Search results for: beam propagation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1656

Search results for: beam propagation

1626 Cantilever Secant Pile Constructed in Sand: Capping Beam-Piles Bending Moments Interaction

Authors: Khaled R. Khater

Abstract:

this paper is an extension to previously published two papers; all share the first part of their titles. The papers theme is soil-structure interaction in the ground of soil retaining structures. The secant pile wall is the concern, while the focus is its capping beam. The earlier papers suggested a technique to structurally analyze capping beam. It has been proved that; pile rigidity shares the capping beam rigidity to resist the wall deformations. The current paper explains how the beam-pile integration re-distributes the pile’s bending moment for the benefits of wall deformations. It is concluded that re-distribution of pile bending moment is completely different than the calculated by plain strain analysis, values, and distributions. The pile diameter, beam rigidity, pile spacing, and the 3D-analysis-effect individually or all together affect the pile bending moment. The Plaxis-2D and STAAD-Pro 3D are the used software’s. Throughout this study, three sand densities, various pile and beam rigidities, and three excavation depths, i.e., 3.0-m, 4.0-m and 5.0-m have been considered.

Keywords: bending moment, capping beam, numerical analysis, secant pile, sandy soil

Procedia PDF Downloads 146
1625 Using the Nonlocal Theory of Free Vibrations Nanobeam

Authors: Ali Oveysi Sarabi

Abstract:

The dimensions of nanostructures are in the range of inter-atomic spacing of the structures which makes them impossible to be modeled as a continuum. Nanoscale size-effects on vibration analysis of nanobeams embedded in an elastic medium is investigated using different types of beam theory. To this end, Eringen’s nonlocal elasticity is incorporated to various beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT). The surrounding elastic medium is simulated with both Winkler and Pasternak foundation models and the difference between them is studies. Explicit formulas are presented to obtain the natural frequencies of nanobeam corresponding to each nonlocal beam theory. Selected numerical results are given for different values of the non-local parameter, Winkler modulus parameter, Pasternak modulus parameter and aspect ratio of the beam that imply the effects of them, separately. It is observed that the values of natural frequency are strongly dependent on the stiffness of elastic medium and the value of the non-local parameter and these dependencies varies with the value of aspect ratio and mode number.

Keywords: nanobeams, free vibration, nonlocal elasticity, winkler foundation model, Pasternak foundation model, beam theories

Procedia PDF Downloads 509
1624 Commissioning of a Flattening Filter Free (FFF) using an Anisotropic Analytical Algorithm (AAA)

Authors: Safiqul Islam, Anamul Haque, Mohammad Amran Hossain

Abstract:

Aim: To compare the dosimetric parameters of the flattened and flattening filter free (FFF) beam and to validate the beam data using anisotropic analytical algorithm (AAA). Materials and Methods: All the dosimetric data’s (i.e. depth dose profiles, profile curves, output factors, penumbra etc.) required for the beam modeling of AAA were acquired using the Blue Phantom RFA for 6 MV, 6 FFF, 10MV & 10FFF. Progressive resolution Optimizer and Dose Volume Optimizer algorithm for VMAT and IMRT were are also configured in the beam model. Beam modeling of the AAA were compared with the measured data sets. Results: Due to the higher and lover energy component in 6FFF and 10 FFF the surface doses are 10 to 15% higher compared to flattened 6 MV and 10 MV beams. FFF beam has a lower mean energy compared to the flattened beam and the beam quality index were 6 MV 0.667, 6FFF 0.629, 10 MV 0.74 and 10 FFF 0.695 respectively. Gamma evaluation with 2% dose and 2 mm distance criteria for the Open Beam, IMRT and VMAT plans were also performed and found a good agreement between the modeled and measured data. Conclusion: We have successfully modeled the AAA algorithm for the flattened and FFF beams and achieved a good agreement with the calculated and measured value.

