Search results for: bioinformatic predictions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 625

Search results for: bioinformatic predictions

415 TransDrift: Modeling Word-Embedding Drift Using Transformer

Authors: Nishtha Madaan, Prateek Chaudhury, Nishant Kumar, Srikanta Bedathur

Abstract:

In modern NLP applications, word embeddings are a crucial backbone that can be readily shared across a number of tasks. However, as the text distributions change and word semantics evolve over time, the downstream applications using the embeddings can suffer if the word representations do not conform to the data drift. Thus, maintaining word embeddings to be consistent with the underlying data distribution is a key problem. In this work, we tackle this problem and propose TransDrift, a transformer-based prediction model for word embeddings. Leveraging the flexibility of the transformer, our model accurately learns the dynamics of the embedding drift and predicts future embedding. In experiments, we compare with existing methods and show that our model makes significantly more accurate predictions of the word embedding than the baselines. Crucially, by applying the predicted embeddings as a backbone for downstream classification tasks, we show that our embeddings lead to superior performance compared to the previous methods.

Keywords: NLP applications, transformers, Word2vec, drift, word embeddings

Procedia PDF Downloads 57
414 Influence of Flexural Reinforcement on the Shear Strength of RC Beams Without Stirrups

Authors: Guray Arslan, Riza Secer Orkun Keskin

Abstract:

Numerical investigations were conducted to study the influence of flexural reinforcement ratio on the diagonal cracking strength and ultimate shear strength of reinforced concrete (RC) beams without stirrups. Three-dimensional nonlinear finite element analyses (FEAs) of the beams with flexural reinforcement ratios ranging from 0.58% to 2.20% subjected to a mid-span concentrated load were carried out. It is observed that the load-deflection and load-strain curves obtained from the numerical analyses agree with those obtained from the experiments. It is concluded that flexural reinforcement ratio has a significant effect on the shear strength and deflection capacity of RC beams without stirrups. The predictions of the diagonal cracking strength and ultimate shear strength of beams obtained by using the equations defined by a number of codes and researchers are compared with each other and with the experimental values.

Keywords: finite element, flexural reinforcement, reinforced concrete beam, shear strength

Procedia PDF Downloads 302
413 Guidelines for Cooperation between Police and the Media with an Approach to Prevent Juvenile Delinquency

Authors: Akbar Salimi, Mehdi Moghimi

Abstract:

Goal: Today, the cooperative and systemic work is of importance and guarantees higher efficiency. This research was done with the aim of understanding the guidelines for co-op between police and the national media in order to reduce the juvenile delinquency. Method: This research is applied in terms of goal and of a compound type, which was done through a descriptive-analytical methodology. The data were collected through field surveys and documents. The statistical population included the professors of a higher education center in the area of education affairs, where as many as 36 people were randomly selected. The data collection procedure was by way of interview and researcher made questionnaire. Findings and results: Problems caused by the national media in the area of adolescents are categorized in three levels of production, broadcasting and consumption and elimination and reduction of the problems entail a set of estimations and predictions and also some education which the police forces has the capability to operationalize them. Thus, three hypotheses were defined and by conducting t and Friedman tests, all three hypotheses were confirmed and their rating was identified.

Keywords: management, media, TV, adolscents, delinquency

Procedia PDF Downloads 223
412 A Network Approach to Analyzing Financial Markets

Authors: Yusuf Seedat

Abstract:

The necessity to understand global financial markets has increased following the unfortunate spread of the recent financial crisis around the world. Financial markets are considered to be complex systems consisting of highly volatile move-ments whose indexes fluctuate without any clear pattern. Analytic methods of stock prices have been proposed in which financial markets are modeled using common network analysis tools and methods. It has been found that two key components of social network analysis are relevant to modeling financial markets, allowing us to forecast accurate predictions of stock prices within the financial market. Financial markets have a number of interacting components, leading to complex behavioral patterns. This paper describes a social network approach to analyzing financial markets as a viable approach to studying the way complex stock markets function. We also look at how social network analysis techniques and metrics are used to gauge an understanding of the evolution of financial markets as well as how community detection can be used to qualify and quantify in-fluence within a network.

