Search results for: Wedderburn theorem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 155

Search results for: Wedderburn theorem

155 A Study on Weddernburn – Artin Theorem for Rings

Authors: Fahad Suleiman, Sammani Abdullahi

Abstract:

The study depicts that a Wedderburn Artin – theorem for rings is considered to be a semisimple ring R which is isomorphic to a product of finitely many mi by mi matrix rings over division rings Di, for some integers n_i, both of which are uniquely determined up to permutation of the index i. It has been concluded that when R is simple the Wedderburn – Artin theorem is known as Wedderburn’s theorem.

Keywords: Commutativity, Wedderburn theorem, Semisimple ring, R module

Procedia PDF Downloads 163
154 Application of Chinese Remainder Theorem to Find The Messages Sent in Broadcast

Authors: Ayubi Wirara, Ardya Suryadinata

Abstract:

Improper application of the RSA algorithm scheme can cause vulnerability to attacks. The attack utilizes the relationship between broadcast messages sent to the user with some fixed polynomial functions that belong to each user. Scheme attacks carried out by applying the Chinese Remainder Theorem to obtain a general polynomial equation with the same modulus. The formation of the general polynomial becomes a first step to get back the original message. Furthermore, to solve these equations can use Coppersmith's theorem.

Keywords: RSA algorithm, broadcast message, Chinese Remainder Theorem, Coppersmith’s theorem

Procedia PDF Downloads 340
153 Fuglede-Putnam Theorem for ∗-Class A Operators

Authors: Mohammed Husein Mohammad Rashid

Abstract:

For a bounded linear operator T acting on a complex infinite dimensional Hilbert space ℋ, we say that T is ∗-class A operator (abbreviation T∈A*) if |T²|≥ |T*|². In this article, we prove the following assertions:(i) we establish some conditions which imply the normality of ∗-class A; (ii) we consider ∗-class A operator T ∈ ℬ(ℋ) with reducing kernel such that TX = XS for some X ∈ ℬ(K, ℋ) and prove the Fuglede-Putnam type theorem when adjoint of S ∈ ℬ(K) is dominant operators; (iii) furthermore, we extend the asymmetric Putnam-Fuglede theorem the class of ∗-class A operators.

Keywords: fuglede-putnam theorem, normal operators, ∗-class a operators, dominant operators

Procedia PDF Downloads 87
152 Generalization of Zhou Fixed Point Theorem

Authors: Yu Lu

Abstract:

Fixed point theory is a basic tool for the study of the existence of Nash equilibria in game theory. This paper presents a significant generalization of the Veinott-Zhou fixed point theorem for increasing correspondences, which serves as an essential framework for investigating the existence of Nash equilibria in supermodular and quasisupermodular games. To establish our proofs, we explore different conceptions of multivalued increasingness and provide comprehensive results concerning the existence of the largest/least fixed point. We provide two distinct approaches to the proof, each offering unique insights and advantages. These advancements not only extend the applicability of the Veinott-Zhou theorem to a broader range of economic scenarios but also enhance the theoretical framework for analyzing equilibrium behavior in complex game-theoretic models. Our findings pave the way for future research in the development of more sophisticated models of economic behavior and strategic interaction.

Keywords: fixed-point, Tarski’s fixed-point theorem, Nash equilibrium, supermodular game

Procedia PDF Downloads 52
151 Weyl Type Theorem and the Fuglede Property

Authors: M. H. M. Rashid

Abstract:

Given H a Hilbert space and B(H) the algebra of bounded linear operator in H, let δAB denote the generalized derivation defined by A and B. The main objective of this article is to study Weyl type theorems for generalized derivation for (A,B) satisfying a couple of Fuglede.

Keywords: Fuglede Property, Weyl’s theorem, generalized derivation, Aluthge transform

Procedia PDF Downloads 127
150 Cryptographic Attack on Lucas Based Cryptosystems Using Chinese Remainder Theorem

Authors: Tze Jin Wong, Lee Feng Koo, Pang Hung Yiu

Abstract:

Lenstra’s attack uses Chinese remainder theorem as a tool and requires a faulty signature to be successful. This paper reports on the security responses of fourth and sixth order Lucas based (LUC4,6) cryptosystem under the Lenstra’s attack as compared to the other two Lucas based cryptosystems such as LUC and LUC3 cryptosystems. All the Lucas based cryptosystems were exposed mathematically to the Lenstra’s attack using Chinese Remainder Theorem and Dickson polynomial. Result shows that the possibility for successful Lenstra’s attack is less against LUC4,6 cryptosystem than LUC3 and LUC cryptosystems. Current study concludes that LUC4,6 cryptosystem is more secure than LUC and LUC3 cryptosystems in sustaining against Lenstra’s attack.

