Search results for: available line transfer capability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6406

Search results for: available line transfer capability

6046 Process Assessment Model for Process Capability Determination Based on ISO/IEC 20000-1:2011

Authors: Harvard Najoan, Sarwono Sutikno, Yusep Rosmansyah

Abstract:

Most enterprises are now using information technology services as their assets to support business objectives. These kinds of services are provided by the internal service provider (inside the enterprise) or external service provider (outside enterprise). To deliver quality information technology services, the service provider (which from now on will be called ‘organization’) either internal or external, must have a standard for service management system. At present, the standard that is recognized as best practice for service management system for the organization is international standard ISO/IEC 20000:2011. The most important part of this international standard is the first part or ISO/IEC 20000-1:2011-Service Management System Requirement, because it contains 22 for organization processes as a requirement to be implemented in an organizational environment in order to build, manage and deliver quality service to the customer. Assessing organization management processes is the first step to implementing ISO/IEC 20000:2011 into the organization management processes. This assessment needs Process Assessment Model (PAM) as an assessment instrument. PAM comprises two parts: Process Reference Model (PRM) and Measurement Framework (MF). PRM is built by transforming the 22 process of ISO/IEC 20000-1:2011 and MF is based on ISO/IEC 33020. This assessment instrument was designed to assess the capability of service management process in Divisi Teknologi dan Sistem Informasi (Information Systems and Technology Division) as an internal organization of PT Pos Indonesia. The result of this assessment model can be proposed to improve the capability of service management system.

Keywords: ISO/IEC 20000-1:2011, ISO/IEC 33020:2015, process assessment, process capability, service management system

Procedia PDF Downloads 436
6045 Numerical Investigation of Fluid Flow, Characteristics of Thermal Performance and Enhancement of Heat Transfer of Corrugated Pipes with Various Geometrical Configurations

Authors: Ahmed Ramadhan Al-Obaidi, Jassim Alhamid

Abstract:

In this investigation, the flow pattern, characteristics of thermal-hydraulic, and improvement of heat transfer performance are evaluated using a numerical technique in three dimensions corrugated pipe heat exchanger. The modification was made under different corrugated pipe geometrical parameters, including corrugated ring angle (CRA), distance between corrugated ring (DBCR), and corrugated diameter (CD), the range of Re number from 2000 to 12000. The numerical results are validated with available experimental data. The numerical outcomes reveal that there is an important change in flow field behaviour and a significant increase in friction factor and improvement in heat transfer performance owing to the use of the corrugated shape in the heat exchanger pipe as compared to the conventional smooth pipe. Using corrugated pipe with different configurations makes the flow more turbulence, flow separation, boundary layer distribution, flow mixing, and that leads to augmenting the performance of heat transfer. Moreover, the value of pressure drop, and the Nusselt number increases as the corrugated pipe geometrical parameters increase. Furthermore, the corrugation configuration shapes have an important influence on the thermal evaluation performance factor, and the maximum value was more than 1.3. Numerical simulation can be performed to predict the various geometrical configurations effects on fluid flow, thermal performance, and heat transfer enhancement.

Keywords: corrugated ring angle, corrugated diameter, Nusselt number, heat transfer

Procedia PDF Downloads 113
6044 An Analytical and Numerical Solutions for the Thermal Analysis of a Mechanical Draft Wet Cooling Tower

Authors: Hamed Djalal

Abstract:

The thermal analysis of the mechanical draft wet cooling tower is performed in this study by the heat and mass transfer modelization in the packing zone. After combining the heat and mass transfer laws, the mass and energy balances and by involving the Merkel assumptions; firstly, an ordinary differential equations system is derived and solved numerically by the Runge-Kutta method to determine the water and air temperatures, the humidity, and also other properties variation along the packing zone. Secondly, by making some linear assumptions for the air saturation curve, an analytical solution is formed, which is developed for the air washer calculation, but in this study, it is applied for the cooling tower to express also the previous parameters mathematically as a function of the packing height. Finally, a good agreement with experimental data is achieved by both solutions, but the numerical one seems to be the more accurate for modeling the heat and mass transfer process in the wet cooling tower.

Keywords: evaporative cooling, cooling tower, air washer, humidification, moist air, heat, and mass transfer

Procedia PDF Downloads 70
6043 Requirement Engineering and Software Product Line Scoping Paradigm

Authors: Ahmed Mateen, Zhu Qingsheng, Faisal Shahzad

Abstract:

Requirement Engineering (RE) is a part being created for programming structure during the software development lifecycle. Software product line development is a new topic area within the domain of software engineering. It also plays important role in decision making and it is ultimately helpful in rising business environment for productive programming headway. Decisions are central to engineering processes and they hold them together. It is argued that better decisions will lead to better engineering. To achieve better decisions requires that they are understood in detail. In order to address the issues, companies are moving towards Software Product Line Engineering (SPLE) which helps in providing large varieties of products with minimum development effort and cost. This paper proposed a new framework for software product line and compared with other models. The results can help to understand the needs in SPL testing, by identifying points that still require additional investigation. In our future scenario, we will combine this model in a controlled environment with industrial SPL projects which will be the new horizon for SPL process management testing strategies.

