaust pipe size, gas flow rate, and gas concentration on its response time were analyzed. During the research, Bromotrifluoromethane (CBrF₃) was used. The effect of the sampling tube was investigated with different length of 1, 2, 3, 4 and 5 m (5mm in pipe diameter) and different pipe diameter of 3, 4, 5, 6 and 8 mm (3m in length). The effect of gas flow rate was analyzed by changing the throat diameter of the critical nozzle with 0.5, 0.682, 0.75, 0.8, 0.84 and 0.88 mm. The effect of gas concentration on response time was studied with the concentration range of 0-25%. The result showed that the response time increased with the increase of both the length and diameter of the sampling pipe, and the effect of length on response time was linear, but for the effect of diameter, it was exponential. It was also found that as the throat diameter of critical nozzle increased, the response time reduced a lot, in other words, gas flow rate has a great influence on response time. For the effect of gas concentration, the response time increased with the increase of the CBrF₃ concentration, and the slope of the curve was reduced.

Keywords: aspirating concentration detection, fire extinguishing, gaseous agent, response time

Procedia PDF Downloads 244
3648 Models to Calculate Lattice Spacing, Melting Point and Lattice Thermal Expansion of Ga₂Se₃ Nanoparticles

Authors: Mustafa Saeed Omar

Abstract:

The formula which contains the maximum increase of mean bond length, melting entropy and critical particle radius is used to calculate lattice volume in nanoscale size crystals of Ga₂Se₃. This compound belongs to the binary group of III₂VI₃. The critical radius is calculated from the values of the first surface atomic layer height which is equal to 0.336nm. The size-dependent mean bond length is calculated by using an equation-free from fitting parameters. The size-dependent lattice parameter then is accordingly used to calculate the size-dependent lattice volume. The lattice size in the nanoscale region increases to about 77.6 A³, which is up to four times of its bulk state value 19.97 A³. From the values of the nanosize scale dependence of lattice volume, the nanoscale size dependence of melting temperatures is calculated. The melting temperature decreases with the nanoparticles size reduction, it becomes zero when the radius reaches to its critical value. Bulk melting temperature for Ga₂Se₃, for example, has values of 1293 K. From the size-dependent melting temperature and mean bond length, the size-dependent lattice thermal expansion is calculated. Lattice thermal expansion decreases with the decrease of nanoparticles size and reaches to its minimum value as the radius drops down to about 5nm.

Keywords: Ga₂Se₃, lattice volume, lattice thermal expansion, melting point, nanoparticles

Procedia PDF Downloads 141
3647 A Study of Anthropometric Correlation between Upper and Lower Limb Dimensions in Sudanese Population

Authors: Altayeb Abdalla Ahmed

Abstract:

Skeletal phenotype is a product of a balanced interaction between genetics and environmental factors throughout different life stages. Therefore, interlimb proportions are variable between populations. Although interlimb proportion indices have been used in anthropology in assessing the influence of various environmental factors on limbs, an extensive literature review revealed that there is a paucity of published research assessing interlimb part correlations and possibility of reconstruction. Hence, this study aims to assess the relationships between upper and lower limb parts and develop regression formulae to reconstruct the parts from one another. The left upper arm length, ulnar length, wrist breadth, hand length, hand breadth, tibial length, bimalleolar breadth, foot length, and foot breadth of 376 right-handed subjects, comprising 187 males and 189 females (aged 25-35 years), were measured. Initially, the data were analyzed using basic univariate analysis and independent t-tests; then sex-specific simple and multiple linear regression models were used to estimate upper limb parts from lower limb parts and vice-versa. The results of this study indicated significant sexual dimorphism for all variables. The results indicated a significant correlation between the upper and lower limbs parts (p < 0.01). Linear and multiple (stepwise) regression equations were developed to reconstruct the limb parts in the presence of a single or multiple dimension(s) from the other limb. Multiple stepwise regression equations generated better reconstructions than simple equations. These results are significant in forensics as it can aid in identification of multiple isolated limb parts particularly during mass disasters and criminal dismemberment. Although a DNA analysis is the most reliable tool for identification, its usage has multiple limitations in undeveloped countries, e.g., cost, facility availability, and trained personnel. Furthermore, it has important implication in plastic and orthopedic reconstructive surgeries. This study is the only reported study assessing the correlation and prediction capabilities between many of the upper and lower dimensions. The present study demonstrates a significant correlation between the interlimb parts in both sexes, which indicates a possibility to reconstruction using regression equations.