Keywords: network analysis, social networks, financial markets, stocks, nodes, edges, complex networks

Procedia PDF Downloads 154
411 Stock Prediction and Portfolio Optimization Thesis

Authors: Deniz Peksen

Abstract:

This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.

Keywords: stock prediction, portfolio optimization, data science, machine learning

Procedia PDF Downloads 52
410 An Alternative Richards’ Growth Model Based on Hyperbolic Sine Function

Authors: Samuel Oluwafemi Oyamakin, Angela Unna Chukwu

Abstract:

Richrads growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richards growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richards growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richards nonlinear growth models better than the classical Richards growth model.

Keywords: height, diameter at breast height, DBH, hyperbolic sine function, Pinus caribaea, Richards' growth model

Procedia PDF Downloads 365
409 Concentration of Droplets in a Transient Gas Flow

Authors: Timur S. Zaripov, Artur K. Gilfanov, Sergei S. Sazhin, Steven M. Begg, Morgan R. Heikal

Abstract:

The calculation of the concentration of inertial droplets in complex flows is encountered in the modelling of numerous engineering and environmental phenomena; for example, fuel droplets in internal combustion engines and airborne pollutant particles. The results of recent research, focused on the development of methods for calculating concentration and their implementation in the commercial CFD code, ANSYS Fluent, is presented here. The study is motivated by the investigation of the mixture preparation processes in internal combustion engines with direct injection of fuel sprays. Two methods are used in our analysis; the Fully Lagrangian method (also known as the Osiptsov method) and the Eulerian approach. The Osiptsov method predicts droplet concentrations along path lines by solving the equations for the components of the Jacobian of the Eulerian-Lagrangian transformation. This method significantly decreases the computational requirements as it does not require counting of large numbers of tracked droplets as in the case of the conventional Lagrangian approach. In the Eulerian approach the average droplet velocity is expressed as a function of the carrier phase velocity as an expansion over the droplet response time and transport equation can be solved in the Eulerian form. The advantage of the method is that droplet velocity can be found without solving additional partial differential equations for the droplet velocity field. The predictions from the two approaches were compared in the analysis of the problem of a dilute gas-droplet flow around an infinitely long, circular cylinder. The concentrations of inertial droplets, with Stokes numbers of 0.05, 0.1, 0.2, in steady-state and transient laminar flow conditions, were determined at various Reynolds numbers. In the steady-state case, flows with Reynolds numbers of 1, 10, and 100 were investigated. It has been shown that the results predicted using both methods are almost identical at small Reynolds and Stokes numbers. For larger values of these numbers (Stokes — 0.1, 0.2; Reynolds — 10, 100) the Eulerian approach predicted a wider spread in concentration in the perturbations caused by the cylinder that can be attributed to the averaged droplet velocity field. The transient droplet flow case was investigated for a Reynolds number of 200. Both methods predicted a high droplet concentration in the zones of high strain rate and low concentrations in zones of high vorticity. The maxima of droplet concentration predicted by the Osiptsov method was up to two orders of magnitude greater than that predicted by the Eulerian method; a significant variation for an approach widely used in engineering applications. Based on the results of these comparisons, the Osiptsov method has resulted in a more precise description of the local properties of the inertial droplet flow. The method has been applied to the analysis of the results of experimental observations of a liquid gasoline spray at representative fuel injection pressure conditions. The preliminary results show good qualitative agreement between the predictions of the model and experimental data.

Keywords: internal combustion engines, Eulerian approach, fully Lagrangian approach, gasoline fuel sprays, droplets and particle concentrations

Procedia PDF Downloads 232
408 High-Intensity, Short-Duration Electric Pulses Induced Action Potential in Animal Nerves

Authors: Jiahui Song, Ravindra P. Joshi

Abstract:

The use of high-intensity, short-duration electric pulses is a promising development with many biomedical applications. The uses include irreversible electroporation for killing abnormal cells, reversible poration for drug and gene delivery, neuromuscular manipulation, and the shrinkage of tumors, etc. High intensity, short-duration electric pulses result in the creation of high-density, nanometer-sized pores in the cellular membrane. This electroporation amounts to localized modulation of the transverse membrane conductance, and effectively provides a voltage shunt. The electrically controlled changes in the trans-membrane conductivity could be used to affect neural traffic and action potential propagation. A rat was taken as the representative example in this research. The simulation study shows the pathway from the sensorimotor cortex down to the spinal motoneurons, and effector muscles could be reversibly blocked by using high-intensity, short-duration electrical pulses. Also, actual experimental observations were compared against simulation predictions.

