Search results for: Waheeta Hopper
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22

Search results for: Waheeta Hopper

22 Inhibition of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase from Mycobacterium Tuberculosis Using High Throughput Virtual Screening and Molecular Dynamics Studies

Authors: Christy Rosaline, Rathankar Roa, Waheeta Hopper

Abstract:

Persistence of tuberculosis, emergence of multidrug-resistance and extensively drug-resistant forms of the disease, has increased the interest in developing new antitubercular drugs. Developing inhibitors for 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis (MtbDAH7Ps), an enzyme involved in shikimate pathway, gives a selective target for antitubercular agents. MtbDAH7Ps was screened against ZINC database, and shortlisted compounds were subjected to induce fit docking. Prime/Molecular Mechanics Generalized Born Surface Area calculation was used to validate the binding energy of ligand-protein complex. Molecular Dynamics analysis for of the lead compounds–MtbDAH7Ps complexes showed that the backbone of MtbDAH7Ps in their complexes were stable. These results suggest that the shortlisted lead compounds ZINC04097114, ZINC15163225, ZINC16857013, ZINC06275603, and ZINC05331260 could be developed into novel drug leads to inhibit DAH7Ps in Mycobacterium tuberculosis.

Keywords: MtbDAH7Ps, Mycobacterium tuberculosis, HTVS, molecular dynamics

Procedia PDF Downloads 177
21 High Cycle Fatigue Analysis of a Lower Hopper Knuckle Connection of a Large Bulk Carrier under Dynamic Loading

Authors: Vaso K. Kapnopoulou, Piero Caridis

Abstract:

The fatigue of ship structural details is of major concern in the maritime industry as it can generate fracture issues that may compromise structural integrity. In the present study, a fatigue analysis of the lower hopper knuckle connection of a bulk carrier was conducted using the Finite Element Method by means of ABAQUS/CAE software. The fatigue life was calculated using Miner’s Rule and the long-term distribution of stress range by the use of the two-parameter Weibull distribution. The cumulative damage ratio was estimated using the fatigue damage resulting from the stress range occurring at each load condition. For this purpose, a cargo hold model was first generated, which extends over the length of two holds (the mid-hold and half of each of the adjacent holds) and transversely over the full breadth of the hull girder. Following that, a submodel of the area of interest was extracted in order to calculate the hot spot stress of the connection and to estimate the fatigue life of the structural detail. Two hot spot locations were identified; one at the top layer of the inner bottom plate and one at the top layer of the hopper plate. The IACS Common Structural Rules (CSR) require that specific dynamic load cases for each loading condition are assessed. Following this, the dynamic load case that causes the highest stress range at each loading condition should be used in the fatigue analysis for the calculation of the cumulative fatigue damage ratio. Each load case has a different effect on ship hull response. Of main concern, when assessing the fatigue strength of the lower hopper knuckle connection, was the determination of the maximum, i.e. the critical value of the stress range, which acts in a direction normal to the weld toe line. This acts in the transverse direction, that is, perpendicularly to the ship's centerline axis. The load cases were explored both theoretically and numerically in order to establish the one that causes the highest damage to the location examined. The most severe one was identified to be the load case induced by beam sea condition where the encountered wave comes from the starboard. At the level of the cargo hold model, the model was assumed to be simply supported at its ends. A coarse mesh was generated in order to represent the overall stiffness of the structure. The elements employed were quadrilateral shell elements, each having four integration points. A linear elastic analysis was performed because linear elastic material behavior can be presumed, since only localized yielding is allowed by most design codes. At the submodel level, the displacements of the analysis of the cargo hold model to the outer region nodes of the submodel acted as boundary conditions and applied loading for the submodel. In order to calculate the hot spot stress at the hot spot locations, a very fine mesh zone was generated and used. The fatigue life of the detail was found to be 16.4 years which is lower than the design fatigue life of the structure (25 years), making this location vulnerable to fatigue fracture issues. Moreover, the loading conditions that induce the most damage to the location were found to be the various ballasting conditions.

Keywords: dynamic load cases, finite element method, high cycle fatigue, lower hopper knuckle

Procedia PDF Downloads 418
20 A Simulation-Based Investigation of the Smooth-Wall, Radial Gravity Problem of Granular Flow through a Wedge-Shaped Hopper

Authors: A. F. Momin, D. V. Khakhar

Abstract:

Granular materials consist of particulate particles found in nature and various industries that, due to gravity flow, behave macroscopically like liquids. A fundamental industrial unit operation is a hopper with inclined walls or a converging channel in which material flows downward under gravity and exits the storage bin through the bottom outlet. The simplest form of the flow corresponds to a wedge-shaped, quasi-two-dimensional geometry with smooth walls and radially directed gravitational force toward the apex of the wedge. These flows were examined using the Mohr-Coulomb criterion in the classic work of Savage (1965), while Ravi Prakash and Rao used the critical state theory (1988). The smooth-wall radial gravity (SWRG) wedge-shaped hopper is simulated using the discrete element method (DEM) to test existing theories. DEM simulations involve the solution of Newton's equations, taking particle-particle interactions into account to compute stress and velocity fields for the flow in the SWRG system. Our computational results are consistent with the predictions of Savage (1965) and Ravi Prakash and Rao (1988), except for the region near the exit, where both viscous and frictional effects are present. To further comprehend this behaviour, a parametric analysis is carried out to analyze the rheology of wedge-shaped hoppers by varying the orifice diameter, wedge angle, friction coefficient, and stiffness. The conclusion is that velocity increases as the flow rate increases but decreases as the wedge angle and friction coefficient increase. We observed no substantial changes in velocity due to varying stiffness. It is anticipated that stresses at the exit result from the transfer of momentum during particle collisions; for this reason, relationships between viscosity and shear rate are shown, and all data are collapsed into a single curve. In addition, it is demonstrated that viscosity and volume fraction exhibit power law correlations with the inertial number and that all the data collapse into a single curve. A continuum model for determining granular flows is presented using empirical correlations.