Keywords: anthropometry, correlation, limb, Sudanese

Procedia PDF Downloads 268
3646 Evaluation of Nutrition Supplement on Body Composition during Catch-Up Growth, in a Pre-Clinical Model of Growth Restriction

Authors: Bindya Jacob

Abstract:

The aim of the present study was to assess the quality of catchup growth induced by Oral Nutrition Supplement (ONS), in animal model of growth restriction due to under nutrition. Quality of catch-up growth was assessed by proportion of lean body mass (LBM) and fat mass (FM). Young SD rats were food restricted at 70% of normal caloric intake for 4 weeks; and re-fed at 120% of normal caloric intake for 4 weeks. Refeeding diet had 50% calories from animal diet and 50% from ONS formulated for optimal growth. After refeeding, the quantity and quality of catch-up growth were measured including weight, length, LBM and FM. During nutrient restriction, body weight and length of animals was reduced compared to healthy controls. Both LBM and FM were significantly lower than healthy controls (p < 0.001). Refeeding with ONS resulted in increase of weight and length, with significant catch-up growth compared to baseline (p < 0.001). Detailed examination of body composition showed that the catch-up in body weight was due to proportionate increase of LBM and FM, resulting in a final body composition similar to healthy controls. This data supports the use of well-designed ONS for recovery from growth restriction due to under nutrition, and return to normal growth trajectory characterized by normal ratio of lean and fat mass.

Keywords: catch up growth, body composition, nutrient restriction, healthy growth

Procedia PDF Downloads 407
3645 Interaction Diagrams for Symmetrically Reinforced Concrete Square Sections Under 3 Dimensional Multiaxial Loading Conditions

Authors: Androniki-Anna Doulgeroglou, Panagiotis Kotronis, Giulio Sciarra, Catherine Bouillon

Abstract:

The interaction diagrams are functions that define ultimate states expressed in terms of generalized forces (axial force, bending moment and shear force). Two characteristic states for reinforced concrete (RC) sections are proposed: the first characteristic state corresponds to the yield of the reinforcement bars and the second to the peak values of the generalized forces generalized displacements curves. 3D numerical simulations are then conducted for RC columns and the global responses are compared to experimental results. Interaction diagrams for combined flexion, shear and axial force loading conditions are numerically produced for symmetrically RC square sections for different reinforcement ratios. Analytical expressions of the interaction diagrams are also proposed, satisfying the condition of convexity. Comparison with interaction diagrams from the Eurocode is finally presented for the study cases.

Keywords: analytical convex expressions, finite element method, interaction diagrams, reinforced concrete

Procedia PDF Downloads 107
3644 Optimal Beam for Accelerator Driven Systems

Authors: M. Paraipan, V. M. Javadova, S. I. Tyutyunnikov

Abstract:

The concept of energy amplifier or accelerator driven system (ADS) involves the use of a particle accelerator coupled with a nuclear reactor. The accelerated particle beam generates a supplementary source of neutrons, which allows the subcritical functioning of the reactor, and consequently a safe exploitation. The harder neutron spectrum realized ensures a better incineration of the actinides. The almost generalized opinion is that the optimal beam for ADS is represented by protons with energy around 1 GeV (gigaelectronvolt). In the present work, a systematic analysis of the energy gain for proton beams with energy from 0.5 to 3 GeV and ion beams from deuteron to neon with energies between 0.25 and 2 AGeV is performed. The target is an assembly of metallic U-Pu-Zr fuel rods in a bath of lead-bismuth eutectic coolant. The rods length is 150 cm. A beryllium converter with length 110 cm is used in order to maximize the energy released in the target. The case of a linear accelerator is considered, with a beam intensity of 1.25‧10¹⁶ p/s, and a total accelerator efficiency of 0.18 for proton beam. These values are planned to be achieved in the European Spallation Source project. The energy gain G is calculated as the ratio between the energy released in the target to the energy spent to accelerate the beam. The energy released is obtained through simulation with the code Geant4. The energy spent is calculating by scaling from the data about the accelerator efficiency for the reference particle (proton). The analysis concerns the G values, the net power produce, the accelerator length, and the period between refueling. The optimal energy for proton is 1.5 GeV. At this energy, G reaches a plateau around a value of 8 and a net power production of 120 MW (megawatt). Starting with alpha, ion beams have a higher G than 1.5 GeV protons. A beam of 0.25 AGeV(gigaelectronvolt per nucleon) ⁷Li realizes the same net power production as 1.5 GeV protons, has a G of 15, and needs an accelerator length 2.6 times lower than for protons, representing the best solution for ADS. Beams of ¹⁶O or ²⁰Ne with energy 0.75 AGeV, accelerated in an accelerator with the same length as 1.5 GeV protons produce approximately 900 MW net power, with a gain of 23-25. The study of the evolution of the isotopes composition during irradiation shows that the increase in power production diminishes the period between refueling. For a net power produced of 120 MW, the target can be irradiated approximately 5000 days without refueling, but only 600 days when the net power reaches 1 GW (gigawatt).

Keywords: accelerator driven system, ion beam, electrical power, energy gain

Procedia PDF Downloads 114
3643 Quasi–Periodicity of Tonic Intervals in Octave and Innovation of Themes in Music Compositions

Authors: R. C. Tyagi

Abstract:

Quasi-periodicity of frequency intervals observed in Shruti based Absolute Scale of Music has been used to graphically identify the Anchor notes ‘Vadi’ and ‘Samvadi’ which are nodal points for expansion, elaboration and iteration of the emotional theme represented by the characteristic tonic arrangement in Raga compositions. This analysis leads to defining the Tonic parameters in the octave including the key-note frequency, tonic intervals’ anchor notes and the on-set and range of quasi-periodicities as exponents of 2. Such uniformity of representation of characteristic data would facilitate computational analysis and synthesis of music compositions and also help develop noise suppression techniques. Criteria for tuning of strings for compatibility with placement of frets on finger boards is discussed. Natural Rhythmic cycles in music compositions are analytically shown to lie between 3 and 126 beats.

Keywords: absolute scale, anchor notes, computational analysis, frets, innovation, noise suppression, Quasi-periodicity, rhythmic cycle, tonic interval, Shruti

Procedia PDF Downloads 278
3642 Shock Isolation Performance of a Pre-Compressed Large Deformation Shock Isolator with Quasi-Zero-Stiffness Characteristic

Authors: Ji Chen, Chunhui Zhang, Fanming Zeng, Lei Zhang, Ying Li, Wei Zhang

Abstract:

Based on the synthetic principle of force, a pre-compressed nonlinear isolator with quasi-zero-stiffness (QZS) is developed for shock isolation of ship equipment. The proposed isolator consists of a vertical spring with positive stiffness and several lateral springs with negative stiffness. An analytical expression of vertical stiffness of the nonlinear isolator is derived and numerical simulation on the effect of the geometric design parameters is carried out. Besides, a pre-compressed QZS shock isolation system model is established. The stiffness characteristic of the system is studied and the effects of excitation amplitude and friction damping on shock isolation performance are discussed respectively. The research results show that in comparison with linear shock isolation system, the pre-compressed QZS shock isolation system could realize constant-force or approximately constant-force function and perform better anti-impact performance.

Keywords: quasi-zero-stiffness, constant-force, pre-compressed, large deformation, shock isolation, friction damping

Procedia PDF Downloads 645
3641 Effects of Exposure to a Language on Perception of Non-Native Phonologically Contrastive Duration

Authors: Chuyu Huang, Itsuki Minemi, Kuanlin Chen, Yuki Hirose

Abstract:

It remains unclear how language speakers are able to perceive phonological contrasts that do not exist on their own. This experiment uses the vowel-length distinction in Japanese, which is phonologically contrastive and co-occurs with tonal change in some cases. For speakers whose first language does not distinguish vowel length, contrastive duration is usually misperceived, e.g., Mandarin speakers. Two alternative hypotheses for how Mandarin speakers would perceive a phonological contrast that does not exist in their language make different predictions. The stress parameter model does not have a clear prediction about the impact of tonal type. Mandarin speakers will likely be not able to perceive vowel length as well as Japanese native speakers do, but the performance might not correlate to tonal type because the prosody of their language is distinctive, which requires users to encode lexical prosody and notice subtle differences in word prosody. By contrast, cue-based phonetic models predict that Mandarin speakers may rely on pitch differences, a secondary cue, to perceive vowel length. Two groups of Mandarin speakers, including naive non-Japanese speakers and beginner learners, were recruited to participate in an AX discrimination task involving two Japanese sound stimuli that contain a phonologically contrastive environment. Participants were asked to indicate whether the two stimuli containing a vowel-length contrast (e.g., maapero vs. mapero) sound the same. The experiment was bifactorial. The first factor contrasted three syllabic positions (syllable position; initial/medial/final), as it would be likely to affect the perceptual difficulty, as seen in previous studies, and the second factor contrasted two pitch types (accent type): one with accentual change that could be distinguished with the lexical tones in Mandarin (the different condition), with the other group having no tonal distinction but only differing in vowel length (the same condition). The overall results showed that a significant main effect of accent type by applying a linear mixed-effects model (β = 1.48, SE = 0.35, p < 0.05), which implies that Mandarin speakers tend to more successfully recognize vowel-length differences when the long vowel counterpart takes on a tone that exists in Mandarin. The interaction between the accent type and the syllabic position is also significant (β = 2.30, SE = 0.91, p < 0.05), showing that vowel lengths in the different conditions are more difficult to recognize in the word-final case relative to the initial condition. The second statistical model, which compares naive speakers to beginners, was conducted with logistic regression to test the effects of the participant group. A significant difference was found between the two groups (β = 1.06, 95% CI = [0.36, 2.03], p < 0.05). This study shows that: (1) Mandarin speakers are likely to use pitch cues to perceive vowel length in a non-native language, which is consistent with the cue-based approaches; (2) an exposure effect was observed: the beginner group achieved a higher accuracy for long vowel perception, which implied the exposure effect despite the short period of language learning experience.

Keywords: cue-based perception, exposure effect, prosodic perception, vowel duration

Procedia PDF Downloads 198
3640 An Investigation of the Weak Localization, Electron-Electron Interaction and the Superconducting Fluctuations in a Weakly Disordered Granular Aluminum Film

Authors: Rukshana Pervin

Abstract:

We report a detailed study on the transport properties of a 40 nm thick granular aluminum film. As measured by temperature-dependent resistance R(T), a resistance peak is observed before the transition to superconductivity, which indicates that the diffusion channel is subjected to weak localization and electron-electron interaction, and the superconductor channel is subjected to SC fluctuations (SCFs). The zero-magnetic field transport measurement demonstrated that Electron-Electron Interaction (EEI), weak localization, and SCFs are closely related in this granular aluminum film. The characteristic temperature at which SCFs emerge on the sample is determined by measuring the R(T) during cooling. The SCF of the film is studied in terms of the direct contribution of the Aslamazov-Larkin's fluctuation Cooper pair density and the indirect contribution of the Maki-Thomson's quasiparticle pair density. In this sample, the rise in R(T) above the SCF characteristic temperature indicates the WL and/or EEI. Comparative analyses are conducted on how the EEI and WL contribute to the upturn in R(T).

Keywords: fluctuation superconductivity, weak localization, thermal deposition, electron-electron interaction

Procedia PDF Downloads 30
3639 Phytotreatment of Polychlorinated Biphenyls Contaminated Soil by Chromolaena odorata L. King and Robinson

Authors: R. O. Anyasi, H. I. Atagana

Abstract:

In this study, phytoextraction ability of a weed on Aroclor 1254 was studied under greenhouse conditions. Chromolaena odorata plants were transplanted into soil containing 100, 200, and 500 ppm of Aroclor in 1L pots. The experiments were watered daily at 70 % moisture field capacity. Parameters such as fully expanded leaves per plant, shoot length, leaf chlorophyll content as well as root length at harvest were measured. PCB was not phytotoxic to C. odorata growth but plants in the 500 ppm treatment only showed diminished growth at the sixth week. Percentage increases in height of plant were 45.9, 39.4 and 40.0 for 100, 200 and 500 ppm treatments respectively. Such decreases were observed in the leaf numbers, root length and leaf chlorophyll concentration. The control sample showed 48.3 % increase in plant height which was not significant from the treated samples, an indication that C. odorata could survive such PCB concentration and could be used to remediate contaminated soil. Mean total PCB absorbed by C. odorata plant was between 6.40 and 64.60 ppm per kilogram of soil, leading to percentage PCB absorption of 0.03 and 17.03 % per kilogram of contaminated soil. PCBs were found mostly in the root tissues of the plants, and the Bioaccumulation factor were between 0.006-0.38. Total PCB absorbed by the plant increases as the concentration of the compound is increased. With these high BAF ensured, C. odorata could serve as a promising candidate plant in phytoextraction of PCB from a PCB-contaminated soil.

Keywords: phytoremediation, bioremediation, soil restoration, polychlorinated biphenyls (PCB), biological treatment, aroclor

Procedia PDF Downloads 353
3638 Surface Modification of TiO2 Layer with Phosphonic Acid Monolayer in Perovskite Solar Cells: Effect of Chain Length and Terminal Functional Group

Authors: Seid Yimer Abate, Ding-Chi Huang, Yu-Tai Tao

Abstract:

In this study, charge extraction characteristics at the perovskite/TiO2 interface in the conventional perovskite solar cell is studied by interface engineering. Self-assembled monolayers of phosphonic acids with different chain length and terminal functional group were used to modify mesoporous TiO2 surface to modulate the surface property and interfacial energy barrier to investigate their effect on charge extraction and transport from the perovskite to the mp-TiO2 and then the electrode. The chain length introduces a tunnelling distance and the end group modulate the energy level alignment at the mp-TiO2 and perovskite interface. The work function of these SAM-modified mp-TiO2 varied from −3.89 eV to −4.61 eV, with that of the pristine mp-TiO2 at −4.19 eV. A correlation of charge extraction and transport with respect to the modification was attempted. The study serves as a guide to engineer ETL interfaces with simple SAMs to improve the charge extraction, carrier balance and device long term stability. In this study, a maximum PCE of ~16.09% with insignificant hysteresis was obtained, which is 17% higher than the standard device.

Keywords: Energy level alignment, Interface engineering, Perovskite solar cells, Phosphonic acid monolayer, Tunnelling distance

Procedia PDF Downloads 102
3637 Modernization of Garri-Frying Technologies with Respect to Women Anthromophic Quality in Nigeria

Authors: Adegbite Bashiru Adeniyi, Olaniyi Akeem Olawale, Ayobamidele Sinatu Juliet

Abstract:

The study was carried out in the 6 South Western states of Nigeria to analyze socio-economic characteristic of garri processors and their anthropometric qualities with respect to modern technologies used in garri processing. About 20 respondents were randomly selected from each of the 6 workstations purposively considered for the study due to their daily processing activities already attracted high patronage of customers. These include Oguntolu village (Ogun State), Igoba-Akure (Ondo State), Imo-Ilesa (Osun State), Odo Oba-Ileri (Oyo State), Irasa village (Ekiti State) and Epe in Lagos state. Interview schedule was conducted for 120 respondents to elicit information. Data were analyzed using descriptive statistical tools. It was observed from the findings that respondents were in their most productive age range (36-45 years) except Ogun state where majority (45%) were relatively older than 45 years. A fewer processors were much younger than 26 years old. It furthers revealed that not less than 55% have body weight greater than 50.0 kilogram, also not less than 70% were taller than 1.5 meter. So also, the hand length and hand thickness of the majority were long and bulky which are considered suitable for operating some modern and improved technologies in garri-frying process. This information could be used by various technological developers to enhance production of modern equipment and tools for a greater efficiency.