Keywords: action potential, electroporation, high-intensity, short-duration

Procedia PDF Downloads 241
407 Entrepreneurial Determinants Contributing to the Long Term Growth of Young Hi-Technology Start-Ups

Authors: A. Binnui, O. Kalinowska-Beszczynska, G. Shaw

Abstract:

It is postulated that innovative deployment of entrepreneurial activities leads to firm's growth. This paper draws upon the key predictions of the core theories on entrepreneurship and innovation to formulate a conceptual framework which can be used to depict the casual chain of events from which entrepreneurs can manage more innovatively and ultimately deliver higher growth which benefits of the regional and national economies. It examines the key firm-based factors extracted from the theories, namely the characteristics of entrepreneurial hi-tech firms, characteristics of innovating firms, and firm growth dynamics that lead to enhanced economic growth. The framework postulates that the key determinants extracted such as entrepreneurial demographics, firm characteristic, skills and competencies, research and development, product/service characteristics, market development, financial of the firm and internationalization might lead to the survival and long term development of high-technology startups.

Keywords: innovative entrepreneurial activities, entrepreneuship, determinants, growth, hi-technology start-upws

Procedia PDF Downloads 117
406 Emotion and Risk Taking in a Casino Game

Authors: Yulia V. Krasavtseva, Tatiana V. Kornilova

Abstract:

Risk-taking behaviors are not only dictated by cognitive components but also involve emotional aspects. Anticipatory emotions, involving both cognitive and affective mechanisms, are involved in decision-making in general, and risk-taking in particular. Affective reactions are prompted when an expectation or prediction is either validated or invalidated in the achieved result. This study aimed to combine predictions, anticipatory emotions, affective reactions, and personality traits in the context of risk-taking behaviors. An experimental online method Emotion and Prediction In a Casino (EPIC) was used, based on a casino-like roulette game. In a series of choices, the participant is presented with progressively riskier roulette combinations, where the potential sums of wins and losses increase with each choice and the participant is given a choice: to 'walk away' with the current sum of money or to 'play' the displayed roulette, thus accepting the implicit risk. Before and after the result is displayed, participants also rate their emotions, using the Self-Assessment Mannequin [Bradley, Lang, 1994], picking a picture, representing the intensity of pleasure, arousal, and dominance. The following personality measures were used: 1) Personal Decision-Making Factors [Kornilova, 2003] assessing risk and rationality; 2) I7 – Impulsivity Questionnaire [Kornilova, 1995] assessing impulsiveness, risk readiness, and empathy and 3) Subjective Risk Intelligence Scale [Craparo et al., 2018] assessing negative attitude toward uncertainty, emotional stress vulnerability, imaginative capability, and problem-solving self-efficacy. Two groups of participants took part in the study: 1) 98 university students (Mage=19.71, SD=3.25; 72% female) and 2) 94 online participants (Mage=28.25, SD=8.25; 89% female). Online participants were recruited via social media. Students with high rationality rated their pleasure and dominance before and after choices as lower (ρ from -2.6 to -2.7, p < 0.05). Those with high levels of impulsivity rated their arousal lower before finding out their result (ρ from 2.5 - 3.7, p < 0.05), while also rating their dominance as low (ρ from -3 to -3.7, p < 0.05). Students prone to risk-rated their pleasure and arousal before and after higher (ρ from 2.5 - 3.6, p < 0.05). High empathy was positively correlated with arousal after learning the result. High emotional stress vulnerability positively correlates with arousal and pleasure after the choice (ρ from 3.9 - 5.7, p < 0.05). Negative attitude to uncertainty is correlated with high anticipatory and reactive arousal (ρ from 2.7 - 5.7, p < 0.05). High imaginative capability correlates negatively with anticipatory and reactive dominance (ρ from - 3.4 to - 4.3, p < 0.05). Pleasure (.492), arousal (.590), and dominance (.551) before and after the result were positively correlated. Higher predictions positively correlated with reactive pleasure and arousal. In a riskier scenario (6/8 chances to win), anticipatory arousal was negatively correlated with the pleasure emotion (-.326) and vice versa (-.265). Correlations occur regardless of the roulette outcome. In conclusion, risk-taking behaviors are linked not only to personality traits but also to anticipatory emotions and affect in a modeled casino setting. Acknowledgment: The study was supported by the Russian Foundation for Basic Research, project 19-29-07069.