Keywords: discrete element method, gravity flow, smooth-wall, wedge-shaped hoppers

Procedia PDF Downloads 86
19 Influence of Different Rhizome Sizes and Operational Speed on the Field Capacity and Efficiency of a Three–Row Turmeric Rhizome Planter

Authors: Muogbo Chukwudi Peter, Gbabo Agidi

Abstract:

Influence of different turmeric rhizome sizes and machine operational speed on the field capacity and efficiency of a developed prototype tractor-drawn turmeric planter was studied. This was done with a view to ascertaining how the field capacity and field efficiency were affected by the turmeric rhizome lengths and tractor operational speed. The turmeric rhizome planter consists of trapezoidal hopper, grooved cylindrical metering devise, rectangular frame, ground wheels made of mild steel, furrow opener, chain/sprocket drive system, three linkage point seed delivery tube and press wheel. The experiment was randomized in a factorial design of three levels of rhizome lengths (30, 45 and 60 mm) and operational speeds of 8, 10, and 12 kmh-1. About 3 kg cleaned turmeric rhizomes were introduced into each hopper of the planter and were planted 30 m2 of experimental plot. During the field evaluation of the planter, the effective field capacity, field efficiency, missing index, multiple index and percentage rhizome bruise were evaluated. 30.08% was recorded for maximum percentage bruise on the rhizome. The mean effective field capacity ranged between 0.63 – 0.96hah-1 at operational speeds of 8 and 12kmh-1 respectively and 45 mm rhizome length. The result also shows that the mean efficiency was obtained to be 65.8%. The percentage rhizome bruise decreases with increase in operational speed. The highest and lowest percentage turmeric rhizome miss index of 35% were recorded for turmeric rhizome length of 30 mm at a speed of 10 kmhr-1 and 8 kmhr-1, respectively. The potential implications of the experimental result is to determine the optimal machine process conditions for higher field capacity and gross reduction in mechanical injury (bruise) of planted turmeric rhizomes.

Keywords: rhizome sizes, operational speed, field capacity. field efficiency, turmeric rhizome, planter

Procedia PDF Downloads 61
18 Development of Automatic Farm Manure Spreading Machine for Orchards

Authors: Barış Ozluoymak, Emin Guzel, Ahmet İnce

Abstract:

Since chemical fertilizers are used for meeting the deficiency of plant nutrients, its many harmful effects are not taken into consideration for the structure of the earth. These fertilizers are hampering the work of the organisms in the soil immediately after thrown to the ground. This interference is first started with a change of the soil pH and micro organismic balance is disrupted by reaction in the soil. Since there can be no fragmentation of plant residues, organic matter in the soil will be increasingly impoverished in the absence of micro organismic living. Biological activity reduction brings about a deterioration of the soil structure. If the chemical fertilization continues intensively, soils will get worse every year; plant growth will slow down and stop due to the intensity of chemical fertilizers, yield decline will be experienced and farmer will not receive an adequate return on his investment. In this research, a prototype of automatic farm manure spreading machine for orange orchards that not just manufactured in Turkey was designed, constructed, tested and eliminate the human drudgery involved in spreading of farm manure in the field. The machine comprised several components as a 5 m3 volume hopper, automatic controlled hydraulically driven chain conveyor device and side delivery conveyor belts. To spread the solid farm manure automatically, the machine was equipped with an electronic control system. The hopper and side delivery conveyor designs fitted between orange orchard tree row spacing. Test results showed that the control system has significant effects on reduction in the amount of unnecessary solid farm manure use and avoiding inefficient manual labor.

Keywords: automatic control system, conveyor belt application, orchard, solid farm manure

Procedia PDF Downloads 285
17 Benefits of Monitoring Acid Sulfate Potential of Coffee Rock (Indurated Sand) across Entire Dredge Cycle in South East Queensland

Authors: S. Albert, R. Cossu, A. Grinham, C. Heatherington, C. Wilson

Abstract:

Shipping trends suggest increasing vessel size and draught visiting Australian ports highlighting potential challenges to port infrastructure and requiring optimization of shipping channels to ensure safe passage for vessels. The Port of Brisbane in Queensland, Australia has an 80 km long access shipping channel which vessels must transit 15 km of relatively shallow coffee rock (generic class of indurated sands where sand grains are bound within an organic clay matrix) outcrops towards the northern passage in Moreton Bay. This represents a risk to shipping channel deepening and maintenance programs as the dredgeability of this material is more challenging due to its high cohesive strength compared with the surrounding marine sands and potential higher acid sulfate risk. In situ assessment of acid sulfate sediment for dredge spoil control is an important tool in mitigating ecological harm. The coffee rock in an anoxic undisturbed state does not pose any acid sulfate risk, however when disturbed via dredging it’s vital to ensure that any present iron sulfides are either insignificant or neutralized. To better understand the potential risk we examined the reduction potential of coffee rock across the entire dredge cycle in order to accurately portray the true outcome of disturbed acid sulfate sediment in dredging operations in Moreton Bay. In December 2014 a dredge trial was undertaken with a trailing suction hopper dredger. In situ samples were collected prior to dredging revealed acid sulfate potential above threshold guidelines which could lead to expensive dredge spoil management. However, potential acid sulfate risk was then monitored in the hopper and subsequent discharge, both showing a significant reduction in acid sulfate potential had occurred. Additionally, the acid neutralizing capacity significantly increased due to the inclusion of shell fragments (calcium carbonate) from the dredge target areas. This clearly demonstrates the importance of assessing potential acid sulfate risk across the entire dredging cycle and highlights the need to carefully evaluate sources of acidity.