Keywords: commissioning of a Flattening Filter Free (FFF) , using an Anisotropic Analytical Algorithm (AAA), flattened beam, parameters

Procedia PDF Downloads 275
1623 Analysis of Correlation Between Manufacturing Parameters and Mechanical Strength Followed by Uncertainty Propagation of Geometric Defects in Lattice Structures

Authors: Chetra Mang, Ahmadali Tahmasebimoradi, Xavier Lorang

Abstract:

Lattice structures are widely used in various applications, especially in aeronautic, aerospace, and medical applications because of their high performance properties. Thanks to advancement of the additive manufacturing technology, the lattice structures can be manufactured by different methods such as laser beam melting technology. However, the presence of geometric defects in the lattice structures is inevitable due to the manufacturing process. The geometric defects may have high impact on the mechanical strength of the structures. This work analyzes the correlation between the manufacturing parameters and the mechanical strengths of the lattice structures. To do that, two types of the lattice structures; body-centered cubic with z-struts (BCCZ) structures made of Inconel718, and body-centered cubic (BCC) structures made of Scalmalloy, are manufactured by laser melting beam machine using Taguchi design of experiment. Each structure is placed on the substrate with a specific position and orientation regarding the roller direction of deposed metal powder. The position and orientation are considered as the manufacturing parameters. The geometric defects of each beam in the lattice are characterized and used to build the geometric model in order to perform simulations. Then, the mechanical strengths are defined by the homogeneous response as Young's modulus and yield strength. The distribution of mechanical strengths is observed as a function of manufacturing parameters. The mechanical response of the BCCZ structure is stretch-dominated, i.e., the mechanical strengths are directly dependent on the strengths of the vertical beams. As the geometric defects of vertical beams are slightly changed based on their position/orientation on the manufacturing substrate, the mechanical strengths are less dispersed. The manufacturing parameters are less influenced on the mechanical strengths of the structure BCCZ. The mechanical response of the BCC structure is bending-dominated. The geometric defects of inclined beam are highly dispersed within a structure and also based on their position/orientation on the manufacturing substrate. For different position/orientation on the substrate, the mechanical responses are highly dispersed as well. This shows that the mechanical strengths are directly impacted by manufacturing parameters. In addition, this work is carried out to study the uncertainty propagation of the geometric defects on the mechanical strength of the BCC lattice structure made of Scalmalloy. To do that, we observe the distribution of mechanical strengths of the lattice according to the distribution of the geometric defects. A probability density law is determined based on a statistical hypothesis corresponding to the geometric defects of the inclined beams. The samples of inclined beams are then randomly drawn from the density law to build the lattice structure samples. The lattice samples are then used for simulation to characterize the mechanical strengths. The results reveal that the distribution of mechanical strengths of the structures with the same manufacturing parameters is less dispersed than one of the structures with different manufacturing parameters. Nevertheless, the dispersion of mechanical strengths due to the structures with the same manufacturing parameters are unneglectable.

Keywords: geometric defects, lattice structure, mechanical strength, uncertainty propagation

Procedia PDF Downloads 102
1622 SMRF Seismic Response: Unequal Beam Depths

Authors: Babak H. Mamaqani, Alimohammad Entezarmahdi

Abstract:

There are many researches on parameters affecting seismic behavior of steel moment frames. Great deal of these researches considers cover plate connections with or without haunch and direct beam to column connection for exterior columns. Also there are experimental results for interior connections with equal beam depth on both sides but not much research has been performed on the seismic behavior of joints with unequal beam depth. Based on previous experimental results, a series of companion analyses have been set up considering different beam height and connection detailing configuration to investigate the seismic behavior of the connections. Results of this study indicate that when the differences between beams height on both side increases, use of haunch connection system leads to significant improvement in the seismic response whereas other configurations did not provide satisfying results.

Keywords: analytical modeling, Haunch connection, seismic design, unequal beam depth

Procedia PDF Downloads 389
1621 Minimization of Propagation Delay in Multi Unmanned Aerial Vehicle Network

Authors: Purva Joshi, Rohit Thanki, Omar Hanif

Abstract:

Unmanned aerial vehicles (UAVs) are becoming increasingly important in various industrial applications and sectors. Nowadays, a multi UAV network is used for specific types of communication (e.g., military) and monitoring purposes. Therefore, it is critical to reducing propagation delay during communication between UAVs, which is essential in a multi UAV network. This paper presents how the propagation delay between the base station (BS) and the UAVs is reduced using a searching algorithm. Furthermore, the iterative-based K-nearest neighbor (k-NN) algorithm and Travelling Salesmen Problem (TSP) algorthm were utilized to optimize the distance between BS and individual UAV to overcome the problem of propagation delay in multi UAV networks. The simulation results show that this proposed method reduced complexity, improved reliability, and reduced propagation delay in multi UAV networks.