Keywords: anticipatory emotions, casino game, risk taking, impulsiveness

Procedia PDF Downloads 109
405 Combined Heat and Power Generation in Pressure Reduction City Gas Station (CGS)

Authors: Sadegh Torfi

Abstract:

Realization of anticipated energy efficiency from recuperative run-around energy recovery (RER) systems requires identification of the system components influential parameters. Because simulation modeling is considered as an integral part of the design and economic evaluation of RER systems, it is essential to calibrate the developed models and validate the performance predictions by means of comparison with data from experimental measurements. Several theoretical and numerical analyses on RER systems by researchers have been done, but generally the effect of distance between hot and cold flow is ignored. The objective of this study is to develop a thermohydroulic model for a typical RER system that accounts for energy loss from the interconnecting piping and effects of interconnecting pipes length performance of run-around energy recovery systems. Numerical simulation shows that energy loss from the interconnecting piping is change linear with pipes length and if pipes are properly isolated, maximum reduction of effectiveness of RER systems is 2% in typical piping systems.

Keywords: combined heat and power, heat recovery, effectiveness, CGS

Procedia PDF Downloads 177
404 Hyper Tuned RBF SVM: Approach for the Prediction of the Breast Cancer

Authors: Surita Maini, Sanjay Dhanka

Abstract:

Machine learning (ML) involves developing algorithms and statistical models that enable computers to learn and make predictions or decisions based on data without being explicitly programmed. Because of its unlimited abilities ML is gaining popularity in medical sectors; Medical Imaging, Electronic Health Records, Genomic Data Analysis, Wearable Devices, Disease Outbreak Prediction, Disease Diagnosis, etc. In the last few decades, many researchers have tried to diagnose Breast Cancer (BC) using ML, because early detection of any disease can save millions of lives. Working in this direction, the authors have proposed a hybrid ML technique RBF SVM, to predict the BC in earlier the stage. The proposed method is implemented on the Breast Cancer UCI ML dataset with 569 instances and 32 attributes. The authors recorded performance metrics of the proposed model i.e., Accuracy 98.24%, Sensitivity 98.67%, Specificity 97.43%, F1 Score 98.67%, Precision 98.67%, and run time 0.044769 seconds. The proposed method is validated by K-Fold cross-validation.

Keywords: breast cancer, support vector classifier, machine learning, hyper parameter tunning

Procedia PDF Downloads 40
403 A Mathematical Description of a Growing Cell Colony Based on the Mechanical Bidomain Model

Authors: Debabrata Auddya, Bradley J. Roth

Abstract:

The mechanical bidomain model is used to describe a colony of cells growing on a substrate. Analytical expressions are derived for the intracellular and extracellular displacements. Mechanotransduction events are driven by the difference between the displacements in the two spaces, corresponding to the force acting on integrins. The equation for the displacement consists of two terms: one proportional to the radius that is the same in the intracellular and extracellular spaces (the monodomain term) and one that is proportional to a modified Bessel function that is responsible for mechanotransduction (the bidomain term). The model predicts that mechanotransduction occurs within a few length constants of the colony’s edge, and an expression for the length constant contains the intracellular and extracellular shear moduli and the spring constant of the integrins coupling the two spaces. The model predictions are qualitatively consistent with experiments on human embryonic stem cell colonies, in which differentiation is localized near the edge.