Keywords: acid sulfate, coffee rock, indurated sand, dredging, maintenance dredging

Procedia PDF Downloads 367
16 Development of a Table-Top Composite Wire Fabrication System for Additive Manufacturing

Authors: Krishna Nand, Mohammad Taufik

Abstract:

Fused Filament Fabrication (FFF) is one of the most popular additive manufacturing (AM) technology. In FFF technology, a wire form material (filament) is fed inside a heated chamber, where it gets converted into semi-solid form and extruded out of a nozzle to be deposited on the build platform to fabricate the part. FFF technology is expanding and covering the market at a very rapid rate, so the need of raw materials for 3D printing is also increasing. The cost of 3D printing is directly affected by filament cost. To make 3D printing more economic, a compact and portable filament/wire extrusion system is needed. Wire extrusion systems to extrude ordinary wire/filament made of a single material are available in the market. However, extrusion system to make a composite wire/filament are not available. Hence, in this study, initial efforts have been made to develop a table-top composite wire extruder. The developed system is consisted of mechanical parts, electronics parts, and a control system. A multiple channel hopper, extrusion screw, melting chamber and nozzle, cooling zone, and spool winder are some mechanical parts. While motors, heater, temperature sensor, cooling fans are some electronics parts, which are used to develop this system. A control board has been used to control the various process parameters like – temperature and speed of motors. For the production of composite wire/filament, two different materials could be fed through two channels of hopper, which will be mixed and carried to the heated zone by extrusion screw. The extrusion screw is rotated by a motor, and the speed of this motor will be controlled by the controller as per the requirement of material extrusion rate. In the heated zone, the material will melt with the help of a heating element and extruded out of the nozzle in the form of wire. The developed system occupies less floor space due to the vertical orientation of its heating chamber. It is capable to extrude ordinary filament as well as composite filament, which are compatible with 3D printers available in the market. Further, the developed system could be employed in the research and development of materials, processing, and characterization for 3D printer. The developed system presented in this study could be a better choice for hobbyists and researchers dealing with the fused filament fabrication process to reduce the 3D printing cost significantly by recycling the waste material into 3D printer feed material. Further, it could also be explored as a better alternative for filament production at the commercial level.

Keywords: additive manufacturing, 3D Printing, filament extrusion, pellet extrusion

Procedia PDF Downloads 166
15 Countercurrent Flow Simulation of Gas-Solid System in a Purge Column Using Computational Fluid Dynamics Techniques

Authors: T. J. Jamaleddine

Abstract:

Purge columns or degasser vessels are widely used in the polyolefin process for removing trapped hydrocarbons and in-excess catalyst residues from the polymer particles. A uniform distribution of purged gases coupled with a plug-flow characteristic inside the column system is desirable to obtain optimum desorption characteristics of trapped hydrocarbon and catalyst residues. Computational Fluid Dynamics (CFD) approach is a promising tool for design optimization of these vessels. The success of this approach is profoundly dependent on the solution strategy and the choice of geometrical layout at the vessel outlet. Filling the column with solids and initially solving for the solids flow minimized numerical diffusion substantially. Adopting a cylindrical configuration at the vessel outlet resulted in less numerical instability and resembled the hydrodynamics flow of solids in the hopper segment reasonably well.

Keywords: CFD, degasser vessel, gas-solids flow, gas purging, purge column, species transport

Procedia PDF Downloads 128
14 Construction and Evaluation of Soybean Thresher

Authors: Oladimeji Adetona Adeyeye, Emmanuel Rotimi Sadiku, Oluwaseun Olayinka Adeyeye

Abstract:

In order to resuscitate soybean production and post-harvest processing especially, in term of threshing, there is need to develop an affordable threshing machine which will reduce drudgery associated with manual soybean threshing. Soybean thresher was fabricated and evaluated at Institute of Agricultural Research and Training IAR&T Apata Ibadan. The machine component includes; hopper, threshing unit, shaker, cleaning unit and the seed outlet, all working together to achieve the main objective of threshing and cleaning. TGX1835 - 10E variety was used for evaluation because of its high resistance to pests, rust and pustules. The final moisture content of the used sample was about 15%. The sample was weighed and introduced into the machine. The parameters evaluated includes moisture content, threshing efficiency, cleaning efficiency, machine capacity and speed. The threshing efficiency and capacity are 74% and 65.9kg/hr respectively. All materials used were sourced locally which makes the cost of production of the machine extremely cheaper than the imported soybean thresher.

Keywords: efficiency, machine capacity, speed, soybean, threshing

Procedia PDF Downloads 483
13 Spinetoram10% WG+Sulfoxaflor 30% WG: A Promising Green Chemistry to Manage Pest Complex in Bt Cotton

Authors: Siddharudha B. Patil

Abstract:

Cotton is a premier commercial fibre crop of India subjected to ravages of insect pests. Sucking pests viz thrips, Thrips tabaci,(lind) leaf hopper Amrsca devastance,(dist) miridbug, Poppiocapsidea beseratense (Dist) and bollworms continue to inflict damage Bt Cotton right from seeding stage. Their infestation impact cotton yield to an extent of 30-40 percent. Chemical control is still adoptable as one of the techniques for combating these pests. Presently, growers have many challenges in selecting effective chemicals which fit in with an integrated pest management. Spinetoram has broad spectrum with excellent insecticidal activity against both sucking pests and bollworms. Hence, it is expected to make a great contribution to stable production and quality improvement of agricultural products. Spinetoram is a derivative of biologically active substances (Spinosyns) produced by soil actinomycetes, Saccharopolypara spinosa which is semi synthetic active ingredient representing Spinosyn chemical class of insecticide and has demonstrated higher level of efficacy with reduced risk on beneficial arthropods. The efforts were made in the present study to test the efficacy of Spinetoram against sucking pests and bollworms in comparison with other insecticides in Bt Cotton under field condition. Field experiment was laid out during 2013-14 and 2014-15 at Agricultural Research station Dharwad (Karnataka-India) in a randomized block design comprising eight treatments and three replications. Bt cotton genotype, Bunny BG-II was sown in a plot size of 5.4 m x5.4 m. Recommend agronomical practices were followed. The Spinetoram 12% SC alone and incombination with sulfaxaflore with varied dosages against pest complex was tested. Performance was compared with Spinosad 45% SC and thiamethoxam 25% WG. The results of consecutive seasons revealed that nonsignificant difference in thrips and leafhopper population and varied significantly after 3 days of imposition. Among the treatments, combiproduct, Spinetoram 10%WG + Sulfoxaflor 30% WG@ 140 gai/ha registered lowest population of thrips (3.91/3 leaves) and leaf hoppers (1.08/3 leaves) followed by its lower dosages viz 120 gai/ha (4.86/3 leaves and 1.14/3 leaves of thrips and leaf hoppers, respectively) and 100 gai/ha (6.02 and 1.23./3 leaves of thrips and leaf hoppers respectively) being at par, significantly superior to rest of the treatments. On the contrary, the population of thrips, leaf hopper and miridbugs in untreated control was on higher side. Similarly the higher dosage of Spinetoram 10% WG+ Sulfoxaflor 30% WG (140 gai/ha) proved its bioefficacy by registering lowest miridbug incidence of 1.70/25 squares, followed by its lower dosage (1.78 and 1.83/25 squares respectively) Further observation made on bollworms incidence revealed that the higher dosage of Spinetoram 10% WG+Sulfoxaflor 30% WG (140 gai/ha) registered lowest percentage of boll damage (7.22%), more number of good opened bolls (36.89/plant) and higher seed cotton yield (19.45q/ha) followed by rest of its lower dosages, Spinetoram 12% SC alone and Spinosad 45% SC being at par significantly superior to rest of the treatments. However, significantly higher boll damage (15.13%) and lower seed cotton yield (14.45 q/ha) was registered in untreated control. Thus Spinetoram10% WG+Sulfoxaflor 30% WG can be a promising option for pest management in Bt Cotton.

Keywords: Spinetoram10% WG+Sulfoxaflor 30% WG, sucking pests, bollworms, Bt cotton, management

Procedia PDF Downloads 250
12 Design and Construction of a Maize Dehusking Machine for Small and Medium-Scale Farmers

Authors: Francis Ojo Ologunagba, Monday Olatunbosun Ale, Lewis A. Olutayo

Abstract:

The economic successes of commercial development of agricultural product processing depend upon the adaptability of each processing stage to mechanization. In maize processing, one of its post-harvest operations that is still facing a major challenge is dehusking. Therefore, a maize dehusking machine that could replace the prevalent traditional method of dehusking maize in developing countries, especially Nigeria was designed, constructed and tested at the Department of Agricultural and Bio-Environmental Engineering Technology, Rufus Giwa Polytechnic, Owo. The basic features of the machine are feeding unit (hopper), housing frame, dehusking unit, drive mechanism and discharge outlets. The machine was tested with maize of 50mm average diameter at 13% moisture content and 2.5mm machine roller clearance. Test results showed appreciable performance with the dehusking efficiency of 92% and throughput capacity of 200 Kg/hr at a machine speed of 400rpm. The estimated production cost of the machine at the time of construction is forty-five thousand, one hundred and eighty nairas (₦45,180) excluding the cost of the electric motor. It is therefore recommended for small and medium-scale maize farmers and processors in Nigeria.

Keywords: construction, dehusking, design, efficiency, maize

Procedia PDF Downloads 322
11 Preservation of Coconut Toddy Sediments as a Leavening Agent for Bakery Products

Authors: B. R. Madushan, S. B. Navaratne, I. Wickramasinge

Abstract:

Toddy sediment (TS) was cultured in a PDA medium to determine initial yeast load, and also it was undergone sun, shade, solar, dehumidified cold air (DCA) and hot air oven (at 400, 500 and 60oC) drying with a view to preserve viability of yeast. Thereafter, this study was conducted according to two factor factorial design in order to determine best preservation method. Therein the dried TS from the best drying method was taken and divided into two portions. One portion was mixed with 3: 7 ratio of TS: rice flour and the mixture was divided in to two again. While one portion was kept under in house condition the other was in a refrigerator. Same procedure was followed to the rest portion of TS too but it was at the same ratio of corn flour. All treatments were vacuum packed in triple laminate pouches and the best preservation method was determined in terms of leavening index (LI). The TS obtained from the best preservation method was used to make foods (bread and hopper) and organoleptic properties of it were evaluated against same of ordinary foods using sensory panel with a five point hedonic scale. Results revealed that yeast load or fresh TS was 58×106 CFU/g. The best drying method in preserving viability of yeast was DCA because LI of this treatment (96%) is higher than that of other three treatments. Organoleptic properties of foods prepared from best preservation method are as same as ordinary foods according to Duo trio test.