Keywords: multi UAV network, optimal distance, propagation delay, K - nearest neighbor, traveling salesmen problem

Procedia PDF Downloads 166
1620 A Simple Device for Characterizing High Power Electron Beams for Welding

Authors: Aman Kaur, Colin Ribton, Wamadeva Balachandaran

Abstract:

Electron beam welding due to its inherent advantages is being extensively used for material processing where high precision is required. Especially in aerospace or nuclear industries, there are high quality requirements and the cost of materials and processes is very high which makes it very important to ensure the beam quality is maintained and checked prior to carrying out the welds. Although the processes in these industries are highly controlled, however, even the minor changes in the operating parameters of the electron gun can make large enough variations in the beam quality that can result in poor welding. To measure the beam quality a simple device has been designed that can be used at high powers. The device consists of two slits in x and y axis which collects a small portion of the beam current when the beam is deflected over the slits. The signals received from the device are processed in data acquisition hardware and the dedicated software developed for the device. The device has been used in controlled laboratory environments to analyse the signals and the weld quality relationships by varying the focus current. The results showed matching trends in the weld dimensions and the beam characteristics. Further experimental work is being carried out to determine the ability of the device and signal processing software to detect subtle changes in the beam quality and to relate these to the physical weld quality indicators.

Keywords: electron beam welding, beam quality, high power, weld quality indicators

Procedia PDF Downloads 296
1619 Super Harmonic Nonlinear Lateral Vibration of an Axially Moving Beam with Rotating Prismatic Joint

Authors: M. Najafi, S. Bab, F. Rahimi Dehgolan

Abstract:

The motion of an axially moving beam with rotating prismatic joint with a tip mass on the end is analyzed to investigate the nonlinear vibration and dynamic stability of the beam. The beam is moving with a harmonic axially and rotating velocity about a constant mean velocity. A time-dependent partial differential equation and boundary conditions with the aid of the Hamilton principle are derived to describe the beam lateral deflection. After the partial differential equation is discretized by the Galerkin method, the method of multiple scales is applied to obtain analytical solutions. Frequency response curves are plotted for the super harmonic resonances of the first and the second modes. The effects of non-linear term and mean velocity are investigated on the steady state response of the axially moving beam. The results are validated with numerical simulations.

Keywords: super harmonic resonances, non-linear vibration, axially moving beam, Galerkin method

Procedia PDF Downloads 365
1618 On the Evaluation of Critical Lateral-Torsional Buckling Loads of Monosymmetric Beam-Columns

Authors: T. Yilmaz, N. Kirac

Abstract:

Beam-column elements are defined as structural members subjected to a combination of axial and bending forces. Lateral torsional buckling is one of the major failure modes in which beam-columns that are bent about its strong axis may buckle out of the plane by deflecting laterally and twisting. This study presents a compact closed-form equation that it can be used for calculating critical lateral torsional-buckling load of beam-columns with monosymmetric sections in the presence of a known axial load. Lateral-torsional buckling behavior of beam-columns subjected to constant axial force and various transverse load cases are investigated by using Ritz method in order to establish proposed equation. Lateral-torsional buckling loads calculated by presented formula are compared to finite element model results. ABAQUS software is utilized to generate finite element models of beam-columns. It is found out that lateral-torsional buckling load of beam-columns with monosymmetric sections can be determined by proposed equation and can be safely used in design.

Keywords: lateral-torsional buckling, stability, beam-column, monosymmetric section

Procedia PDF Downloads 290
1617 Residual Plastic Deformation Capacity in Reinforced Concrete Beams Subjected to Drop Weight Impact Test

Authors: Morgan Johansson, Joosef Leppanen, Mathias Flansbjer, Fabio Lozano, Josef Makdesi

Abstract:

Concrete is commonly used for protective structures and how impact loading affects different types of concrete structures is an important issue. Often the knowledge gained from static loading is also used in the design of impulse loaded structures. A large plastic deformation capacity is essential to obtain a large energy absorption in an impulse loaded structure. However, the structural response of an impact loaded concrete beam may be very different compared to a statically loaded beam. Consequently, the plastic deformation capacity and failure modes of the concrete structure can be different when subjected to dynamic loads; and hence it is not sure that the observations obtained from static loading are also valid for dynamic loading. The aim of this paper is to investigate the residual plastic deformation capacity in reinforced concrete beams subjected to drop weight impact tests. A test-series consisting of 18 simply supported beams (0.1 x 0.1 x 1.18 m, ρs = 0.7%) with a span length of 1.0 m and subjected to a point load in the beam mid-point, was carried out. 2x6 beams were first subjected to drop weight impact tests, and thereafter statically tested until failure. The drop in weight had a mass of 10 kg and was dropped from 2.5 m or 5.0 m. During the impact tests, a high-speed camera was used with 5 000 fps and for the static tests, a camera was used with 0.5 fps. Digital image correlation (DIC) analyses were conducted and from these the velocities of the beam and the drop weight, as well as the deformations and crack propagation of the beam, were effectively measured. Additionally, for the static tests, the applied load and midspan deformation were measured. The load-deformation relations for the beams subjected to an impact load were compared with 6 reference beams that were subjected to static loading only. The crack pattern obtained were compared using DIC, and it was concluded that the resulting crack formation depended much on the test method used. For the static tests, only bending cracks occurred. For the impact loaded beams, though, distinctive diagonal shear cracks also formed below the zone of impact and less wide shear cracks were observed in the region half-way to the support. Furthermore, due to wave propagation effects, bending cracks developed in the upper part of the beam during initial loading. The results showed that the plastic deformation capacity increased for beams subjected to drop weight impact tests from a high drop height of 5.0 m. For beams subjected to an impact from a low drop height of 2.5 m, though, the plastic deformation capacity was in the same order of magnitude as for the statically loaded reference beams. The beams tested were designed to fail due to bending when subjected to a static load. However, for the impact tested beams, one beam exhibited a shear failure at a significantly reduced load level when it was tested statically; indicating that there might be a risk of reduced residual load capacity for impact loaded structures.

Keywords: digital image correlation (DIC), drop weight impact, experiments, plastic deformation capacity, reinforced concrete

Procedia PDF Downloads 122
1616 Non Linear Dynamic Analysis of Cantilever Beam with Breathing Crack Using XFEM

Authors: K. Vigneshwaran, Manoj Pandey

Abstract:

In this paper, breathing crack is considered for the non linear dynamic analysis. The stiffness of the cracked beam is found out by using influence coefficients. The influence coefficients are calculated by using Castigliano’s theorem and strain energy release rate (SERR). The equation of motion of the beam was derived by using Hamilton’s principle. The stiffness and natural frequencies for the cracked beam has been calculated using XFEM and Eigen approach. It is seen that due to presence of cracks, the stiffness and natural frequency changes. The mode shapes and the FRF for the uncracked and breathing cracked cantilever beam also obtained and compared.

Keywords: breathing crack, XFEM, mode shape, FRF, non linear analysis

Procedia PDF Downloads 312
1615 E-Survey: Cancer Treatment with Proton Beam Therapy in USA

Authors: Auj-E Taqaddas

Abstract:

The use of proton beam therapy is increasing globally. It seems to offer dosimetric advantages, especially in paediatric central nervous system (CNS) and brain tumours. A short E-survey was conducted to assess the clinical, technical, and educational resources and strategies employed in the state of the art proton beam therapy (PBT) centres in the USA to determine the current status of proton beam therapy. The study also aimed at finding out which PBT skills are in demand as well as what improvements are needed to ensure efficient treatment planning, delivery, and dosimetry. The study resulted in identifying areas for future research and development and in identifying cancers for which PBT is most suitable compared to other modalities to facilitate the implementation and use of PBT in clinical settings for cancer treatment.

Keywords: cancer, intensity modulated proton therapy, proton beam therapy, single field uniform scanning

Procedia PDF Downloads 172
1614 Design and Development of Constant Stress Composite Cantilever Beam

Authors: Vinod B. Suryawanshi, Ajit D. Kelkar

Abstract:

Glass fiber reinforced composites materials, due their unique properties such as high mechanical strength to weight ratio, corrosion resistance, and impact resistance have huge potential as structural materials in automotive, construction and transportation applications. However, these properties often come at higher cost owing to complex design methods, difficult manufacturing processes and raw material cost. In this paper, a cost effective design and manufacturing approach for a composite cantilever beam structure is presented. A constant stress (variable cross section) beam concept has been used to design and optimize the shape of composite cantilever beam and thus obtain the reduction in material used. The variable cross section beam was fabricated from the glass epoxy prepregs using cost effective out of autoclave process. The drop ply technique has been successfully used to obtain the variation in the cross section along the span of the beam. In order to test the beam and validate the design, the beam was subjected to different end loads. Strain gauges were mounted along the length of the beam to obtain strains in the beam at different sections and loads. The strain values were used to calculate the flexural strength and bending stresses in the beam. The stresses obtained through strain measurements from the experiment were found to be uniform along the span of the beam, and thus validates the design. Finally, the finite element model for the constant stress beam was developed using commercial finite element simulation software. It was observed that the simulation results agreed very well with the experimental results.