Keywords: agro-business, anthromorphic, modernization, proficiency

Procedia PDF Downloads 475
3636 Comparison of Agree Method and Shortest Path Method for Determining the Flow Direction in Basin Morphometric Analysis: Case Study of Lower Tapi Basin, Western India

Authors: Jaypalsinh Parmar, Pintu Nakrani, Bhaumik Shah

Abstract:

Digital Elevation Model (DEM) is elevation data of the virtual grid on the ground. DEM can be used in application in GIS such as hydrological modelling, flood forecasting, morphometrical analysis and surveying etc.. For morphometrical analysis the stream flow network plays a very important role. DEM lacks accuracy and cannot match field data as it should for accurate results of morphometrical analysis. The present study focuses on comparing the Agree method and the conventional Shortest path method for finding out morphometric parameters in the flat region of the Lower Tapi Basin which is located in the western India. For the present study, open source SRTM (Shuttle Radar Topography Mission with 1 arc resolution) and toposheets issued by Survey of India (SOI) were used to determine the morphometric linear aspect such as stream order, number of stream, stream length, bifurcation ratio, mean stream length, mean bifurcation ratio, stream length ratio, length of overland flow, constant of channel maintenance and aerial aspect such as drainage density, stream frequency, drainage texture, form factor, circularity ratio, elongation ratio, shape factor and relief aspect such as relief ratio, gradient ratio and basin relief for 53 catchments of Lower Tapi Basin. Stream network was digitized from the available toposheets. Agree DEM was created by using the SRTM and stream network from the toposheets. The results obtained were used to demonstrate a comparison between the two methods in the flat areas.

Keywords: agree method, morphometric analysis, lower Tapi basin, shortest path method

Procedia PDF Downloads 209
3635 Passive Control of Elliptic Jet by Using Triangular and Truncated Tabs

Authors: Saif Akram, E. Rathakrishnan

Abstract:

The mixing promoting efficiency of two identical sharp and truncated vertex triangular tabs offering geometrical blockage of 2.5% each, placed at the exit of a Mach 1.5 elliptic nozzle was studied experimentally. The effectiveness of both the tabs in enhancing the mixing of jets with the ambient air are determined by measuring the Pitot pressure along the jet axis and the jet spread in both the minor and major axes of the elliptic nozzle, covering marginally overexpanded to moderately underexpanded levels at the nozzle exit. The results reveal that both the tabs enhance mixing characteristics of the uncontrolled elliptic jet when placed at minor axis. A core length reduction of 67% is achieved at NPR 3 which is the overexpanded state. Similarly, the core length is reduced by about 67%, 50% and 57% at NPRs of 4, 5 and 6 (underexpanded states) respectively. However, unlike the considerable increment in mixing promoting efficiency by the use of truncated vertex tabs for axisymmetric jets, the effect is not much pronounced for the case of supersonic elliptic jets. The CPD plots for both the cases almost overlap, especially when tabs are placed at minor axis, at all the pressure conditions. While, when the tabs are used at major axis, in the case of overexpanded condition, the sharp vertex triangular tabs act as a better mixing enhancer for the supersonic elliptic jets. For the jet controlled with truncated vertex triangular tabs, the core length reductions are of the same order as those for the sharp vertex triangular tabs. The jet mixing is hardly influenced by the tip effect in case of supersonic elliptic jet.

Keywords: elliptic jet, tabs, truncated, triangular

Procedia PDF Downloads 357
3634 CE Method for Development of Japan's Stochastic Earthquake Catalogue

Authors: Babak Kamrani, Nozar Kishi

Abstract:

Stochastic catalog represents the events module of the earthquake loss estimation models. It includes series of events with different magnitudes and corresponding frequencies/probabilities. For the development of the stochastic catalog, random or uniform sampling methods are used to sample the events from the seismicity model. For covering all the Magnitude Frequency Distribution (MFD), a huge number of events should be generated for the above-mentioned methods. Characteristic Event (CE) method chooses the events based on the interest of the insurance industry. We divide the MFD of each source into bins. We have chosen the bins based on the probability of the interest by the insurance industry. First, we have collected the information for the available seismic sources. Sources are divided into Fault sources, subduction, and events without specific fault source. We have developed the MFD for each of the individual and areal source based on the seismicity of the sources. Afterward, we have calculated the CE magnitudes based on the desired probability. To develop the stochastic catalog, we have introduced uncertainty to the location of the events too.