Keywords: cell colony, integrin, mechanical bidomain model, stem cell, stress-strain, traction force

Procedia PDF Downloads 217
402 Modelling Magnetohydrodynamics to Investigate Variation of Shielding Gases on Arc Characteristics in the GTAW Process

Authors: Stuart W. Campbell, Alexander M. Galloway, Norman A. McPherson, Duncan Camilleri, Daniel Micallef

Abstract:

Gas tungsten arc welding requires a gas shield to be present in order to protect the arc area from contamination by atmospheric gases. As a result of each gas having its own unique thermophysical properties, the shielding gas selected can have a major influence on the arc stability, welding speed, weld appearance and geometry, mechanical properties and fume generation. Alternating shielding gases is a relatively new method of discreetly supplying two different shielding gases to the welding region in order to take advantage of the beneficial properties of each gas, as well as the inherent pulsing effects generated. As part of an ongoing process to fully evaluate the effects of this novel supply method, a computational fluid dynamics model has been generated to include the gas dependent thermodynamic and transport properties in order to evaluate the effects that an alternating gas supply has on the arc plasma. Experimental trials have also been conducted to validate the model arc profile predictions.

Keywords: Alternating shielding gases, ANSYS CFX, Gas tungsten arc welding(GTAW), magnetohydrodynamics(MHD)

Procedia PDF Downloads 408
401 Unsupervised Text Mining Approach to Early Warning System

Authors: Ichihan Tai, Bill Olson, Paul Blessner

Abstract:

Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.

Keywords: early warning system, knowledge management, market prediction, topic modeling.

Procedia PDF Downloads 301
400 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction

Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga

Abstract:

Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.

Keywords: genetic algorithm, neural networks, word prediction, machine learning

Procedia PDF Downloads 164
399 Behavior Study of Concrete-Filled Thin-Walled Square Hollow Steel Stub Columns

Authors: Mostefa Mimoune

Abstract:

Test results on concrete-filled steel tubular stub columns under axial compression are presented. The study was mainly focused on square hollow section SHS columns; 27 columns were tested. The main experimental parameters considered were the thickness of the tube, columns length and cross section sizes. Existing design codes and theoretical model were used to predict load-carrying capacities of composite section to compare the accuracy of the predictions by using the recommendations of DTR-BC (Algerian code), CSA (Canadian standard), AIJ, EC4, DBJ, AISC, BS and EC4. Experimental results indicate that the studied parameters have significant influence on both the compressive load capacity and the column failure mode. All codes used in the comparison, provide higher resistance compared to those of tests. Equation method has been suggested to evaluate the axial capacity of the composite section seem to be in agreement with tests.

Keywords: axial loading, composite section, concrete-filled steel tubes, square hollow section

Procedia PDF Downloads 352
398 Using Machine Learning to Predict Answers to Big-Five Personality Questions

Authors: Aadityaa Singla

Abstract:

The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.

Keywords: machine learning, personally, big five personality traits, cognitive science

Procedia PDF Downloads 107
397 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters

Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar

Abstract:

Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.

Keywords: recurrent neural networks, global solar radiation, multi-layer perceptron, gradient, root mean square error

Procedia PDF Downloads 413
396 An Improved Amplified Sway Method for Semi-Rigidly Jointed Sway Frames

Authors: Abdul Hakim Chikho

Abstract:

A simple method of calculating satisfactory of the effect of instability on the distribution of in-plane bending moments in unbraced semi-rigidly multistory steel framed structures is presented in this paper. This method, which is a modified form of the current amplified sway method of BS5950: part1:2000, uses an approximate load factor at elastic instability in each storey of a frame which in turn dependent up on the axial loads acting in the columns. The calculated factors are then used to represent the geometrical deformations due to the presence of axial loads, acting in that storey. Only a first order elastic analysis is required to accomplish the calculation. Comparison of the prediction of the proposed method and the current BS5950 amplified sway method with an accurate second order elastic computation shows that the proposed method leads to predictions which are markedly more accurate than the current approach of BS5950.

Keywords: improved amplified sway method, steel frames, semi-rigid connections, secondary effects

Procedia PDF Downloads 58
395 Optical and Double Folding Model Analysis for Alpha Particles Elastically Scattered from 9Be and 11B Nuclei at Different Energies

Authors: Ahmed H. Amer, A. Amar, Sh. Hamada, I. I. Bondouk, F. A. El-Hussiny

Abstract:

Elastic scattering of α-particles from 9Be and 11B nuclei at different alpha energies have been analyzed. Optical model parameters (OMPs) of α-particles elastic scattering by these nuclei at different energies have been obtained. In the present calculations, the real part of the optical potential are derived by folding of nucleon-nucleon (NN) interaction into nuclear matter density distribution of the projectile and target nuclei using computer code FRESCO. A density-dependent version of the M3Y interaction (CDM3Y6), which is based on the G-matrix elements of the Paris NN potential, has been used. Volumetric integrals of the real and imaginary potential depth (JR, JW) have been calculated and found to be energy dependent. Good agreement between the experimental data and the theoretical predictions in the whole angular range. In double folding (DF) calculations, the obtained normalization coefficient Nr is in the range 0.70–1.32.