Keywords: Lucas sequence, Dickson polynomial, faulty signature, corresponding signature, congruence

Procedia PDF Downloads 165
149 Existence Solutions for Three Point Boundary Value Problem for Differential Equations

Authors: Mohamed Houas, Maamar Benbachir

Abstract:

In this paper, under weak assumptions, we study the existence and uniqueness of solutions for a nonlinear fractional boundary value problem. New existence and uniqueness results are established using Banach contraction principle. Other existence results are obtained using scheafer and krasnoselskii's fixed point theorem. At the end, some illustrative examples are presented.

Keywords: caputo derivative, boundary value problem, fixed point theorem, local conditions

Procedia PDF Downloads 428
148 Existence of Positive Solutions for Second-Order Difference Equation with Discrete Boundary Value Problem

Authors: Thanin Sitthiwirattham, Jiraporn Reunsumrit

Abstract:

We study the existence of positive solutions to the three points difference summation boundary value problem. We show the existence of at least one positive solution if f is either superlinear or sublinear by applying the fixed point theorem due to Krasnoselskii in cones.

Keywords: positive solution, boundary value problem, fixed point theorem, cone

Procedia PDF Downloads 438
147 From the Recursive Definition of Refutability to the Invalidity of Gödel’s 1931 Incompleteness

Authors: Paola Cattabriga

Abstract:

According to Gödel’s first incompleteness argument it is possible to construct a formally undecidable proposition in Principia mathematica, a statement that, although true, turns out to be neither provable nor refutable for the system, making therefore incomplete any formal system suitable for the arithmetic of integers. Its features and limitation effects are today widespread basics throughout whole scientific thought. This article brings Gödel’s achievement into question by the definition of the refutability predicate as a number-theoretical statement. We develop proof of invalidity of Theorem VI in Gödel’s 1931, the so-called Gödel’s first incompleteness theorem, in two steps: defining refutability within the same recursive status as provability and showing that as a consequence propositions (15) and (16), derived from definition 8.1 in Gödel’s 1931, are false and unacceptable for the system. The achievement of their falsity blocks the derivation of Theorem VI, which turns out to be therefore invalid, together with all the depending theorems. This article opens up thus new perspectives for mathematical research and for the overall scientific reasoning.

Keywords: Gödel numbering, incompleteness, provability predicate, refutability predicate

Procedia PDF Downloads 186
146 Improving Detection of Illegitimate Scores and Assessment in Most Advantageous Tenders

Authors: Hao-Hsi Tseng, Hsin-Yun Lee

Abstract:

The Most Advantageous Tender (MAT) has been criticized for its susceptibility to dictatorial situations and for its processing of same score, same rank issues. This study applies the four criteria from Arrow's Impossibility Theorem to construct a mechanism for revealing illegitimate scores in scoring methods. While commonly be used to improve on problems resulting from extreme scores, ranking methods hide significant defects, adversely affecting selection fairness. To address these shortcomings, this study relies mainly on the overall evaluated score method, using standardized scores plus normal cumulative distribution function conversion to calculate the evaluation of vender preference. This allows for free score evaluations, which reduces the influence of dictatorial behavior and avoiding same score, same rank issues. Large-scale simulations confirm that this method outperforms currently used methods using the Impossibility Theorem.

Keywords: Arrow’s impossibility theorem, cumulative normal distribution function, most advantageous tender, scoring method

Procedia PDF Downloads 462
145 Analysis of Senior Secondary II Students Performance/Approaches Exhibited in Solving Circle Geometry

Authors: Mukhtari Hussaini Muhammad, Abba Adamu

Abstract:

The paper will examine the approaches and solutions that will be offered by Senior Secondary School II Students (Demonstration Secondary School, Azare Bauchi State Northern Nigeria – Hausa/ Fulani predominant area) toward solving exercises related to the circle theorem. The angle that an arc of a circle subtends at the center is twice that which it subtends at any point on the remaining part of the circumference. The Students will be divided in to 2 groups by given them numbers 1, 2; 1, 2; 1, 2, then all 1s formed group I and all 2s formed group II. Group I will be considered as control group in which the traditional method will be applied during instructions. Thus, the researcher will revise the concept of circle, state the theorem, prove the theorem and then solve examples. Group II, experimental group in which the concept of circle will be revised to the students and then the students will be asked to draw different circles, mark arcs, draw angle at the center, angle at the circumference then measure the angles constructed. The students will be asked to explain what they can infer/deduce from the angles measured and lastly, examples will be solved. During the next contact day, both groups will be subjected to solving exercises in the classroom related to the theorem. The angle that an arc of a circle subtends at the center is twice that which it subtends at any point on the remaining part of circumference. The solution to the exercises will be marked, the scores compared/analysed using relevant statistical tool. It is expected that group II will perform better because of the method/ technique followed during instructions is more learner-centered. By exploiting the talents of the individual learners through listening to the views and asking them how they arrived at a solution will really improve learning and understanding.

Keywords: circle theorem, control group, experimental group, traditional method

Procedia PDF Downloads 191
144 Nadler's Fixed Point Theorem on Partial Metric Spaces and its Application to a Homotopy Result

Authors: Hemant Kumar Pathak

Abstract:

In 1994, Matthews (S.G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci., vol. 728, 1994, pp. 183-197) introduced the concept of a partial metric as a part of the study of denotational semantics of data flow networks. He gave a modified version of the Banach contraction principle, more suitable in this context. In fact, (complete) partial metric spaces constitute a suitable framework to model several distinguished examples of the theory of computation and also to model metric spaces via domain theory. In this paper, we introduce the concept of almost partial Hausdorff metric. We prove a fixed point theorem for multi-valued mappings on partial metric space using the concept of almost partial Hausdorff metric and prove an analogous to the well-known Nadler’s fixed point theorem. In the sequel, we derive a homotopy result as an application of our main result.

Keywords: fixed point, partial metric space, homotopy, physical sciences

Procedia PDF Downloads 441
143 A Study of Evolutional Control Systems

Authors: Ti-Jun Xiao, Zhe Xu

Abstract:

Controllability is one of the fundamental issues in control systems. In this paper, we study the controllability of second order evolutional control systems in Hilbert spaces with memory and boundary controls, which model dynamic behaviors of some viscoelastic materials. Transferring the control problem into a moment problem and showing the Riesz property of a family of functions related to Cauchy problems for some integrodifferential equations, we obtain a general boundary controllability theorem for these second order evolutional control systems. This controllability theorem is applicable to various concrete 1D viscoelastic systems and recovers some previous related results. It is worth noting that Riesz sequences can be used for numerical computations of the control functions and the identification of new Riesz sequence is of independent interest for the basis-function theory. Moreover, using the Riesz sequences, we obtain the existence and uniqueness of (weak) solutions to these second order evolutional control systems in Hilbert spaces. Finally, we derive the exact boundary controllability of a viscoelastic beam equation, as an application of our abstract theorem.

Keywords: evolutional control system, controllability, boundary control, existence and uniqueness

Procedia PDF Downloads 221
142 [Keynote Talk]: Existence of Random Fixed Point Theorem for Contractive Mappings

Authors: D. S. Palimkar

Abstract:

Random fixed point theory has received much attention in recent years, and it is needed for the study of various classes of random equations. The study of random fixed point theorems was initiated by the Prague school of probabilistic in the 1950s. The existence and uniqueness of fixed points for the self-maps of a metric space by altering distances between the points with the use of a control function is an interesting aspect in the classical fixed point theory. In a new category of fixed point problems for a single self-map with the help of a control function that alters the distance between two points in a metric space which they called an altering distance function. In this paper, we prove the results of existence of random common fixed point and its uniqueness for a pair of random mappings under weakly contractive condition for generalizing alter distance function in polish spaces using Random Common Fixed Point Theorem for Generalized Weakly Contractions.

Keywords: Polish space, random common fixed point theorem, weakly contractive mapping, altering function

Procedia PDF Downloads 272
141 Energy Conservation and H-Theorem for the Enskog-Vlasov Equation

Authors: Eugene Benilov, Mikhail Benilov

Abstract:

The Enskog-Vlasov (EV) equation is a widely used semi-phenomenological model of gas/liquid phase transitions. We show that it does not generally conserve energy, although there exists a restriction on its coefficients for which it does. Furthermore, if an energy-preserving version of the EV equation satisfies an H-theorem as well, it can be used to rigorously derive the so-called Maxwell construction which determines the parameters of liquid-vapor equilibria. Finally, we show that the EV model provides an accurate description of the thermodynamics of noble fluids, and there exists a version simple enough for use in applications.