Keywords: requirements engineering, software product lines, scoping, process structure, domain specific language

Procedia PDF Downloads 200
6042 A Study of Learning Achievement for Heat Transfer by Using Experimental Sets of Convection with the Predict-Observe-Explain Teaching Technique

Authors: Wanlapa Boonsod, Nisachon Yangprasong, Udomsak Kitthawee

Abstract:

Thermal physics education is a complicated and challenging topic to discuss in any classroom. As a result, most students tend to be uninterested in learning this topic. In the current study, a convection experiment set was devised to show how heat can be transferred by a convection system to a thermoelectric plate until a LED flashes. This research aimed to 1) create a natural convection experimental set, 2) study learning achievement on the convection experimental set with the predict-observe-explain (POE) technique, and 3) study satisfaction for the convection experimental set with the predict-observe-explain (POE) technique. The samples were chosen by purposive sampling and comprised 28 students in grade 11 at Patumkongka School in Bangkok, Thailand. The primary research instrument was the plan for predict-observe-explain (POE) technique on heat transfer using a convection experimental set. Heat transfer experimental set by convection. The instruments used to collect data included a heat transfer achievement model by convection, a Satisfaction Questionnaire after the learning activity, and the predict-observe-explain (POE) technique for heat transfer using a convection experimental set. The research format comprised a one-group pretest-posttest design. The data was analyzed by GeoGebra program. The statistics used in the research were mean, standard deviation and t-test for dependent samples. The results of the research showed that achievement on heat transfer using convection experimental set was composed of thermo-electrics on the top side attached to the heat sink and another side attached to a stainless plate. Electrical current was displayed by the flashing of a 5v LED. The entire set of thermo-electrics was set up on the top of the box and heated by an alcohol burner. The achievement of learning was measured with the predict-observe-explain (POE) technique, with the natural convection experimental set statistically higher than before learning at a 0.01 level. Satisfaction with POE for physics learning of heat transfer by using convection experimental set was at a high level (4.83 from 5.00).

Keywords: convection, heat transfer, physics education, POE

Procedia PDF Downloads 187
6041 Modeling of Conjugate Heat Transfer including Radiation in a Kerosene/Air Certification Burner

Authors: Lancelot Boulet, Pierre Benard, Ghislain Lartigue, Vincent Moureau, Nicolas Chauvet, Sheddia Didorally

Abstract:

International aeronautic standards demand a fire certification for engines that demonstrate their resistance. This demonstration relies on tests performed with prototype engines in the late stages of the development. Hardest tests require to place a kerosene standardized flame in front of the engine casing during a given time with imposed temperature and heat flux. The purpose of this work is to provide a better characterization of a kerosene/air certification burner in order to minimize the risks of test failure. A first Large-Eddy Simulation (LES) study of the certification burner permitted to model and simulate this burner, including both adiabatic and Conjugate Heat Transfer (CHT) computations. Carried out on unstructured grids with 40 million tetrahedral cells, using the finite-volume YALES2 code, spray combustion, forced convection on walls and conduction in the solid parts of the burner were coupled to achieve a detailed description of heat transfer. It highlighted the fact that conduction inside the solid has a real impact on the flame topology and the combustion regime. However, in the absence of radiative heat transfer, unrealistic temperature of the equipment was obtained. The aim of the present study is to include the radiative heat transfer in order to reach the same temperature given by experimental measurements. First, various test-cases are conducted to validate the coupling between the different heat solvers. Then, adiabatic case, CHT case, as well as CHT including radiative transfer are studied and compared. The LES model is finally applied to investigate the heat transfer in a flame impaction configuration. The aim is to progress on fire test modeling so as to reach a good confidence level as far as success of the certification test is concerned.

Keywords: conjugate heat transfer, fire resistance test, large-eddy simulation, radiative transfer, turbulent combustion

Procedia PDF Downloads 201
6040 Developing Dynamic Capabilities: The Case of Western Subsidiaries in Emerging Market

Authors: O. A. Adeyemi, M. O. Idris, W. A. Oke, O. T. Olorode, S. O. Alayande, A. E. Adeoye

Abstract:

The purpose of this paper is to investigate the process of capability building at subsidiary level and the challenges to such process. The relevance of external factors for capability development, have not been explicitly addressed in empirical studies. Though, internal factors, acting as enablers, have been more extensively studied. With reference to external factors, subsidiaries are actively influenced by specific characteristics of the host country, implying a need to become fully immersed in local culture and practices. Specifically, in MNCs, there has been a widespread trend in management practice to increase subsidiary autonomy,  with subsidiary managers being encouraged to act entrepreneurially, and to take advantage of host country specificity. As such, it could be proposed that: P1: The degree at which subsidiary management is connected to the host country, will positively influence the capability development process. Dynamic capabilities reside to a large measure with the subsidiary management team, but are impacted by the organizational processes, systems and structures that the MNC headquarter has designed to manage its business. At the subsidiary level, the weight of the subsidiary in the network, its initiative-taking and its profile building increase the supportive attention of the HQs and are relevant to the success of the process of capability building. Therefore, our second proposition is that: P2: Subsidiary role and HQ support are relevant elements in capability development at the subsidiary level. Design/Methodology/Approach: This present study will adopt the multiple case studies approach. That is because a case study research is relevant when addressing issues without known empirical evidences or with little developed prior theory. The key definitions and literature sources directly connected with operations of western subsidiaries in emerging markets, such as China, are well established. A qualitative approach, i.e., case studies of three western subsidiaries, will be adopted. The companies have similar products, they have operations in China, and both of them are mature in their internationalization process. Interviews with key informants, annual reports, press releases, media materials, presentation material to customers and stakeholders, and other company documents will be used as data sources. Findings: Western Subsidiaries in Emerging Market operate in a way substantially different from those in the West. What are the conditions initiating the outsourcing of operations? The paper will discuss and present two relevant propositions guiding that process. Practical Implications: MNCs headquarter should be aware of the potential for capability development at the subsidiary level. This increased awareness could induce consideration in headquarter about the possible ways of encouraging such known capability development and how to leverage these capabilities for better MNC headquarter and/or subsidiary performance. Originality/Value: The paper is expected to contribute on the theme: drivers of subsidiary performance with focus on emerging market. In particular, it will show how some external conditions could promote a capability-building process within subsidiaries.