Keywords: elastic scattering, optical model, double folding model, density distribution

Procedia PDF Downloads 271
394 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.

Keywords: inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness

Procedia PDF Downloads 306
393 Experimental Investigation of Cold-Formed Steel-Timber Board Composite Floor Systems

Authors: Samar Raffoul, Martin Heywood, Dimitrios Moutaftsis, Michael Rowell

Abstract:

This paper comprises an experimental investigation into the structural performance of cold formed steel (CFS) and timber board composite floor systems. The tests include a series of small-scale pushout tests and full-scale bending tests carried out using a refined loading system to simulate uniformly distributed constant load. The influence of connection details (screw spacing and adhesives) on floor performance was investigated. The results are then compared to predictions from relevant existing models for composite floor systems. The results of this research demonstrate the significant benefits of considering the composite action of the boards in floor design. Depending on connection detail, an increase in flexural stiffness of up to 40% was observed in the floor system, when compared to designing joists individually.

Keywords: cold formed steel joists, composite action, flooring systems, shear connection

Procedia PDF Downloads 105
392 What the Future Holds for Social Media Data Analysis

Authors: P. Wlodarczak, J. Soar, M. Ally

Abstract:

The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.

Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning

Procedia PDF Downloads 389
391 The Main Steamline Break Transient Analysis for Advanced Boiling Water Reactor Using TRACE, PARCS, and SNAP Codes

Authors: H. C. Chang, J. R. Wang, A. L. Ho, S. W. Chen, J. H. Yang, C. Shih, L. C. Wang

Abstract:

To confirm the reactor and containment integrity of the Advanced Boiling Water Reactor (ABWR), we perform the analysis of main steamline break (MSLB) transient by using the TRACE, PARCS, and SNAP codes. The process of the research has four steps. First, the ABWR nuclear power plant (NPP) model is developed by using the above codes. Second, the steady state analysis is performed by using this model. Third, the ABWR model is used to run the analysis of MSLB transient. Fourth, the predictions of TRACE and PARCS are compared with the data of FSAR. The results of TRACE/PARCS and FSAR are similar. According to the TRACE/PARCS results, the reactor and containment integrity of ABWR can be maintained in a safe condition for MSLB.

Keywords: advanced boiling water reactor, TRACE, PARCS, SNAP

Procedia PDF Downloads 184
390 Ab Initio Calculation of Fundamental Properties of CaxMg1-xA (a = Se and Te) Alloys in the Rock-Salt Structure

Authors: M. A. Ghebouli, H. Choutri, B. Ghebouli , M. Fatmi, L. Louail

Abstract:

We employed the density-functional perturbation theory (DFPT) within the generalized gradient approximation (GGA), the local density approximation (LDA) and the virtual-crystal approximation (VCA) to study the effect of composition on the structure, stability, energy gaps, electron effective mass, the dynamic effective charge, optical and acoustical phonon frequencies and static and high dielectric constants of the rock-salt CaxMg1-xSe and CaxMg1-xTe alloys. The computed equilibrium lattice constant and bulk modulus show an important deviation from the linear concentration. From the Voigt-Reuss-Hill approximation, CaxMg1-xSe and CaxMg1-xTe present lower stiffness and lateral expansion. For Ca content ranging between 0.25-0.75, the elastic constants, energy gaps, electron effective mass and dynamic effective charge are predictions. The elastic constants and computed phonon dispersion curves indicate that these alloys are mechanically stable.