Keywords: beams, composites, constant cross-section, structures

Procedia PDF Downloads 317
1613 Finite Element Simulation of RC Exterior Beam-Column Joints Using Damage Plasticity Model

Authors: A. M. Halahla, M. H. Baluch, M. K. Rahman, A. H. Al-Gadhib, M. N. Akhtar

Abstract:

In the present study, 3D simulation of a typical exterior (RC) beam–column joint (BCJ) strengthened with carbon fiber-reinforced plastic (CFRP) sheet are carried out. Numerical investigations are performed using a nonlinear finite element ( FE) analysis by incorporating damage plasticity model (CDP), for material behaviour the concrete response in compression, tension softening were used, linear plastic with isotropic hardening for reinforcing steel, and linear elastic lamina material model for CFRP sheets using the commercial FE software ABAQUS. The numerical models developed in the present study are validated with the results obtained from the experiment under monotonic loading using the hydraulic Jack in displacement control mode. The experimental program includes casting of deficient BCJ loaded to failure load for both un-strengthened and strengthened BCJ. The failure mode, and deformation response of CFRP strengthened and un-strengthened joints and propagation of damage in the components of BCJ are discussed. Finite element simulations are compared with the experimental result and are noted to yield reasonable comparisons. The damage plasticity model was able to capture with good accuracy of the ultimate load and the mode of failure in the beam column joint.

Keywords: reinforced concrete, exterior beam-column joints, concrete damage plasticity model, computational simulation, 3-D finite element model

Procedia PDF Downloads 347
1612 Relating Interface Properties with Crack Propagation in Composite Laminates

Authors: Tao Qu, Chandra Prakash, Vikas Tomar

Abstract:

The interfaces between organic and inorganic phases in natural materials have been shown to be a key factor contributing to their high performance. This work analyzes crack propagation in a 2-ply laminate subjected to uniaxial tensile mode-I crack propagation loading that has laminate properties derived based on biological material constituents (marine exoskeleton- chitin and calcite). Interfaces in such laminates are explicitly modeled based on earlier molecular simulations performed by authors. Extended finite element method and cohesive zone modeling based simulations coupled with theoretical analysis are used to analyze crack propagation. Analyses explicitly quantify the effect that interface mechanical property variation has on the delamination as well as the transverse crack propagation in examined 2-ply laminates.

Keywords: chitin, composites, interfaces, fracture

Procedia PDF Downloads 347
1611 Vibration Analysis of Functionally Graded Engesser-Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: functionally graded beam, free vibration, elastic foundation, Engesser-Timoshenko beam theory

Procedia PDF Downloads 377
1610 Wobbled Laser Beam Welding for Macro-to Micro-Fabrication Process

Authors: Farzad Vakili-Farahani, Joern Lungershausen, Kilian Wasmer

Abstract:

Wobbled laser beam welding, fast oscillations of a tiny laser beam within a designed path (weld geometry) during the laser pulse illumination, opens new possibilities to improve the marco-to micro-manufacturing process. The present work introduces the wobbled laser beam welding as a robust welding strategy for improving macro-to micro-fabrication process, e.g., the laser processing for gap-bridging and packaging industry. The typical requisites and relevant equipment for the development of a wobbled laser processing unit are addressed, including a suitable laser source, light delivery system, optics, proper beam deflection system and the design geometry. In addition, experiments have been carried out on titanium plate to compare the results of wobbled laser welding with conventional pulsed laser welding. As compared to the pulsed laser welding, the wobbled laser welding offers a much greater fusion area (i.e. additional molten material) while minimizing the HAZ and provides a better confinement of the material microstructural changes.