Keywords: biological leavening agent, coconut toddy, fermentation, yeast

Procedia PDF Downloads 341
10 Insects and Meteorological Inventories in a Mango-Based Agroforestry System in Bangladesh

Authors: Md. Ruhul Amin, Shakura Namni, Md. Ramiz Uddin Miah, Md. Giashuddin Miah, Mohammad Zakaria, Sang Jae Suh, Yong Jung Kwon

Abstract:

Insect species abundance and diversity associated with meteorological factors during January to June 2013 at a mango-based agroforestry research field in Bangladesh, and the effects of pests and pollinator species on mango are presented in this study. Among the collected and identified insects, nine species belong to 3 orders were found as pollinator, 11 species in 5 orders as pest, and 13 species in 6 orders as predator. The mango hopper, fruit fly and stone weevil appeared as major pest because of their high levels of abundance and infestation. The hoppers caused 100% inflorescence damage followed by fruit fly (51.7% fruit) and stone weevil (31.0% mature fruit). The major pests exerted significantly higher abundance compared to pollinator, predator and minor pests. Hemipteroid insects were most abundant (60%) followed by Diptera (21%), Hymenoptera (10%), Lepidoptera (5%), and Coleoptera (4%). Insect population increased with increasing trend of temperature and humidity, and revealed peak abundance during April-May. The flower visiting insects differed in their landing duration and showed preference to forage with time of a day. Their foraging activity was found to be peaked between 11.00 am to 01.00 pm. The activity of the pollinators led to higher level of fruit set. This study provides baseline information about the phenological patterns of insect abundance in an agroforestry research field which could be an indication to incorporate some aspects of pest management.

Keywords: agroforestry, abundance, abiotic factors, insects, mango

Procedia PDF Downloads 441
9 Value Addition of Quinoa (Chenopodium Quinoa Willd.) Using an Indigenously Developed Saponin Removal Machine

Authors: M.A. Ali, M. Matloob, A. Sahar, M. Yamin, M. Imran, Y.A. Yusof

Abstract:

Quinoa (Chenopodium quinoa Willd.) is known as pseudocereal was originated in South America's Andes. Quinoa is a good source of protein, amino acids, micronutrients and bioactive components. The lack of gluten makes it suitable for celiac patients. Saponins, the leading ant-nutrient, are found in the pericarp, which adheres to the seed and transmits the bitter flavor to the quinoa grain. It is found in varying amounts in quinoa from 0.1% to 5%. This study was planned to design an indigenous machine to remove saponin from quinoa grains at the farm level to promote entrepreneurship. The machine consisted of a feeding hopper, rotating shaft, grooved stone, perforated steel cylinder, V-belts, pulleys, electric motor and mild steel angle iron and sheets. The motor transmitted power to the shaft with a belt drive. The shaft on which the grooved stone was attached rotated inside the perforated cylinder having a clearance of 2 mm and was removed saponin by an abrasion mechanism. The saponin-removed quinoa was then dipped in water to determine the presence of saponin as it produced foam in water and data were statistically analyzed. The results showed that the raw seed feeding rate of 25 g/s and milling time of 135 s completely removed saponin from seeds with minimum grain losses of 2.85% as compared to the economic analysis of the machine showed that its break-even point was achieved after one and half months with 18,000 s and a production capacity of 33 g/s.

Keywords: quinoa seeds, saponin, abrasion mechanism, stone polishing, indigenous machine

Procedia PDF Downloads 72
8 The Urgency of Berth Deepening at the Port of Durban

Authors: Rowen Naicker, Dhiren Allopi

Abstract:

One of the major problems the Port of Durban is experiencing is addressing shallow spots aggravated by megaships that berth. In the recent years, the vessels that call at the Port have increased in size which calls for draughts that are much deeper. For this reason, these larger vessels can only berth under high tide to avoid the risk of running aground. In addition to this, the ships cannot sail in fully laden which does not make it feasible for ship owners. Further during the berthing materials are displaced from the seabed which result in shallow spots being developed. The permitted draft (under-keel allowance) for the Durban Container Terminal (DCT) is currently 12.2 m. Transnet National Ports Authority (TNPA) are currently investing in a dredging fleet worth almost two billion rand. One of the highlights of this investment would be the building of grab hopper dredger that would be dedicated to the Port by 2017. TNPA are trying various techniques to dissolve the reduction of draughts by implementing dredging maintenance projects but is this sufficient? The ideal resolution would be the deepening and widening of the berths. Plans for this project is in place, but the implementation process is a matter of urgency. The intention of this project will be to accommodate three big vessels rather than two which in turn will improve the turnaround time in the port. The berthing will then no longer depend on high tide to avoid ships running aground. The aim of this paper is to prove the implementation of deepening and widening of the Port of Durban is a matter of urgency. If the plan to deepen and widen the berths at DCT is delayed it will mean a loss of business for the South African economy. If larger vessels cannot be accommodated in the Port of Durban, it will bypass the busiest container handling facility in the Southern hemisphere. Shipping companies are compelled to use larger ships as opposed to smaller vessels to lower port and fuel costs. A delay in the expansion of DCT could also result in an escalation of costs.