Keywords: CaxMg1-xSe, CaxMg1-xTe, band structure, phonon

Procedia PDF Downloads 511
389 A Predictive Machine Learning Model of the Survival of Female-led and Co-Led Small and Medium Enterprises in the UK

Authors: Mais Khader, Xingjie Wei

Abstract:

This research sheds light on female entrepreneurs by providing new insights on the survival predictions of companies led by females in the UK. This study aims to build a predictive machine learning model of the survival of female-led & co-led small & medium enterprises (SMEs) in the UK over the period 2000-2020. The predictive model built utilised a combination of financial and non-financial features related to both companies and their directors to predict SMEs' survival. These features were studied in terms of their contribution to the resultant predictive model. Five machine learning models are used in the modelling: Decision tree, AdaBoost, Naïve Bayes, Logistic regression and SVM. The AdaBoost model had the highest performance of the five models, with an accuracy of 73% and an AUC of 80%. The results show high feature importance in predicting companies' survival for company size, management experience, financial performance, industry, region, and females' percentage in management.

Keywords: company survival, entrepreneurship, females, machine learning, SMEs

Procedia PDF Downloads 56
388 Simulation Study of the Microwave Heating of the Hematite and Coal Mixture

Authors: Prasenjit Singha, Sunil Yadav, Soumya Ranjan Mohantry, Ajay Kumar Shukla

Abstract:

Temperature distribution in the hematite ore mixed with 7.5% coal was predicted by solving a 1-D heat conduction equation using an implicit finite difference approach. In this work, it was considered a square slab of 20 cm x 20 cm, which assumed the coal to be uniformly mixed with hematite ore. It was solved the equations with the use of MATLAB 2018a software. Heat transfer effects in this 1D dimensional slab convective and the radiative boundary conditions are also considered. Temperature distribution obtained inside hematite slab by considering microwave heating time, thermal conductivity, heat capacity, carbon percentage, sample dimensions, and many other factors such as penetration depth, permittivity, and permeability of coal and hematite ore mixtures. The resulting temperature profile can be used as a guiding tool for optimizing the microwave-assisted carbothermal reduction process of hematite slab was extended to other dimensions as well, viz., 1 cm x 1 cm, 5 cm x 5 cm, 10 cm x 10 cm, 20 cm x 20 cm. The model predictions are in good agreement with experimental results.

Keywords: hematite ore, coal, microwave processing, heat transfer, implicit method, temperature distribution

Procedia PDF Downloads 119
387 Structural Evaluation of Airfield Pavement Using Finite Element Analysis Based Methodology

Authors: Richard Ji

Abstract:

Nondestructive deflection testing has been accepted widely as a cost-effective tool for evaluating the structural condition of airfield pavements. Backcalculation of pavement layer moduli can be used to characterize the pavement existing condition in order to compute the load bearing capacity of pavement. This paper presents an improved best-fit backcalculation methodology based on deflection predictions obtained using finite element method (FEM). The best-fit approach is based on minimizing the squared error between falling weight deflectometer (FWD) measured deflections and FEM predicted deflections. Then, concrete elastic modulus and modulus of subgrade reaction were back-calculated using Heavy Weight Deflectometer (HWD) deflections collected at the National Airport Pavement Testing Facility (NAPTF) test site. It is an alternative and more versatile method in considering concrete slab geometry and HWD testing locations compared to methods currently available.

Keywords: nondestructive testing, pavement moduli backcalculation, finite element method, concrete pavements

Procedia PDF Downloads 137
386 The Extension of Monomeric Computational Results to Polymeric Measurable Properties: An Introductory Computational Chemistry Experiment

Authors: Jing Zhao, Yongqing Bai, Qiaofang Shi, Huaihao Zhang

Abstract:

Advances in software technology enable computational chemistry to be commonly applied in various research fields, especially in pedagogy. Thus, in order to expand and improve experimental instructions of computational chemistry for undergraduates, we designed an introductory experiment—research on acrylamide molecular structure and physicochemical properties. Initially, students construct molecular models of acrylamide and polyacrylamide in Gaussian and Materials Studio software respectively. Then, the infrared spectral data, atomic charge and molecular orbitals of acrylamide as well as solvation effect of polyacrylamide are calculated to predict their physicochemical performance. At last, rheological experiments are used to validate these predictions. Through the combination of molecular simulation (performed on Gaussian, Materials Studio) with experimental verification (rheology experiment), learners have deeply comprehended the chemical nature of acrylamide and polyacrylamide, achieving good learning outcomes.

Keywords: upper-division undergraduate, computer-based learning, laboratory instruction, molecular modeling

Procedia PDF Downloads 110