Keywords: Enskog collision integral, hard spheres, kinetic equation, phase transition

Procedia PDF Downloads 151
140 Fault-Detection and Self-Stabilization Protocol for Wireless Sensor Networks

Authors: Ather Saeed, Arif Khan, Jeffrey Gosper

Abstract:

Sensor devices are prone to errors and sudden node failures, which are difficult to detect in a timely manner when deployed in real-time, hazardous, large-scale harsh environments and in medical emergencies. Therefore, the loss of data can be life-threatening when the sensed phenomenon is not disseminated due to sudden node failure, battery depletion or temporary malfunctioning. We introduce a set of partial differential equations for localizing faults, similar to Green’s and Maxwell’s equations used in Electrostatics and Electromagnetism. We introduce a node organization and clustering scheme for self-stabilizing sensor networks. Green’s theorem is applied to regions where the curve is closed and continuously differentiable to ensure network connectivity. Experimental results show that the proposed GTFD (Green’s Theorem fault-detection and Self-stabilization) protocol not only detects faulty nodes but also accurately generates network stability graphs where urgent intervention is required for dynamically self-stabilizing the network.

Keywords: Green’s Theorem, self-stabilization, fault-localization, RSSI, WSN, clustering

Procedia PDF Downloads 74
139 A New Fixed Point Theorem for Almost θ-Contraction

Authors: Hichem Ramoul

Abstract:

In this work, we introduce a new type of contractive maps and we establish a new fixed point theorem for the class of almost θ-contractions (more general than the class of almost contractions) in a complete generalized metric space. The major novelty of our work is to prove a new fixed point result by weakening some hypotheses imposed on the function θ which will change completely the classical technique used in the literature review to prove fixed point theorems for almost θ-contractions in a complete generalized metric space.

Keywords: almost contraction, almost θ-contraction, fixed point, generalized metric space

Procedia PDF Downloads 302
138 Existence of Positive Solutions to a Dirichlet Second Order Boundary Value Problem

Authors: Muhammad Sufian Jusoh, Mesliza Mohamed

Abstract:

In this paper, we investigate the existence of positive solutions for a Dirichlet second order boundary value problem by applying the Krasnosel'skii fixed point theorem on compression and expansion of cones.

Keywords: Krasnosel'skii fixed point theorem, positive solutions, Dirichlet boundary value problem, Dirichlet second order boundary problem

Procedia PDF Downloads 414
137 Simplified Equations for Rigidity and Lateral Deflection for Reinforced Concrete Cantilever Shear Walls

Authors: Anas M. Fares

Abstract:

Reinforced concrete shear walls are the most frequently used forms of lateral resisting structural elements. These walls may take many forms due to their functions and locations in the building. In Palestine, the most lateral resisting forces construction forms is the cantilever shear walls system. It is thus of prime importance to study the rigidity of these walls. The virtual work theorem is used to derive the total lateral deflection of cantilever shear walls due to flexural and shear deformation. The case of neglecting the shear deformation in the walls is also studied, and it is found that the wall height to length aspect ratio (H/B) plays a major role in calculating the lateral deflection and the rigidity of such walls. When the H/B is more than or equal to 3.7, the shear deformation may be neglected from the calculation of the lateral deflection. Moreover, the walls with the same material properties, same lateral load value, and same aspect ratio, shall have the same of both the lateral deflection and the rigidity. Finally, an equation to calculate the total rigidity and total deflection of such walls is derived by using the virtual work theorem for a cantilever beam.

Keywords: cantilever shear walls, flexural deformation, lateral deflection, lateral loads, reinforced concrete shear walls, rigidity, shear deformation, virtual work theorem

Procedia PDF Downloads 218
136 Mathematical and Numerical Analysis of a Reaction Diffusion System of Lambda-Omega Type

Authors: Hassan Al Salman, Ahmed Al Ghafli

Abstract:

In this study we consider a nonlinear in time finite element approximation of a reaction diffusion system of lambda-omega type. We use a fixed point theorem to prove existence of the approximations. Then, we derive some essential stability estimates and discuss the uniqueness of the approximations. Also, we prove an optimal error bound in time for d=1, 2 and 3 space dimensions. Finally, we present some numerical experiments to verify the theoretical results.

Keywords: reaction diffusion system, finite element approximation, fixed point theorem, an optimal error bound

Procedia PDF Downloads 531
135 Existence of positive periodic solutions for certain delay differential equations

Authors: Farid Nouioua, Abdelouaheb Ardjouni

Abstract:

In this article, we study the existence of positive periodic solutions of certain delay differential equations. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ Krasnoselskii's fixed point theorem to obtain sufficient conditions for the existence of a positive periodic solution of the differential equation. The obtained results improve and extend the results in the literature. Finally, an example is given to illustrate our results.