Keywords: DCT, deepening, berth, port

Procedia PDF Downloads 399
7 "Gurza Incinerator" : Biomass Incinerator Powered by Empty Bunch of Palm Oil Fruits as Electrical Biomass Base Development

Authors: Andi Ismanto

Abstract:

Indonesia is the largest palm oil producer in the world. The increasing number of palm oil extensification in Indonesia started on 2000-2011. Based on preliminary figures from the Directorate General of Plantation, palm oil area in Indonesia until 2011 is about 8.91 million hectares.On 2011 production of palm oil CPO reaches 22.51 million tons. In the other hands, the increasing palm oil production has impact to environment. The Empty Bunch of Palm Oil (EBPO)waste was increased to 20 million tons in 2009. Utilization of waste EBPO currently only used as an organic fertilizer for plants. But, it was not a good solution, because TKKS that used as organic compost has high content of carbon and hydrogen compound. The EBPO waste has potential used as fuel by gasification because it has short time of decomposition. So, the process will be more efficient in time. Utilization of urban wastehas been created using an incinerator used as a source of electrical energy for household.Usually, waste burning process by incinerator is using diesel fuel and kerosene. It is certainly less effective and not environment friendly, considering the waste incineration process using Incinerator tools are continuously. Considering biomass is a renewable source of energy and the world's energy system must be switch from an energy based on fossil resources into the energy based on renewable resources, the "Gurza Incinerator": Design Build Powerful Biomass Incinerator Empty Bunch of Palm Oil (EBPO) as Elecrical Biomass Base Development, a renewable future technology. The tools is using EBPO waste as source of burning to burn garbage inside the Incinerator hopper. EBPO waste will be processed by means of gasification. Gasification isa process to produce gases that can be used as fuel for electrical power. Hopefully, this technology could be a renewable future energy and also as starting point of electrical biomass base development.

Keywords: incinerator, biomass, empty bunch palm oil, electrical energy

Procedia PDF Downloads 482
6 Design of Large Parallel Underground Openings in Himalayas: A Case Study of Desilting Chambers for Punatsangchhu-I, Bhutan

Authors: Kanupreiya, Rajani Sharma

Abstract:

Construction of a single underground structure is itself a challenging task, and it becomes more critical in tectonically active young mountains such as the Himalayas which are highly anisotropic. The Himalayan geology mostly comprises of incompetent and sheared rock mass in addition to fold/faults, rock burst, and water ingress. Underground tunnels form the most essential and important structure in run-of-river hydroelectric projects. Punatsangchhu I hydroelectric project (PHEP-I), Bhutan (1200 MW) is a run-of-river scheme which has four parallel underground desilting chambers. The Punatsangchhu River carries a large quantity of silt load during monsoon season. Desilting chambers were provided to remove the silt particles of size greater than and equal to 0.2 mm with 90% efficiency, thereby minimizing the rate of damage to turbines. These chambers are 330 m long, 18 m wide at the center and 23.87 m high, with a 5.87 m hopper portion. The geology of desilting chambers was known from an exploratory drift which exposed low dipping foliation joint and six joint sets. The RMR and Q value in this reach varied from 40 to 60 and 1 to 6 respectively. This paper describes different rock engineering principles undertaken for safe excavation and rock support of the moderately jointed, blocky and thinly foliated biotite gneiss. For the design of rock support system of desilting chambers, empirical and numerical analysis was adopted. Finite element analysis was carried out for cavern design and finalization of pillar width using Phase2. Phase2 is a powerful tool for simulation of stage-wise excavation with simultaneous provision of support system. As the geology of the region had 7 sets of joints, in addition to FEM based approach, safety factors for potentially unstable wedges were checked using UnWedge. The final support recommendations were based on continuous face mapping, numerical modelling, empirical calculations, and practical experiences.

Keywords: dam siltation, Himalayan geology, hydropower, rock support, numerical modelling

Procedia PDF Downloads 91
5 Ergonomic Assessment of Workplace Environment of Flour Mill Workers

Authors: Jayshree P. Zend, Ashatai B. Pawar

Abstract:

The study was carried out in Parbhani district of Maharashtra state, India with the objectives to study environmental problems faced by flour mill workers, prevalence of work-related health hazards and the physiological cost of workers while performing work in flour mill in traditional method as well as improved method. The use of flour presser, dust controlling bag and noise and dust controlling mask developed by AICRP College of Home Science, VNMKV, Parbhani was considered as an improved method. This investigation consisted survey and experiment which was conducted in the respective locations of flour mills. Healthy, non-smoking 30 flour mill workers ranged between the age group of 20-50 yrs comprising 16 female and 14 male working at flour mill for 4-8 hrs/ day and 6 days/ week and had minimum five years experience of work in flour mill were selected for the study. Pulmonary function test of flour mill workers was carried out by trained technician at Dr. ShankarraoChavan Government Medical College, Nanded by using Electronic Spirometer. The data regarding heart rate (resting, working and recovery), energy expenditure, musculoskeletal problems and occupational health hazards and accidents were recorded by using pretested questionnaire. Scientific equipment used in the experiment were polar sport test heart rate monitor, Hygrometer, Goniometer, Dialed Thermometer, Sound Level Meter, Lux Meter, Ambient Air Sampler and Air Quality Monitor. The collected data were subjected to appropriate statistical analysis such as 't' test and correlation coefficient test. Results indicated that improved method i.e. use of noise and dust controlling mask, flour presser and dust controlling bag were effective in reducing physiological cost of work of flour mill workers. Lung function test of flour mill workers showed decreased values of all parameters, hence the results of present study support paying attention to use of personal protective noise and dust controlling mask by flour mill workers and also to the working conditions in flour mill especially ventilation and illumination level needs to be enhanced in flour mill. The study also emphasizes the need to develop some mechanism for lifting load of grains and unloading in the hopper. It is also suggested that the flour mill workers should use flour presser suitable to their height to avoid frequent bending and should use dust controlling bag to flour outlet of machine to reduce inhalable flour dust level in the flour mill.