Keywords: wobbled laser beam welding, wobbling function, beam oscillation, micro welding

Procedia PDF Downloads 291
1609 Nonlocal Beam Models for Free Vibration Analysis of Double-Walled Carbon Nanotubes with Various End Supports

Authors: Babak Safaei, Ahmad Ghanbari, Arash Rahmani

Abstract:

In the present study, the free vibration characteristics of double-walled carbon nanotubes (DWCNTs) are investigated. The small-scale effects are taken into account using the Eringen’s nonlocal elasticity theory. The nonlocal elasticity equations are implemented into the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT) to analyze the free vibrations of DWCNTs in which each wall of the nanotubes is considered as individual beam with van der Waals interaction forces. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations of each nonlocal beam model along with four commonly used boundary conditions. Then molecular dynamics (MD) simulation is performed for a series of armchair and zigzag DWCNTs with different aspect ratios and boundary conditions, the results of which are matched with those of nonlocal beam models to extract the appropriate values of the nonlocal parameter corresponding to each type of chirality, nonlocal beam model and boundary condition. It is found that the present nonlocal beam models with their proposed correct values of nonlocal parameter have good capability to predict the vibrational behavior of DWCNTs, especially for higher aspect ratios.

Keywords: double-walled carbon nanotubes, nonlocal continuum elasticity, free vibrations, molecular dynamics simulation, generalized differential quadrature method

Procedia PDF Downloads 262
1608 Forced Vibration of a Fiber Metal Laminated Beam Containing a Delamination

Authors: Sh. Mirhosseini, Y. Haghighatfar, M. Sedighi

Abstract:

Forced vibration problem of a delaminated beam made of fiber metal laminates is studied in this paper. Firstly, a delamination is considered to divide the beam into four sections. The classic beam theory is assumed to dominate each section. The layers on two sides of the delamination are constrained to have the same deflection. This hypothesis approves the conditions of compatibility as well. Consequently, dynamic response of the beam is obtained by the means of differential transform method (DTM). In order to verify the correctness of the results, a model is constructed using commercial software ABAQUS 6.14. A linear spring with constant stiffness takes the effect of contact between delaminated layers into account. The attained semi-analytical outcomes are in great agreement with finite element analysis.

Keywords: delamination, forced vibration, finite element modelling, natural frequency

Procedia PDF Downloads 277
1607 Experimental Research on Ductility of Regional Confined Concrete Beam

Authors: Qinggui Wu, Xinming Cao, Guyue Guo, Jiajun Ding

Abstract:

In efforts to study the shear ductility of regional confined concrete beam, 5 reinforced concrete beams were tested to examine its shear performance. These beams has the same shear span ratio, concrete strength, different ratios of tension reinforcement and shapes of stirrup. The purpose of the test is studying the effects of stirrup shape and tension reinforcement ratio on failure mode and shear ductility. The test shows that the regional confined part can be used as an independent part and the rest of the beam is good to work together so that the ductility of the beam is more one time higher than that of the normal confined concrete beam. The related laws of the effect of tension reinforcement ratio and stirrup shapes on beam’s shear ductility are founded.

Keywords: ratio of tension reinforcement, stirrup shapes, shear ductility, failure mode

Procedia PDF Downloads 298
1606 Aspects Concerning Flame Propagation of Various Fuels in Combustion Chamber of Four Valve Engines

Authors: Zoran Jovanovic, Zoran Masonicic, S. Dragutinovic, Z. Sakota

Abstract:

In this paper, results concerning flame propagation of various fuels in a particular combustion chamber with four tilted valves were elucidated. Flame propagation was represented by the evolution of spatial distribution of temperature in various cut-planes within combustion chamber while the flame front location was determined by dint of zones with maximum temperature gradient. The results presented are only a small part of broader on-going scrutinizing activity in the field of multidimensional modeling of reactive flows in combustion chambers with complicated geometries encompassing various models of turbulence, different fuels and combustion models. In the case of turbulence two different models were applied i.e. standard k-ε model of turbulence and k-ξ-f model of turbulence. In this paper flame propagation results were analyzed and presented for two different hydrocarbon fuels, such as CH4 and C8H18. In the case of combustion all differences ensuing from different turbulence models, obvious for non-reactive flows are annihilated entirely. Namely the interplay between fluid flow pattern and flame propagation is invariant as regards turbulence models and fuels applied. Namely the interplay between fluid flow pattern and flame propagation is entirely invariant as regards fuel variation indicating that the flame propagation through unburned mixture of CH4 and C8H18 fuels is not chemically controlled.