Keywords: case studies, dynamic capability, emerging market, subsidiary

Procedia PDF Downloads 97
6039 Adaptation of Projection Profile Algorithm for Skewed Handwritten Text Line Detection

Authors: Kayode A. Olaniyi, Tola. M. Osifeko, Adeola A. Ogunleye

Abstract:

Text line segmentation is an important step in document image processing. It represents a labeling process that assigns the same label using distance metric probability to spatially aligned units. Text line detection techniques have successfully been implemented mainly in printed documents. However, processing of the handwritten texts especially unconstrained documents has remained a key problem. This is because the unconstrained hand-written text lines are often not uniformly skewed. The spaces between text lines may not be obvious, complicated by the nature of handwriting and, overlapping ascenders and/or descenders of some characters. Hence, text lines detection and segmentation represents a leading challenge in handwritten document image processing. Text line detection methods that rely on the traditional global projection profile of the text document cannot efficiently confront with the problem of variable skew angles between different text lines. Hence, the formulation of a horizontal line as a separator is often not efficient. This paper presents a technique to segment a handwritten document into distinct lines of text. The proposed algorithm starts, by partitioning the initial text image into columns, across its width into chunks of about 5% each. At each vertical strip of 5%, the histogram of horizontal runs is projected. We have worked with the assumption that text appearing in a single strip is almost parallel to each other. The algorithm developed provides a sliding window through the first vertical strip on the left side of the page. It runs through to identify the new minimum corresponding to a valley in the projection profile. Each valley would represent the starting point of the orientation line and the ending point is the minimum point on the projection profile of the next vertical strip. The derived text-lines traverse around any obstructing handwritten vertical strips of connected component by associating it to either the line above or below. A decision of associating such connected component is made by the probability obtained from a distance metric decision. The technique outperforms the global projection profile for text line segmentation and it is robust to handle skewed documents and those with lines running into each other.

Keywords: connected-component, projection-profile, segmentation, text-line

Procedia PDF Downloads 93
6038 Examining the Change of Power Transmission Line in Urban Regeneration with Geographical Information System

Authors: C. Yagci, F. Iscan

Abstract:

In this study, spatial differences of Power Transmission Line (PTL) and effects of the situation before and after the urban regeneration are studied by using Geographical Information System (GIS). In addition, a questionable and analyzable structure is acquired by developed system. In the study area many parcels on the PTL were analyzed. The amount of the parcels, which are affected by the negativity of PTL is clearly seen with the aid of generated maps. Some kind of changes are exhibited in the system, which are created by GIS, for instance before urban regeneration PTL was very close to people’s private properties and huge parts of PTL were among the buildings, however; after urban regeneration electricity lines were changed their locations to the underground. According to the results, GIS can be used as a device in planning and managing of PTL in urban regeneration projects and can be used for analyses. By the help of GIS technology, necessary investigations should be carried out in urban regeneration applications for creating sustainable cities.

Keywords: GIS, power transmission line, technology, urban regeneration

Procedia PDF Downloads 737
6037 Real-Time Generative Architecture for Mesh and Texture

Authors: Xi Liu, Fan Yuan

Abstract:

In the evolving landscape of physics-based machine learning (PBML), particularly within fluid dynamics and its applications in electromechanical engineering, robot vision, and robot learning, achieving precision and alignment with researchers' specific needs presents a formidable challenge. In response, this work proposes a methodology that integrates neural transformation with a modified smoothed particle hydrodynamics model for generating transformed 3D fluid simulations. This approach is useful for nanoscale science, where the unique and complex behaviors of viscoelastic medium demand accurate neurally-transformed simulations for materials understanding and manipulation. In electromechanical engineering, the method enhances the design and functionality of fluid-operated systems, particularly microfluidic devices, contributing to advancements in nanomaterial design, drug delivery systems, and more. The proposed approach also aligns with the principles of PBML, offering advantages such as multi-fluid stylization and consistent particle attribute transfer. This capability is valuable in various fields where the interaction of multiple fluid components is significant. Moreover, the application of neurally-transformed hydrodynamical models extends to manufacturing processes, such as the production of microelectromechanical systems, enhancing efficiency and cost-effectiveness. The system's ability to perform neural transfer on 3D fluid scenes using a deep learning algorithm alongside physical models further adds a layer of flexibility, allowing researchers to tailor simulations to specific needs across scientific and engineering disciplines.

Keywords: physics-based machine learning, robot vision, robot learning, hydrodynamics

Procedia PDF Downloads 36
6036 Modification of Li-Rich Layered Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material

Authors: Liu Li, Kim Seng Lee, Li Lu

Abstract:

The high-energy-density Li-rich layered materials are promising cathode materials for the next-generation high-performance lithium-ion batteries. The relatively low rate capability is one of the major problems that limit their practical application. In this work, Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material synthesized by coprecipitation method is further modified by F doping or surface treatment to enhance its cycling stability as well as rate capability.

Keywords: Li-ion battery, Li-rich layered cathode material, phase transformation, cycling stability, rate capacility

Procedia PDF Downloads 325
6035 Effects of the Flow Direction on the Fluid Flow and Heat Transfer in the Rod Bundle

Authors: Huirui Han, Chao Zhang

Abstract:

The rod bundle is used in the fuel assembly of the supercritical water-cooled nuclear reactor. In the rod bundle, the coolant absorbs the heat contributed by the fission process. Because of the dramatic variations in the thermophysical properties of water at supercritical conditions, it is essential to investigate the heat transfer characteristics of supercritical water in the rod bundle to ensure the safety of the nuclear power plant. In this study, the effects of the flow direction, including horizontal, upward, and downward, on the fluid flow and heat transfer of the supercritical water in the rod bundle were studied numerically. The results show the possibility of gap vortices in the flow subchannels of the rod bundle. In addition, the distributions of the circumferential wall temperature show differences in different flow direction conditions. It was also found that the circumferential cladding surface temperature distribution in the upward flow condition is extremely non-uniform, and there is a large difference between the maximum wall temperatures for different fuel rods.