Keywords: physiological cost, energy expenditure, musculoskeletal problems

Procedia PDF Downloads 401
4 SPARK: An Open-Source Knowledge Discovery Platform That Leverages Non-Relational Databases and Massively Parallel Computational Power for Heterogeneous Genomic Datasets

Authors: Thilina Ranaweera, Enes Makalic, John L. Hopper, Adrian Bickerstaffe

Abstract:

Data are the primary asset of biomedical researchers, and the engine for both discovery and research translation. As the volume and complexity of research datasets increase, especially with new technologies such as large single nucleotide polymorphism (SNP) chips, so too does the requirement for software to manage, process and analyze the data. Researchers often need to execute complicated queries and conduct complex analyzes of large-scale datasets. Existing tools to analyze such data, and other types of high-dimensional data, unfortunately suffer from one or more major problems. They typically require a high level of computing expertise, are too simplistic (i.e., do not fit realistic models that allow for complex interactions), are limited by computing power, do not exploit the computing power of large-scale parallel architectures (e.g. supercomputers, GPU clusters etc.), or are limited in the types of analysis available, compounded by the fact that integrating new analysis methods is not straightforward. Solutions to these problems, such as those developed and implemented on parallel architectures, are currently available to only a relatively small portion of medical researchers with access and know-how. The past decade has seen a rapid expansion of data management systems for the medical domain. Much attention has been given to systems that manage phenotype datasets generated by medical studies. The introduction of heterogeneous genomic data for research subjects that reside in these systems has highlighted the need for substantial improvements in software architecture. To address this problem, we have developed SPARK, an enabling and translational system for medical research, leveraging existing high performance computing resources, and analysis techniques currently available or being developed. It builds these into The Ark, an open-source web-based system designed to manage medical data. SPARK provides a next-generation biomedical data management solution that is based upon a novel Micro-Service architecture and Big Data technologies. The system serves to demonstrate the applicability of Micro-Service architectures for the development of high performance computing applications. When applied to high-dimensional medical datasets such as genomic data, relational data management approaches with normalized data structures suffer from unfeasibly high execution times for basic operations such as insert (i.e. importing a GWAS dataset) and the queries that are typical of the genomics research domain. SPARK resolves these problems by incorporating non-relational NoSQL databases that have been driven by the emergence of Big Data. SPARK provides researchers across the world with user-friendly access to state-of-the-art data management and analysis tools while eliminating the need for high-level informatics and programming skills. The system will benefit health and medical research by eliminating the burden of large-scale data management, querying, cleaning, and analysis. SPARK represents a major advancement in genome research technologies, vastly reducing the burden of working with genomic datasets, and enabling cutting edge analysis approaches that have previously been out of reach for many medical researchers.

Keywords: biomedical research, genomics, information systems, software

Procedia PDF Downloads 269
3 Medium-Scale Multi-Juice Extractor for Food Processing

Authors: Flordeliza L. Mercado, Teresito G. Aguinaldo, Helen F. Gavino, Victorino T. Taylan

Abstract:

Most fruits and vegetables are available in large quantities during peak season which are oftentimes marketed at low price and left to rot or fed to farm animals. The lack of efficient storage facilities, and the additional cost and unavailability of small machinery for food processing, results to low price and wastage. Incidentally, processed fresh fruits and vegetables are gaining importance nowadays and health conscious people are also into ‘juicing’. One way to reduce wastage and ensure an all-season availability of crop juices at reasonable costs is to develop equipment for effective extraction of juice. The study was conducted to design, fabricate and evaluate a multi-juice extractor using locally available materials, making it relatively cheaper and affordable for medium-scale enterprises. The study was also conducted to formulate juice blends using extracted juices and calamansi juice at different blending percentage, and evaluate its chemical properties and sensory attributes. Furthermore, the chemical properties of extracted meals were evaluated for future applications. The multi-juice extractor has an overall dimension of 963mm x 300mm x 995mm, a gross weight of 82kg and 5 major components namely; feeding hopper, extracting chamber, juice and meal outlet, transmission assembly, and frame. The machine performance was evaluated based on juice recovery, extraction efficiency, extraction rate, extraction recovery, and extraction loss considering type of crop as apple and carrot with three replications each and was analyzed using T-test. The formulated juice blends were subjected to sensory evaluation and data gathered were analyzed using Analysis of Variance appropriate for Complete Randomized Design. Results showed that the machine’s juice recovery (73.39%), extraction rate (16.40li/hr), and extraction efficiency (88.11%) for apple were significantly higher than for carrot while extraction recovery (99.88%) was higher for apple than for carrot. Extraction loss (0.12%) was lower for apple than for carrot, but was not significantly affected by crop. Based on adding percentage mark-up on extraction cost (Php 2.75/kg), the breakeven weight and payback period for a 35% mark-up is 4,710.69kg and 1.22 years, respectively and for a 50% mark-up, the breakeven weight is 3,492.41kg and the payback period is 0.86 year (10.32 months). Results on the sensory evaluation of juice blends showed that the type of juice significantly influenced all the sensory parameters while the blending percentage including their respective interaction, had no significant effect on all sensory parameters, making the apple-calamansi juice blend more preferred than the carrot-calamansi juice blend in terms of all the sensory parameter. The machine’s performance is higher for apple than for carrot and the cost analysis on the use of the machine revealed that it is financially viable with a payback period of 1.22 years (35% mark-up) and 0.86 year (50% mark-up) for machine cost, generating an income of Php 23,961.60 and Php 34,444.80 per year using 35% and 50% mark-up, respectively. The juice blends were of good qualities based on the values obtained in the chemical analysis and the extracted meal could also be used to produce another product based on the values obtained from proximate analysis.