Keywords: automotive flows, flame propagation, combustion modelling, CNG

Procedia PDF Downloads 263
1605 The Side Effect of the Perforation Shape towards Behaviour Flexural in Castellated Beam

Authors: Harrys Purnama, Wardatul Jannah, Rizkia Nita Hawari

Abstract:

In the development of the times, there are many materials used to plan a building structure. Steel became one of the most widely used materials in building construction that works as the main structure. Steel Castellated Beam is a type of innovation in the use of steel in building construction. Steel Castellated Beam is a beam that used for long span construction (more than 10 meters). The Castellated Beam is two steel profiles that unified into one to get the appropriate profile height (more than 10 meters). The profile is perforated to minimize the profile's weight, increase the rate, save costs, and have architectural value. The perforations shape in the Castellated Beam can be circular, elliptical, hexagonal, and rectangular. The Castellated beam has a height (h) almost 50% higher than the initial profile thus increasing the axial bending value and the moment of inertia (Iₓ). In this analysis, there are 3 specimens were used with 12.1 meters span of Castellated Beam as the sample with varied perforation, such us round, hexagon, and octagon. Castellated Beam testing system is done with computer-based applications that named Staad Pro V8i. It is to provide a central load in the middle of the steel beam span. It aims to determine the effect of perforation on bending behavior on the steel Castellated Beam by applying some form of perforations on the steel Castellated Beam with test specimen WF 200.100.5.5.8. From the analysis, results found the behavior of steel Castellated Beam when receiving such central load. From the results of the analysis will be obtained the amount of load, shear, strain, and Δ (deflection). The result of analysis by using Staad Pro V8i shows that with the different form of perforations on the profile of Castellated steel, then we get the different tendency of inertia moment. From the analysis, results obtained the moment of the greatest inertia can increase the stiffness of Castellated steel. By increasing the stiffness of the steel Castellated Beam the deflection will be smaller, so it can withstand the moment and a large strength. The results of the analysis show that the most effective and efficient perforations are the steel beam with a hexagon perforation shape.

Keywords: Castellated Beam, the moment of inertia, stress, deflection, bending test

Procedia PDF Downloads 140
1604 Experimental Investigation of Natural Frequency and Forced Vibration of Euler-Bernoulli Beam under Displacement of Concentrated Mass and Load

Authors: Aref Aasi, Sadegh Mehdi Aghaei, Balaji Panchapakesan

Abstract:

This work aims to evaluate the free and forced vibration of a beam with two end joints subjected to a concentrated moving mass and a load using the Euler-Bernoulli method. The natural frequency is calculated for different locations of the concentrated mass and load on the beam. The analytical results are verified by the experimental data. The variations of natural frequency as a function of the location of the mass, the effect of the forced frequency on the vibrational amplitude, and the displacement amplitude versus time are investigated. It is discovered that as the concentrated mass moves toward the center of the beam, the natural frequency of the beam and the relative error between experimental and analytical data decreases. There is a close resemblance between analytical data and experimental observations.

Keywords: Euler-Bernoulli beam, natural frequency, forced vibration, experimental setup

Procedia PDF Downloads 231
1603 Stimulated Raman Scattering of Ultra Intense Hollow Gaussian Beam

Authors: Prerana Sharma

Abstract:

Effect of relativistic nonlinearity on stimulated Raman scattering of the propagating laser beam carrying null intensity in center (hollow Gaussian beam) by excited plasma wave are studied in a collisionless plasma. The construction of the equations is done employing the fluid theory which is developed with partial differential equation and Maxwell’s equations. The analysis is done using eikonal method. The phenonmenon of Stimulated Raman scattering is shown along with the excitation of seed plasma wave. The power of plasma wave and back reflectivity is observed for higher order of hollow Gaussian beam. Back reflectivity is studied numerically for various orders of HGLB with different value of plasma density, laser power and beam radius. Numerical analysis shows that these parameters play vital role on reflectivity characteristics.

Keywords: Hollow Gaussian beam, relativistic nonlinearity, plasma physics, Raman scattering

Procedia PDF Downloads 610
1602 Ray Tracing Modified 3D Image Method Simulation of Picocellular Propagation Channel Environment

Authors: Fathi Alwafie

Abstract:

In this paper we present the simulation of the propagation characteristics of the picocellular propagation channel environment. The first aim has been to find a correct description of the environment for received wave. The result of the first investigations is that the environment of the indoor wave significantly changes as we change the electric parameters of material constructions. A modified 3D ray tracing image method tool has been utilized for the coverage prediction. A detailed analysis of the dependence of the indoor wave on the wide-band characteristics of the channel: Root Mean Square (RMS) delay spread characteristics and mean excess delay, is also investigated.