Keywords: heat transfer, rod bundle, supercritical water, wall temperature

Procedia PDF Downloads 71
6034 Power Grid Line Ampacity Forecasting Based on a Long-Short-Term Memory Neural Network

Authors: Xiang-Yao Zheng, Jen-Cheng Wang, Joe-Air Jiang

Abstract:

Improving the line ampacity while using existing power grids is an important issue that electricity dispatchers are now facing. Using the information provided by the dynamic thermal rating (DTR) of transmission lines, an overhead power grid can operate safely. However, dispatchers usually lack real-time DTR information. Thus, this study proposes a long-short-term memory (LSTM)-based method, which is one of the neural network models. The LSTM-based method predicts the DTR of lines using the weather data provided by Central Weather Bureau (CWB) of Taiwan. The possible thermal bottlenecks at different locations along the line and the margin of line ampacity can be real-time determined by the proposed LSTM-based prediction method. A case study that targets the 345 kV power grid of TaiPower in Taiwan is utilized to examine the performance of the proposed method. The simulation results show that the proposed method is useful to provide the information for the smart grid application in the future.

Keywords: electricity dispatch, line ampacity prediction, dynamic thermal rating, long-short-term memory neural network, smart grid

Procedia PDF Downloads 258
6033 Quantification Model for Capability Evaluation of Optical-Based in-Situ Monitoring System for Laser Powder Bed Fusion (LPBF) Process

Authors: Song Zhang, Hui Wang, Johannes Henrich Schleifenbaum

Abstract:

Due to the increasing demand for quality assurance and reliability for additive manufacturing, the development of an advanced in-situ monitoring system is required to monitor the process anomalies as input for further process control. Optical-based monitoring systems, such as CMOS cameras and NIR cameras, are proved as effective ways to monitor the geometrical distortion and exceptional thermal distribution. Therefore, many studies and applications are focusing on the availability of the optical-based monitoring system for detecting varied types of defects. However, the capability of the monitoring setup is not quantified. In this study, a quantification model to evaluate the capability of the monitoring setups for the LPBF machine based on acquired monitoring data of a designed test artifact is presented, while the design of the relevant test artifacts is discussed. The monitoring setup is evaluated based on its hardware properties, location of the integration, and light condition. Methodology of data processing to quantify the capacity for each aspect is discussed. The minimal capability of the detectable size of the monitoring set up in the application is estimated by quantifying its resolution and accuracy. The quantification model is validated using a CCD camera-based monitoring system for LPBF machines in the laboratory with different setups. The result shows the model to quantify the monitoring system's performance, which makes the evaluation of monitoring systems with the same concept but different setups possible for the LPBF process and provides the direction to improve the setups.

Keywords: data processing, in-situ monitoring, LPBF process, optical system, quantization model, test artifact

Procedia PDF Downloads 170
6032 A Review of Transformer Modeling for Power Line Communication Applications

Authors: Balarabe Nkom, Adam P. R. Taylor, Craig Baguley

Abstract:

Power Line Communications (PLC) is being employed in existing power systems, despite the infrastructure not being designed with PLC considerations in mind. Given that power transformers can last for decades, the distribution transformer in particular exists as a relic of un-optimized technology. To determine issues that may need to be addressed in subsequent designs of such transformers, it is essential to have a highly accurate transformer model for simulations and subsequent optimization for the PLC environment, with a view to increase data speed, throughput, and efficiency, while improving overall system stability and reliability. This paper reviews various methods currently available for creating transformer models and provides insights into the requirements of each for obtaining high accuracy. The review indicates that a combination of traditional analytical methods using a hybrid approach gives good accuracy at reasonable costs.

Keywords: distribution transformer, modelling, optimization, power line communications

Procedia PDF Downloads 476
6031 Experimental Investigation of Heat Pipe with Annular Fins under Natural Convection at Different Inclinations

Authors: Gangacharyulu Dasaroju, Sumeet Sharma, Sanjay Singh

Abstract:

Heat pipe is characterised as superconductor of heat because of its excellent heat removal ability. The operation of several engineering system results in generation of heat. This may cause several overheating problems and lead to failure of the systems. To overcome this problem and to achieve desired rate of heat dissipation, there is need to study the performance of heat pipe with annular fins under free convection at different inclinations. This study demonstrates the effect of different mass flow rate of hot fluid into evaporator section on the condenser side heat transfer coefficient with annular fins under natural convection at different inclinations. In this study annular fins are used for the experimental work having dimensions of length of fin, thickness of fin and spacing of fin as 10 mm, 1 mm and 6 mm, respectively. The main aim of present study is to discover at what inclination angles the maximum heat transfer coefficient shall be achieved. The heat transfer coefficient on the external surface of heat pipe condenser section is determined by experimental method and then predicted by empirical correlations. The results obtained from experimental and Churchill and Chu relation for laminar are in fair agreement with not more than 22% deviation. It is elucidated the maximum heat transfer coefficient of 31.2 W/(m2-K) at 25˚ tilt angle and minimal condenser heat transfer coefficient of 26.4 W/(m2-K) is seen at 45˚ tilt angle and 200 ml/min mass flow rate. Inclination angle also affects the thermal performance of heat pipe. Beyond 25o inclination, heat transport rate starts to decrease.