Keywords: stochastic catalogue, earthquake loss, uncertainty, characteristic event

Procedia PDF Downloads 268
3633 Effects of Length of Time of Fasting upon Subjective and Objective Variables When Controlling Sleep, Food and Fluid Intakes

Authors: H. Alabed, K. Abuzayan. L. Fgie, K. Zarug

Abstract:

Ramadan requires individuals to abstain from food and fluid intake between sunrise and sunset; physiological considerations predict that poorer mood, physical performance and mental performance will result. In addition, any difficulties will be worsened because preparations for fasting and recovery from it often mean that nocturnal sleep is decreased in length, and this independently affects mood and performance. A difficulty of interpretation in many studies is that the observed changes could be due to fasting but also to the decreased length of sleep and altered food and fluid intakes before and after the daytime fasting. These factors were separated in this study, which took place over three separate days and compared the effects of different durations of fasting (4, 8 or 16h) upon a wide variety of measures (including subjective and objective assessments of performance, body composition, dehydration and responses to a short bout of exercise) - but with an unchanged amount of nocturnal sleep, controlled supper the previous evening, controlled intakes at breakfast and daytime naps not being allowed. Many of the negative effects of fasting observed in previous studies were present in this experiment also. These findings indicate that fasting was responsible for many of the changes previously observed, though some effect of sleep loss, particularly if occurring on successive days (as would occur in Ramadan) cannot be excluded.

Keywords: drinking, eating, mental performance, physical performance, social activity, blood, sleepiness

Procedia PDF Downloads 368
3632 Oscillatory Electroosmotic Flow in a Microchannel with Slippage at the Walls and Asymmetric Wall Zeta Potentials

Authors: Oscar Bautista, Jose Arcos

Abstract:

In this work, we conduct a theoretical analysis of an oscillatory electroosmotic flow in a parallel-plate microchannel taking into account slippage at the microchannel walls. The governing equations given by the Poisson-Boltzmann (with the Debye-Huckel approximation) and momentum equations are nondimensionalized from which four dimensionless parameters appear; a Reynolds angular number, the ratio between the zeta potentials of the microchannel walls, the electrokinetic parameter and the dimensionless slip length which measures the competition between the Navier slip length and the half height microchannel. The principal results indicate that the slippage has a strong influence on the magnitude of the oscillatory electroosmotic flow increasing the velocity magnitude up to 50% for the numerical values used in this work.

Keywords: electroosmotic flows, oscillatory flow, slippage, microchannel

Procedia PDF Downloads 197
3631 The Effect of Mgo and Rubber Nanofillers on Electrical Treeing Characteristic of XLPE Based Nanocomposites

Authors: Nur Amira nor Arifin, Tashia Marie Anthony, Mohd Ruzlin Mokhtar, Huzainie Shafi Abd Halim

Abstract:

Cross-linked polyethylene (XLPE) material is being used as the cable insulation for the past decades due to its higher working temperature of 90 ˚C and some other advantages. However, the use of XLPE as an insulating material for underground distribution cables may have subjected to the unforeseeable weather and uncontrollable environmental condition. These unfavorable condition when combine with high electric field may lead to the initiation and growth of water tree in XLPE insulation. There are several studies on numerous nanofillers incorporate into polymer matrix to hinder the growth of tree propagation. Hence, in this study aims to investigate the effect of MgO and rubber nanofillers at different concentration on the electrical tree of XLPE. The nanofillers and XLPE were mixed and later extruded. After extrusion, the material were then fabricated into the desired shape for experimental purposes. The result shows that the electrical tree propagation of XLPE filled with optimize concentration of nanofillers were much slower compared to pure XLPE. In this paper, the effect of nanofillers towards electrical treeing characteristic will be discussed.