Keywords: propagation, ray tracing, network, mobile computing

Procedia PDF Downloads 370
1601 Modified Side Plate Design to Suppress Lateral Torsional Buckling of H-Beam for Seismic Application

Authors: Erwin, Cheng-Cheng Chen, Charles J. Salim

Abstract:

One of the method to solve the lateral torsional buckling (LTB) problem is by using side plates to increased the buckling resistance of the beam. Some modifications in designing the side plates are made in this study to simplify the construction in the field and reduce the cost. At certain region, side plates are not added: (1) At the beam end to preserve some spaces for bolt installation, but the beam is strengthened by adding cover plate at both flanges and (2) at the middle span of the beam where the moment is smaller. Three small scale full span beam specimens are tested under cyclic loading to investigate the LTB resistant and the ductility of the proposed design method. Test results show that the LTB deformation can be effectively suppressed and very high ductility level can be achieved. Following the test, a finite element analysis (FEA) model is established and is verified using the test results. An intensive parametric study is conducted using the established FEA model. The analysis reveals that the length of side plates is the most important parameter determining the performance of the beam and the required side plates length is determined by some parameters which are (1) beam depth to flange width ratio, (2) beam slenderness ratio (3) strength and thickness of the side plates, (4) compactness of beam web and flange, and (5) beam yield strength. At the end of the paper, a design formula to calculate the required side plate length is suggested.

Keywords: cover plate, earthquake resistant design, lateral torsional buckling, side plate, steel structure

Procedia PDF Downloads 144
1600 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.

Keywords: finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability

Procedia PDF Downloads 379
1599 Numerical Analysis of End Plate Bolted Connection with Corrugated Beam

Authors: M. A. Sadeghian, J. Yang, Q. F. Liu

Abstract:

Steel extended end plate bolted connections are recommended to be widely utilized in special moment-resisting frame subjected to monotonic loading. Improper design of steel beam to column connection can lead to the collapse and fatality of structures. Therefore comprehensive research studies of beam to column connection design should be carried out. Also the performance and effect of corrugated on the strength of beam column end plate connection up to failure under monotonic loading in horizontal direction is presented in this paper. The non-linear elastic–plastic behavior has been considered through a finite element analysis using the multi-purpose software package LUSAS. The effect of vertically and horizontally types of corrugated web was also investigated.

Keywords: corrugated beam, monotonic loading, finite element analysis, end plate connection

Procedia PDF Downloads 283
1598 Optical Switching Based On Bragg Solitons in A Nonuniform Fiber Bragg Grating

Authors: Abdulatif Abdusalam, Mohamed Shaban

Abstract:

In this paper, we consider the nonlinear pulse propagation through a nonuniform birefringent fiber Bragg grating (FBG) whose index modulation depth varies along the propagation direction. Here, the pulse propagation is governed by the nonlinear birefringent coupled mode (NLBCM) equations. To form the Bragg soliton outside the photonic bandgap (PBG), the NLBCM equations are reduced to the well known NLS type equation by multiple scale analysis. As we consider the pulse propagation in a nonuniform FBG, the pulse propagation outside the PBG is governed by inhomogeneous NLS (INLS) rather than NLS. We, then, discuss the formation of soliton in the FBG known as Bragg soliton whose central frequency lies outside but close to the PBG of the grating structure. Further, we discuss Bragg soliton compression due to a delicate balance between the SPM and the varying grating induced dispersion. In addition, Bragg soliton collision, Bragg soliton switching and possible logic gates have also been discussed.

Keywords: Bragg grating, non uniform fiber, non linear pulse

Procedia PDF Downloads 284
1597 Analysis of Simply Supported Beams Using Elastic Beam Theory

Authors: M. K. Dce

Abstract:

The aim of this paper is to investigate the behavior of simply supported beams having rectangular section and subjected to uniformly distributed load (UDL). In this study five beams of span 5m, 6m, 7m and 8m have been considered. The width of all the beams is 400 mm and span to depth ratio has been taken as 12. The superimposed live load has been increased from 10 kN/m to 25 kN/m at the interval of 5 kN/m. The analysis of the beams has been carried out using the elastic beam theory. On the basis of present study it has been concluded that the maximum bending moment as well as deflection occurs at the mid-span of simply supported beam and its magnitude increases in proportion to magnitude of UDL. Moreover, the study suggests that the maximum moment is proportional to square of span and maximum deflection is proportional to fourth power of span.

Keywords: beam, UDL, bending moment, deflection, elastic beam theory

Procedia PDF Downloads 363