Keywords: food processing, fruits and vegetables, juice extraction, multi-juice extractor

Procedia PDF Downloads 323
2 Making the Right Call for Falls: Evaluating the Efficacy of a Multi-Faceted Trust Wide Approach to Improving Patient Safety Post Falls

Authors: Jawaad Saleem, Hannah Wright, Peter Sommerville, Adrian Hopper

Abstract:

Introduction: Inpatient falls are the most commonly reported patient safety incidents, and carry a significant burden on resources, morbidity, and mortality. Ensuring adequate post falls management of patients by staff is therefore paramount to maintaining patient safety especially in out of hours and resource stretched settings. Aims: This quality improvement project aims to improve the current practice of falls management at Guys St Thomas Hospital, London as compared to our 2016 Quality Improvement Project findings. Furthermore, it looks to increase current junior doctors confidence in managing falls and their use of new guidance protocols. Methods: Multifaceted Interventions implemented included: the development of new trust wide guidelines detailing management pathways for patients post falls, available for intranet access. Furthermore, the production of 2000 lanyard cards distributed amongst junior doctors and staff which summarised these guidelines. Additionally, a ‘safety signal’ email was sent from the Trust chief medical officer to all staff raising awareness of falls and the guidelines. Formal falls teaching was also implemented for new doctors at induction. Using an established incident database, 189 consecutive falls in 2017were retrospectively analysed electronically to assess and compared to the variables measured in 2016 post interventions. A separate serious incident database was used to analyse 50 falls from May 2015 to March 2018 to ascertain the statistical significance of the impact of our interventions on serious incidents. A similar questionnaire for the 2017 cohort of foundation year one (FY1) doctors was performed and compared to 2016 results. Results: Questionnaire data demonstrated improved awareness and utility of guidelines and increased confidence as well as an increase in training. 97% of FY1 trainees felt that the interventions had increased their awareness of the impact of falls on patients in the trust. Data from the incident database demonstrated the time to review patients post fall had decreased from an average of 130 to 86 minutes. Improvement was also demonstrated in the reduced time to order and schedule X-ray and CT imaging, 3 and 5 hours respectively. Data from the serious incident database show that ‘the time from fall until harm was detected’ was statistically significantly lower (P = 0.044) post intervention. We also showed the incidence of significant delays in detecting harm ( > 10 hours) reduced post intervention. Conclusions: Our interventions have helped to significantly reduce the average time to assess, order and schedule appropriate imaging post falls. Delays of over ten hours to detect serious injuries after falls were commonplace; since the intervention, their frequency has markedly reduced. We suggest this will lead to identifying patient harm sooner, reduced clinical incidents relating to falls and thus improve overall patient safety. Our interventions have also helped increase clinical staff confidence, management, and awareness of falls in the trust. Next steps include expanding teaching sessions, improving multidisciplinary team involvement to aid this improvement.

Keywords: patient safety, quality improvement, serious incidents, falls, clinical care

Procedia PDF Downloads 124
1 Revolutionizing Manufacturing: Embracing Additive Manufacturing with Eggshell Polylactide (PLA) Polymer

Authors: Choy Sonny Yip Hong

Abstract:

This abstract presents an exploration into the creation of a sustainable bio-polymer compound for additive manufacturing, specifically 3D printing, with a focus on eggshells and polylactide (PLA) polymer. The project initially conducted experiments using a variety of food by-products to create bio-polymers, and promising results were obtained when combining eggshells with PLA polymer. The research journey involved precise measurements, drying of PLA to remove moisture, and the utilization of a filament-making machine to produce 3D printable filaments. The project began with exploratory research and experiments, testing various combinations of food by-products to create bio-polymers. After careful evaluation, it was discovered that eggshells and PLA polymer produced promising results. The initial mixing of the two materials involved heating them just above the melting point. To make the compound 3D printable, the research focused on finding the optimal formulation and production process. The process started with precise measurements of the PLA and eggshell materials. The PLA was placed in a heating oven to remove any absorbed moisture. Handmade testing samples were created to guide the planning for 3D-printed versions. The scrap PLA was recycled and ground into a powdered state. The drying process involved gradual moisture evaporation, which required several hours. The PLA and eggshell materials were then placed into the hopper of a filament-making machine. The machine's four heating elements controlled the temperature of the melted compound mixture, allowing for optimal filament production with accurate and consistent thickness. The filament-making machine extruded the compound, producing filament that could be wound on a wheel. During the testing phase, trials were conducted with different percentages of eggshell in the PLA mixture, including a high percentage (20%). However, poor extrusion results were observed for high eggshell percentage mixtures. Samples were created, and continuous improvement and optimization were pursued to achieve filaments with good performance. To test the 3D printability of the DIY filament, a 3D printer was utilized, set to print the DIY filament smoothly and consistently. Samples were printed and mechanically tested using a universal testing machine to determine their mechanical properties. This testing process allowed for the evaluation of the filament's performance and suitability for additive manufacturing applications. In conclusion, the project explores the creation of a sustainable bio-polymer compound using eggshells and PLA polymer for 3D printing. The research journey involved precise measurements, drying of PLA, and the utilization of a filament-making machine to produce 3D printable filaments. Continuous improvement and optimization were pursued to achieve filaments with good performance. The project's findings contribute to the advancement of additive manufacturing, offering opportunities for design innovation, carbon footprint reduction, supply chain optimization, and collaborative potential. The utilization of eggshell PLA polymer in additive manufacturing has the potential to revolutionize the manufacturing industry, providing a sustainable alternative and enabling the production of intricate and customized products.

Keywords: additive manufacturing, 3D printing, eggshell PLA polymer, design innovation, carbon footprint reduction, supply chain optimization, collaborative potential

Procedia PDF Downloads 71