Keywords: electrical trees, nanofillers, polymer nanocomposites, XLPE

Procedia PDF Downloads 111
3630 Effect of Passive Pectoralis Minor Stretching on Scapular Kinematics in Scapular Dyskinesia

Authors: Seema Saini, Nidhi Chandra, Tushar Palekar

Abstract:

Objective: To determine the effect of Passive pectoralis minor muscle stretching on scapular kinematics in individuals with scapular dyskinesia. Design: A randomized controlled study was conducted in Pune. The sample size was 30 subjects, which were randomly allocated to either Group A, the experimental group in which passive pectoralis minor stretch was given, or Group B, the control group, in which conventional exercises were given for 3 days a week over 4 weeks. Pre and Post treatment readings of the outcome measures, pectoralis minor length, scapular upward rotation, and lateral scapular slide test were recorded. Results: The results obtained prove a significant difference between pre and post mean values of pectoralis minor length in group A (pre 21.91, post 22.87) and in group B (pre 23.55 post 23.99); scapular upward rotation in group A (pre 49.95, post 50.61) and group B (pre 52.64, post 53.51); lateral scapular slide test at 0° abduction in group A (pre 6.613, post 6.14) and group B (pre 6.84, post 6.22); lateral scapular slide test at 45° abduction in group A (pre 7.14 and post 7.12) and group B (pre 8.18, post 7.53). With an inter-group analysis, it was found that mean of pectoralis minor length, scapular upward rotation, and LSST at 0° abduction in group A was significant than group B (p<0.05). Conclusion: Passive pectoralis minor stretching along with conventional strengthening exercises was shown to be more effective in improving scapular kinematics among patients with scapular dyskinesia.

Keywords: scapulohumeral rhythm, scapular upward rotation, rounded shoulders, scapular strengthening

Procedia PDF Downloads 133
3629 Effects of Length of Time of Fasting Upon Subjective and Objective Variables When Prior Sleep and Food and Fluid Intakes Have Been Controlled

Authors: H. Alabed, K. Abuzayan, J. Ezarrugh, S. Ali, M. Touba

Abstract:

Ramadan requires individuals to abstain from food and fluid intake between sunrise and sunset, Physiological considerations predict that poorer mood, Physical performance and mental performance will result. In addition, Any difficulties will be worsened because preparations for fasting and recovery from it often mean that nocturnal sleep is decreased in length and this independently affects mood and performance. A difficulty of interpretation in many studies is that the observed changes could be due to fasting but also to the decreased length of sleep and altered food and fluid intakes before and after the daytime fasting. These factors were separated in this study, Which took place over three separate days and compared the effects of different durations of fasting (4, 8 or 16 h) upon a wide variety of measures (including subjective and objective assessments of performance, body composition, Dehydration and responses to a short bout of exercise) but with an unchanged amount of nocturnal sleep, Controlled supper the previous evening, Controlled intakes at breakfast and daytime naps not being allowed. Many of the negative effects of fasting observed in previous studies were present in this experiment also. These findings indicate that fasting was responsible for many of the changes previously observed, Though some effect of sleep loss, Particularly if occurring on successive days (as would occur in Ramadan) cannot be excluded.

Keywords: Drinking, eating, mental performance, physical performance, social activity, blood, sleepiness

Procedia PDF Downloads 287
3628 Heat Exchanger Optimization of a Domestic Refrigerator with Separate Cooling Circuits

Authors: Tugba Tosun, Mert Tosun

Abstract:

Cooling system performance and energy consumption in the bypass two-circuit cycle have been studied experimentally to find optimum evaporator type and geometry, capillary tube diameter and capillary length. Two types of evaporators, such as wire on the tube and finned tube evaporators were used for the experiments in the fresh food compartment. As capillary tube inner diameter and total length; 0.66 mm and 0.8mm, and 3000 mm and 3500 mm were selected as parameters, respectively. Experiments were performed at the 25⁰C ambient temperature while the average temperature of the fresh food compartment is kept at 5⁰C and the highest package temperature of the freezer compartment is kept at -18⁰C, which are defined in IEC 62552 European standard. The Design of Experiments (DOE) technique which is six sigma method has been used to indicate of effective parameters in the bypass two-circuit cycle. The experimental results revealed that the most effective parameter of the system is the evaporator type. Finned tube evaporator with 12 tube passes was found as the best option for the bypass two-circuit refrigeration cycle among the 8 different opportunities. The optimum cooling performance and the lowest energy consumption were provided with 0.66 mm capillary tube inner diameter and 3500 mm capillary tube length.

Keywords: capillary tube, energy consumption, heat exchanger, refrigerator, separate cooling circuits

Procedia PDF Downloads 133