Keywords: delay differential equations, positive periodic solutions, integral equations, Krasnoselskii fixed point theorem

Procedia PDF Downloads 437
134 Using Indigenous Games to Demystify Probability Theorem in Ghanaian Classrooms: Mathematical Analysis of Ampe

Authors: Peter Akayuure, Michael Johnson Nabie

Abstract:

Similar to many colonized nations in the world, one indelible mark left by colonial masters after Ghana’s independence in 1957 has been the fact that many contexts used to teach statistics and probability concepts are often alien and do not resonate with the social domain of our indigenous Ghanaian child. This has seriously limited the understanding, discoveries, and applications of mathematics for national developments. With the recent curriculum demands of making the Ghanaian child mathematically literate, this qualitative study involved video recordings and mathematical analysis of play sessions of an indigenous girl game called Ampe with the aim to demystify the concepts in probability theorem, which is applied in mathematics related fields of study. The mathematical analysis shows that the game of Ampe, which is widely played by school girls in Ghana, is suitable for learning concepts of the probability theorems. It was also revealed that as a girl game, the use of Ampe provides good lessons to educators, textbook writers, and teachers to rethink about the selection of mathematics tasks and learning contexts that are sensitive to gender. As we undertake to transform teacher education and student learning, the use of indigenous games should be critically revisited.

Keywords: Ampe, mathematical analysis, probability theorem, Ghanaian girl game

Procedia PDF Downloads 369
133 Validation of the Formal Model of Web Services Applications for Digital Reference Service of Library Information System

Authors: Zainab Magaji Musa, Nordin M. A. Rahman, Julaily Aida Jusoh

Abstract:

The web services applications for digital reference service (WSDRS) of LIS model is an informal model that claims to reduce the problems of digital reference services in libraries. It uses web services technology to provide efficient way of satisfying users’ needs in the reference section of libraries. The formal WSDRS model consists of the Z specifications of all the informal specifications of the model. This paper discusses the formal validation of the Z specifications of WSDRS model. The authors formally verify and thus validate the properties of the model using Z/EVES theorem prover.

Keywords: validation, verification, formal, theorem prover

Procedia PDF Downloads 514
132 A Proof of the N. Davydov Theorem for Douglis Algebra Valued Functions

Authors: Jean-Marie Vilaire, Ricardo Abreu-Blaya, Juan Bory-Reyes

Abstract:

The classical Beltrami system of elliptic equations generalizes the Cauchy Riemann equation in the complex plane and offers the possibility to consider homogeneous system with no terms of zero order. The theory of Douglis-valued functions, called Hyper-analytic functions, is special case of the above situation. In this note, we prove an analogue of the N. Davydov theorem in the framework of the theory of hyperanalytic functions. The used methodology contemplates characteristic methods of the hypercomplex analysis as well as the singular integral operators and elliptic systems of the partial differential equations theories.

Keywords: Beltrami equation, Douglis algebra-valued function, Hypercomplex Cauchy type integral, Sokhotski-Plemelj formulae

Procedia PDF Downloads 248
131 Total Controllability of the Second Order Nonlinear Differential Equation with Delay and Non-Instantaneous Impulses

Authors: Muslim Malik, Avadhesh Kumar

Abstract:

A stronger concept of exact controllability which is called Total Controllability is introduced in this manuscript. Sufficient conditions have been established for the total controllability of a control problem, governed by second order nonlinear differential equation with delay and non-instantaneous impulses in a Banach space X. The results are obtained using the strongly continuous cosine family and Banach fixed point theorem. Also, the total controllability of an integrodifferential problem is investigated. At the end, some numerical examples are provided to illustrate the analytical findings.

Keywords: Banach fixed point theorem, non-instantaneous impulses, strongly continuous cosine family, total controllability

Procedia PDF Downloads 297
130 Numerical Method for Heat Transfer Problem in a Block Having an Interface

Authors: Beghdadi Lotfi, Bouziane Abdelhafid

Abstract:

A finite volume method for quadrilaterals unstructured mesh is developed to predict the two dimensional steady-state solutions of conduction equation. In this scheme, based on the integration around the polygonal control volume, the derivatives of conduction equation must be converted into closed line integrals using same formulation of the Stokes theorem. To valid the accuracy of the method two numerical experiments s are used: conduction in a regular block (with known analytical solution) and conduction in a rotated block (case with curved boundaries).The numerical results show good agreement with analytical results. To demonstrate the accuracy of the method, the absolute and root-mean square errors versus the grid size are examined quantitatively.