Keywords: heat pipe, annular fins, natural convection, condenser heat transfer coefficient, tilt angle

Procedia PDF Downloads 128
6030 Numerical Investigation of Heat Transfer in Laser Irradiated Biological Samplebased on Dual-Phase-Lag Heat Conduction Model Using Lattice Boltzmann Method

Authors: Shashank Patidar, Sumit Kumar, Atul Srivastava, Suneet Singh

Abstract:

Present work is concerned with the numerical investigation of thermal response of biological tissues during laser-based photo-thermal therapy for destroying cancerous/abnormal cells with minimal damage to the surrounding normal cells. Light propagation through the biological sample is mathematically modelled by transient radiative transfer equation. In the present work, application of the Lattice Boltzmann Method is extended to analyze transport of short-pulse radiation in a participating medium.In order to determine the two-dimensional temperature distribution inside the tissue medium, the RTE has been coupled with Penne’s bio-heat transfer equation based on Fourier’s law by several researchers in last few years.

Keywords: lattice Boltzmann method, transient radiation transfer equation, dual phase lag model

Procedia PDF Downloads 322
6029 Thermal Hydraulic Analysis of Sub-Channels of Pressurized Water Reactors with Hexagonal Array: A Numerical Approach

Authors: Md. Asif Ullah, M. A. R. Sarkar

Abstract:

This paper illustrates 2-D and 3-D simulations of sub-channels of a Pressurized Water Reactor (PWR) having hexagonal array of fuel rods. At a steady state, the temperature of outer surface of the cladding of fuel rod is kept about 1200°C. The temperature of this isothermal surface is taken as boundary condition for simulation. Water with temperature of 290°C is given as a coolant inlet to the primary water circuit which is pressurized upto 157 bar. Turbulent flow of pressurized water is used for heat removal. In 2-D model, temperature, velocity, pressure and Nusselt number distributions are simulated in a vertical sectional plane through the sub-channels of a hexagonal fuel rod assembly. Temperature, Nusselt number and Y-component of convective heat flux along a line in this plane near the end of fuel rods are plotted for different Reynold’s number. A comparison between X-component and Y-component of convective heat flux in this vertical plane is analyzed. Hexagonal fuel rod assembly has three types of sub-channels according to geometrical shape whose boundary conditions are different too. In 3-D model, temperature, velocity, pressure, Nusselt number, total heat flux magnitude distributions for all the three sub-channels are studied for a suitable Reynold’s number. A horizontal sectional plane is taken from each of the three sub-channels to study temperature, velocity, pressure, Nusselt number and convective heat flux distribution in it. Greater values of temperature, Nusselt number and Y-component of convective heat flux are found for greater Reynold’s number. X-component of convective heat flux is found to be non-zero near the bottom of fuel rod and zero near the end of fuel rod. This indicates that the convective heat transfer occurs totally along the direction of flow near the outlet. As, length to radius ratio of sub-channels is very high, simulation for a short length of the sub-channels are done for graphical interface advantage. For the simulations, Turbulent Flow (K-Є ) module and Heat Transfer in Fluids (ht) module of COMSOL MULTIPHYSICS 5.0 are used.

Keywords: sub-channels, Reynold’s number, Nusselt number, convective heat transfer

Procedia PDF Downloads 341
6028 On the Influence of Thermal Radiation Upon Heat Transfer Characteristics of a Porous Media Under Local Thermal Non-Equilibrium Condition

Authors: Yasser Mahmoudi, Nader Karimi

Abstract:

The present work investigates numerically the effect of thermal radiation from the solid phase on the rate of heat transfer inside a porous medium. Forced convection heat transfer process within a pipe filled with a porous media is considered. The Darcy-Brinkman-Forchheimer model is utilized to represent the fluid transport within the porous medium. A local thermal non-equilibrium (LTNE), two-equation model is used to represent the energy transport for the solid and fluid phases. The radiative heat transfer equation is solved by discrete ordinate method (DOM) to compute the radiative heat flux in the porous medium. Two primary approaches (models A and B) are used to represent the boundary conditions for constant wall heat flux. The effects of radiative heat transfer on the Nusselt numbers of the two phases are examined by comparing the results obtained by the application of models A and B. The fluid Nusselt numbers calculated by the application of models A and B show that the Nusselt number obtained by model A for the radiative case is higher than those predicted for the non-radiative case. However, for model B the fluid Nusselt numbers obtained for the radiative and non-radiative cases are similar.

Keywords: porous media, local thermal non-equilibrium, forced convection heat transfer, thermal radiation, Discrete Ordinate Method (DOM)

Procedia PDF Downloads 299
6027 Analyzing the Heat Transfer Mechanism in a Tube Bundle Air-PCM Heat Exchanger: An Empirical Study

Authors: Maria De Los Angeles Ortega, Denis Bruneau, Patrick Sebastian, Jean-Pierre Nadeau, Alain Sommier, Saed Raji

Abstract:

Phase change materials (PCM) present attractive features that made them a passive solution for thermal comfort assessment in buildings during summer time. They show a large storage capacity per volume unit in comparison with other structural materials like bricks or concrete. If their use is matched with the peak load periods, they can contribute to the reduction of the primary energy consumption related to cooling applications. Despite these promising characteristics, they present some drawbacks. Commercial PCMs, as paraffines, offer a low thermal conductivity affecting the overall performance of the system. In some cases, the material can be enhanced, adding other elements that improve the conductivity, but in general, a design of the unit that optimizes the thermal performance is sought. The material selection is the departing point during the designing stage, and it does not leave plenty of room for optimization. The PCM melting point depends highly on the atmospheric characteristics of the building location. The selection must relay within the maximum, and the minimum temperature reached during the day. The geometry of the PCM container and the geometrical distribution of these containers are designing parameters, as well. They significantly affect the heat transfer, and therefore its phenomena must be studied exhaustively. During its lifetime, an air-PCM unit in a building must cool down the place during daytime, while the melting of the PCM occurs. At night, the PCM must be regenerated to be ready for next uses. When the system is not in service, a minimal amount of thermal exchanges is desired. The aforementioned functions result in the presence of sensible and latent heat storage and release. Hence different types of mechanisms drive the heat transfer phenomena. An experimental test was designed to study the heat transfer phenomena occurring in a circular tube bundle air-PCM exchanger. An in-line arrangement was selected as the geometrical distribution of the containers. With the aim of visual identification, the containers material and a section of the test bench were transparent. Some instruments were placed on the bench for measuring temperature and velocity. The PCM properties were also available through differential scanning calorimeter (DSC) tests. An evolution of the temperature during both cycles, melting and solidification were obtained. The results showed some phenomena at a local level (tubes) and on an overall level (exchanger). Conduction and convection appeared as the main heat transfer mechanisms. From these results, two approaches to analyze the heat transfer were followed. The first approach described the phenomena in a single tube as a series of thermal resistances, where a pure conduction controlled heat transfer was assumed in the PCM. For the second approach, the temperature measurements were used to find some significant dimensionless numbers and parameters as Stefan, Fourier and Rayleigh numbers, and the melting fraction. These approaches allowed us to identify the heat transfer phenomena during both cycles. The presence of natural convection during melting might have been stated from the influence of the Rayleigh number on the correlations obtained.