Keywords: Stokes theorem, unstructured grid, heat transfer, complex geometry

Procedia PDF Downloads 288
129 The Construction of the Semigroup Which Is Chernoff Equivalent to Statistical Mixture of Quantizations for the Case of the Harmonic Oscillator

Authors: Leonid Borisov, Yuri Orlov

Abstract:

We obtain explicit formulas of finitely multiple approximations of the equilibrium density matrix for the case of the harmonic oscillator using Chernoff's theorem and the notion of semigroup which is Chernoff equivalent to average semigroup. Also we found explicit formulas for the corresponding approximate Wigner functions and average values of the observable. We consider a superposition of τ -quantizations representing a wide class of linear quantizations. We show that the convergence of the approximations of the average values of the observable is not uniform with respect to the Gibbs parameter. This does not allow to represent approximate expression as the sum of the exact limits and small deviations evenly throughout the temperature range with a given order of approximation.

Keywords: Chernoff theorem, Feynman formulas, finitely multiple approximation, harmonic oscillator, Wigner function

Procedia PDF Downloads 439
128 Closed-Form Sharma-Mittal Entropy Rate for Gaussian Processes

Authors: Septimia Sarbu

Abstract:

The entropy rate of a stochastic process is a fundamental concept in information theory. It provides a limit to the amount of information that can be transmitted reliably over a communication channel, as stated by Shannon's coding theorems. Recently, researchers have focused on developing new measures of information that generalize Shannon's classical theory. The aim is to design more efficient information encoding and transmission schemes. This paper continues the study of generalized entropy rates, by deriving a closed-form solution to the Sharma-Mittal entropy rate for Gaussian processes. Using the squeeze theorem, we solve the limit in the definition of the entropy rate, for different values of alpha and beta, which are the parameters of the Sharma-Mittal entropy. In the end, we compare it with Shannon and Rényi's entropy rates for Gaussian processes.

Keywords: generalized entropies, Sharma-Mittal entropy rate, Gaussian processes, eigenvalues of the covariance matrix, squeeze theorem

Procedia PDF Downloads 518
127 Sliding Mode Position Control for Permanent Magnet Synchronous Motors Based on Passivity Approach

Authors: Jenn-Yih Chen, Bean-Yin Lee, Yuan-Chuan Hsu, Jui-Cheng Lin, Kuang-Chyi Lee

Abstract:

In this paper, a sliding mode control method based on the passivity approach is proposed to control the position of surface-mounted permanent magnet synchronous motors (PMSMs). Firstly, the dynamics of a PMSM was proved to be strictly passive. The position controller with an adaptive law was used to estimate the load torque to eliminate the chattering effects associated with the conventional sliding mode controller. The stability analysis of the overall position control system was carried out by adopting the passivity theorem instead of Lyapunov-type arguments. Finally, experimental results were provided to show that the good position tracking can be obtained, and exhibit robustness in the variations of the motor parameters and load torque disturbances.

Keywords: adaptive law, passivity theorem, permanent magnet synchronous motor, sliding mode control

Procedia PDF Downloads 468
126 A Proof for Goldbach's Conjecture

Authors: Hashem Sazegar

Abstract:

In 1937, Vinograd of Russian Mathematician proved that each odd large number can be shown by three primes. In 1973, Chen Jingrun proved that each odd number can be shown by one prime plus a number that has maximum two primes. In this article, we state one proof for Goldbach’conjecture. Introduction: Bertrand’s postulate state for every positive integer n, there is always at least one prime p, such that n < p < 2n. This was first proved by Chebyshev in 1850, which is why postulate is also called the Bertrand-Chebyshev theorem. Legendre’s conjecture states that there is a prime between n2 and (n+1)2 for every positive integer n, which is one of the four Landau’s problems. The rest of these four basic problems are; (i) Twin prime conjecture: There are infinitely many primes p such that p+2 is a prime. (ii) Goldbach’s conjecture: Every even integer n > 2 can be written asthe sum of two primes. (iii) Are there infinitely many primes p such that p−1 is a perfect square? Problems (i), (ii), and (iii) are open till date.

Keywords: Bertrand-Chebyshev theorem, Landau’s problems, twin prime, Legendre’s conjecture, Oppermann’s conjecture

Procedia PDF Downloads 401