Keywords: phase change materials, air-PCM exchangers, convection, conduction

Procedia PDF Downloads 151
6026 Economic Analysis of Interaction Freedom, Institutions and Development in the countries of North Africa: Amartya Sen Approach of Capability

Authors: Essardi Omar, Razzouk Redouane

Abstract:

The concept of freedom requires notice of countries all over the world to consider welfare and the quality of life. Despite, many economics efforts in the field of development literature, they have often failed to incorporate the ideas of freedom and rights into their theoretical and empirical work. However, with Amartya Sen’s approach of capability and researches, we can provide a basis for moving forward in theory and measure of development. Indeed, with an approach based on the correlation and the analysis of data, particularly on the tool of principle component analysis, we are going to study assessments of World Bank, Freedom House, Fraster institute, and MINEFE experts. Our empirical objective is to reveal the existence of the institutional and freedom characteristics related to the development of the emergent countries. In order to help us to explain the recent performance reached by Central and Eastern Europe and Latine America in compared with the case of countries of North Africa. To do this, first we will try to build indicators based on dilemma liberties /institutions. Second we will introduce institutional variables and freedom variables to make comparisons in freedom, quality of institutions and development in the countries observed.

Keywords: freedoms, institutions, development, approach of capability, principle component analysis

Procedia PDF Downloads 403
6025 Design and Analysis of Enhanced Heat Transfer Kit for Plate Type Heat Exchanger

Authors: Muhammad Shahrukh Saeed, Syed Ahmad Nameer, Shafiq Ur Rehman, Aisha Jillani

Abstract:

Heat exchangers play a critical role in industrial applications of thermal systems. Its physical size and performance are vital parameters; therefore enhancement of heat transfer through different techniques remained a major research area for both academia and industry. This research reports the main purpose of heat exchanger with better kit design which plays a vital role during the process of heat transfer. Plate type heat exchanger mainly requires a design in which the plates can be easily be installed and removed without having any problem with the plates. For the flow of the fluid within the heat exchanger, it requires a flow should be fully developed. As natural laws allows the driving energy of the system to flow until equilibrium is achieved. As with a plate type heat exchanger heat the heat penetrates the surface which separates the hot medium with the cold one very easily. As some of the precautions should be considered while taking the heat exchanger accountable like heat should transfer from hot medium to cold, there should always be difference in temperature present and heat loss from hot body should be equal to the heat gained by the cold body regardless of the losses present to the surroundings. Aluminum plates of same grade are used in all experiments to ensure similarity. Size of all plates was 254 mm X 100 mm and thickness was taken as 5 mm.

Keywords: heat transfer coefficient, aluminium, entry length, design

Procedia PDF Downloads 296
6024 Clinical Efficacy of Indigenous Software for Automatic Detection of Stages of Retinopathy of Prematurity (ROP)

Authors: Joshi Manisha, Shivaram, Anand Vinekar, Tanya Susan Mathews, Yeshaswini Nagaraj

Abstract:

Retinopathy of prematurity (ROP) is abnormal blood vessel development in the retina of the eye in a premature infant. The principal object of the invention is to provide a technique for detecting demarcation line and ridge detection for a given ROP image that facilitates early detection of ROP in stage 1 and stage 2. The demarcation line is an indicator of Stage 1 of the ROP and the ridge is the hallmark of typically Stage 2 ROP. Thirty Retcam images of Asian Indian infants obtained during routine ROP screening have been used for the analysis. A graphical user interface has been developed to detect demarcation line/ridge and to extract ground truth. This novel algorithm uses multilevel vessel enhancement to enhance tubular structures in the digital ROP images. It has been observed that the orientation of the demarcation line/ridge is normal to the direction of the blood vessels, which is used for the identification of the ridge/ demarcation line. Quantitative analysis has been presented based on gold standard images marked by expert ophthalmologist. Image based analysis has been based on the length and the position of the detected ridge. In image based evaluation, average sensitivity and positive predictive value was found to be 92.30% and 85.71% respectively. In pixel based evaluation, average sensitivity, specificity, positive predictive value and negative predictive value achieved were 60.38%, 99.66%, 52.77% and 99.75% respectively.

Keywords: ROP, ridge, multilevel vessel enhancement, biomedical

Procedia PDF Downloads 364
6023 Chemical Composition of Essential Oil and in vitro Antibacterial and Anticancer Activity of the Hydroalcolic Extract from Coronilla varia

Authors: A. A. Dehpour, B. Eslami, S. Rezaie, S. F. Hashemian, F. Shafie, M. Kiaie

Abstract:

The aims of study were investigation on chemical composition essential oil and the effect of extract of Coronilla varia on antimicrobial and cytotoxicity activity. The essential oils of Coronilla varia is obtained by hydrodistillation and analyzed by (GC/MS) for determining their chemical composition and identification of their components. Antibacterial activity of plant extract was determined by disc diffusion method. The effect of hydroalcolic extracts from Cornilla varia investigated on MCF7 cancer cell line by MTT assay. The major components were Caryophyllene Oxide (60.19%), Alphacadinol (4.13%) and Homoadantaneca Robexylic Acid (3.31%). The extracts from Coronilla varia had interesting activity against Proteus mirabilis in the concentration of 700 µg/disc and did not show any activity against Staphylococus aureus, Bacillus subtillis, Klebsiella pneumonia and Entrobacter cloacae. The positive control, Ampicillin, Chloramphenicol and Cenphalothin had shown zone of inhibition resistant all bacteria. Corohilla varia ethanol extract could inhibit the proliferation of MCF7 cell line in RPMI 1640 medium. IC50 5(mg/ml) was the optimum concentration of extract from Coronilla varia inhibition of cell line growth. The MCF7 cancer cell line and Proteus mirabilis were more sensitive to Coronilla varia ethanol extract.

Keywords: Coronilla varia, essential oil, antibacterial, anticancer, hela cell line

Procedia PDF Downloads 362
6022 Study of Li-Rich Layered Cathode Materials for High-Energy Li-ion Batteries

Authors: Liu Li, Kim Seng Lee, Li Lu

Abstract:

The high-energy-density Li-rich layered materials are promising cathode materials for the next-generation high-performance lithium-ion batteries. They have attracted a lot of attentions due mainly to their high reversible capacity of more than 250 mAh•g-1 at low charge-discharge current. However several drawbacks still hinder their applications, such as voltage decay caused by an undesired phase transformation during cycling and poor rate capability. To conquer these issues, the authors applied F modification methods on the pristine Li1.2Mn0.54Ni0.13Co0.13O2 to enhance its electrochemical performance.

Keywords: Li-ion battery, Li-rich layered cathode material, phase transformation, cycling stability, rate capability

Procedia PDF Downloads 303
6021 Numerical Investigation of the Effect of Geometrical Shape of Plate Heat Exchangers on Heat Transfer Efficiency

Authors: Hamed Sanei, Mohammad Bagher Ayani

Abstract:

Optimizations of Plate Heat Exchangers (PHS) have received great attention in the past decade. In this study, heat transfer and pressure drop coefficients are compared for rectangular and circular PHS employing numerical simulations. Plates are designed to have equivalent areas. Simulations were implemented to investigate the efficiency of PHSs considering heat transfer, friction factor and pressure drop. Amount of heat transfer and pressure drop was obtained for different range of Reynolds numbers. These two parameters were compared with aim of F "weighting factor correlation". In this comparison, the minimum amount of F indicates higher efficiency. Results reveal that the F value for rectangular shape is less than circular plate, and hence using rectangular shape of PHS is more efficient than circular one. It was observed that, the amount of friction factor is correlated to the Reynolds numbers, such that friction factor decreased in both rectangular and circular plates with an increase in Reynolds number. Furthermore, such simulations revealed that the amount of heat transfer in rectangular plate is more than circular plate for different range of Reynolds numbers. The difference is more distinct for higher Reynolds number. However, amount of pressure drop in circular plate is less than rectangular plate for the same range of Reynolds numbers which is considered as a negative point for rectangular plate efficiency. It can be concluded that, while rectangular PHSs occupy more space than circular plate, the efficiency of rectangular plate is higher.

Keywords: Chevron corrugated plate heat exchanger, heat transfer, friction factor, Reynolds numbers

Procedia PDF Downloads 271
6020 Modelling of Heat Transfer during Controlled Cooling of Thermo-Mechanically Treated Rebars Using Computational Fluid Dynamics Approach

Authors: Rohit Agarwal, Mrityunjay K. Singh, Soma Ghosh, Ramesh Shankar, Biswajit Ghosh, Vinay V. Mahashabde

Abstract:

Thermo-mechanical treatment (TMT) of rebars is a critical process to impart sufficient strength and ductility to rebar. TMT rebars are produced by the Tempcore process, involves an 'in-line' heat treatment in which hot rolled bar (temperature is around 1080°C) is passed through water boxes where it is quenched under high pressure water jets (temperature is around 25°C). The quenching rate dictates composite structure consisting (four non-homogenously distributed phases of rebar microstructure) pearlite-ferrite, bainite, and tempered martensite (from core to rim). The ferrite and pearlite phases present at core induce ductility to rebar while martensitic rim induces appropriate strength. The TMT process is difficult to model as it brings multitude of complex physics such as heat transfer, highly turbulent fluid flow, multicomponent and multiphase flow present in the control volume. Additionally the presence of film boiling regime (above Leidenfrost point) due to steam formation adds complexity to domain. A coupled heat transfer and fluid flow model based on computational fluid dynamics (CFD) has been developed at product technology division of Tata Steel, India which efficiently predicts temperature profile and percentage martensite rim thickness of rebar during quenching process. The model has been validated with 16 mm rolling of New Bar mill (NBM) plant of Tata Steel Limited, India. Furthermore, based on the scenario analyses, optimal configuration of nozzles was found which helped in subsequent increase in rolling speed.

Keywords: boiling, critical heat flux, nozzles, thermo-mechanical treatment

Procedia PDF Downloads 170
6019 Experimental Study on the Heat Transfer Characteristics of the 200W Class Woofer Speaker

Authors: Hyung-Jin Kim, Dae-Wan Kim, Moo-Yeon Lee

Abstract:

The objective of this study is to experimentally investigate the heat transfer characteristics of 200 W class woofer speaker units with the input voice signals. The temperature and heat transfer characteristics of the 200 W class woofer speaker unit were experimentally tested with the several input voice signals such as 1500 Hz, 2500 Hz, and 5000 Hz respectively. From the experiments, it can be observed that the temperature of the woofer speaker unit including the voice-coil part increases with a decrease in input voice signals. Also, the temperature difference in measured points of the voice coil is increased with decrease of the input voice signals. In addition, the heat transfer characteristics of the woofer speaker in case of the input voice signal of 1500 Hz is 40% higher than that of the woofer speaker in case of the input voice signal of 5000 Hz at the measuring time of 200 seconds. It can be concluded from the experiments that initially the temperature of the voice signal increases rapidly with time, after a certain period of time it increases exponentially. Also during this time dependent temperature change, it can be observed that high voice signal is stable than low voice signal.

Keywords: heat transfer, temperature, voice coil, woofer speaker

Procedia PDF Downloads 330
6018 Thinking for Writing: Evidence of Language Transfer in Chinese ESL Learners’ Written Narratives

Authors: Nan Yang, Hye Pae

Abstract:

English as a second language (ESL) learners are often observed to have transferred traits of their first languages (L1) and habits of using their L1s to their use of English (second language, L2), and this phenomenon is coined as language transfer. In addition to the transfer of linguistic features (e.g., grammar, vocabulary, etc.), which are relatively easy to observe and quantify, many cross-cultural theorists emphasized on a much subtle and fundamental transfer existing on a higher conceptual level that is referred to as conceptual transfer. Although a growing body of literature in linguistics has demonstrated evidence of L1 transfer in various discourse genres, very limited studies address the underlying conceptual transfer that is happening along with the language transfer, especially with the extended form of spontaneous discourses such as personal narrative. To address this issue, this study situates itself in the context of Chinese ESL learners’ written narratives, examines evidence of L1 conceptual transfer in comparison with native English speakers’ narratives, and provides discussion from the perspective of the conceptual transfer. It is hypothesized that Chinese ESL learners’ English narrative strategies are heavily influenced by the strategies that they use in Chinese as a result of the conceptual transfer. Understanding language transfer cognitively is of great significance in the realm of SLA, as it helps address challenges that ESL learners around the world are facing; allow native English speakers to develop a better understanding about how and why learners’ English is different; and also shed light in ESL pedagogy by providing linguistic and cultural expectations in native English-speaking countries. To achieve the goals, 40 college students were recruited (20 Chinese ESL learners and 20 native English speakers) in the United States, and their written narratives on the prompt 'The most frightening experience' were collected for quantitative discourse analysis. 40 written narratives (20 in Chinese and 20 in English) were collected from Chinese ESL learners, and 20 written narratives were collected from native English speakers. All written narratives were coded according to the coding scheme developed by the authors prior to data collection. Statistical descriptive analyses were conducted, and the preliminary results revealed that native English speakers included more narrative elements such as events and explicit evaluation comparing to Chinese ESL students’ both English and Chinese writings; the English group also utilized more evaluation device (i.e., physical state expressions, indirectly reported speeches, delineation) than Chinese ESL students’ both English and Chinese writings. It was also observed that Chinese ESL students included more orientation elements (i.e., the introduction of time/place, the introduction of character) in their Chinese and English writings than the native English-speaking participants. The findings suggest that a similar narrative strategy was observed in Chinese ESL learners’ Chinese narratives and English narratives, which is considered as the evidence of conceptual transfer from Chinese (L1) to English (L2). The results also indicate that distinct narrative strategies were used by Chinese ESL learners and native English speakers as a result of cross-cultural differences.

Keywords: Chinese ESL learners, language transfer, thinking-for-speaking, written narratives

Procedia PDF Downloads 92
6017 Impact of Serum Estrogen and Progesterone Levels in the Outcome Pregnancy Rate in Frozen Embryo Transfer Cycles. A Prospective Cohort Study

Authors: Sayantika Biswas, Dipanshu Sur, Amitoj Athwal, Ratnabali Chakravorty

Abstract:

Title: Impact of serum estrogen and progesterone levels in the outcome pregnancy rate in frozen embryo transfer cycles. A prospective cohort study Objective: The aim of the current study was to evaluate the effect of serum estradiol (E2) and progesterone (P4) levels at different time points on pregnancy outcomes in frozen embryo transfer (FET) cycles. Materials & Method: A prospective cohort study was performed in patients undergoing frozen embryo transfer. Patients under age 37 years of age with at least one good blastocyst or three good day 3 embryos were included in the study. For endometrial preparation, 14 days of oral estradiol use (2X2 mg for 5 days. 3X2 mg for 4 days, and 4X2 mg for 5 days) was followed by vaginal progesterone twice a day and 50 mg intramuscular progesterone twice a day. Embryo transfer was scheduled 72-76 hrs or 116-120hrs after the initiation of progesterone. Serum E2 and P4 levels were examined at 4 times a) at the start of the menstrual cycle prior to the hormone supplementation. b) on the day of P4 start. c) on the day of ET. d) on the third day after ET. Result: A total 41 women were included in this study (mean age 31.8; SD 2.8). Clinical pregnancy rate was 65.55%. Serum E2 levels on at the start of the menstrual cycle prior to the hormone supplementation and on the day of P4 start were high in patients who achieved pregnancy compared to who did not (P=0.005 and P=0.019 respectively). P4 levels on on the day of ET were also high in patients with clinical pregnancy. On the day of P4 start, a serum E2 threshold of 186.4 pg/ml had a sensitivity of 82%, and P4 had a sensitivity of 71% for the prediction of clinical pregnancy at the threshold value 16.00 ng/ml. Conclusion: In women undergoing FET with hormone replacement, serum E2 level >186.4 pg/ml on the day of the start of progesterone and serum P4 levels >16.00 ng/ml on embryo transfer day are associated with clinical pregnancy.

Keywords: serum estradiol, serum progesterone, clinical pregnancy, frozen embryo transfer

Procedia PDF Downloads 46