Search results for: P. Fisher
132 Base Change for Fisher Metrics: Case of the q-Gaussian Inverse Distribution
Authors: Gabriel I. Loaiza Ossa, Carlos A. Cadavid Moreno, Juan C. Arango Parra
Abstract:
It is known that the Riemannian manifold determined by the family of inverse Gaussian distributions endowed with the Fisher metric has negative constant curvature κ= -1/2, as does the family of usual Gaussian distributions. In the present paper, firstly, we arrive at this result by following a different path, much simpler than the previous ones. We first put the family in exponential form, thus endowing the family with a new set of parameters, or coordinates, θ₁, θ₂; then we determine the matrix of the Fisher metric in terms of these parameters; and finally we compute this matrix in the original parameters. Secondly, we define the inverse q-Gaussian distribution family (q < 3) as the family obtained by replacing the usual exponential function with the Tsallis q-exponential function in the expression for the inverse Gaussian distribution and observe that it supports two possible geometries, the Fisher and the q-Fisher geometry. And finally, we apply our strategy to obtain results about the Fisher and q-Fisher geometry of the inverse q-Gaussian distribution family, similar to the ones obtained in the case of the inverse Gaussian distribution family.Keywords: base of changes, information geometry, inverse Gaussian distribution, inverse q-Gaussian distribution, statistical manifolds
Procedia PDF Downloads 244131 The Beta-Fisher Snedecor Distribution with Applications to Cancer Remission Data
Authors: K. A. Adepoju, O. I. Shittu, A. U. Chukwu
Abstract:
In this paper, a new four-parameter generalized version of the Fisher Snedecor distribution called Beta- F distribution is introduced. The comprehensive account of the statistical properties of the new distributions was considered. Formal expressions for the cumulative density function, moments, moment generating function and maximum likelihood estimation, as well as its Fisher information, were obtained. The flexibility of this distribution as well as its robustness using cancer remission time data was demonstrated. The new distribution can be used in most applications where the assumption underlying the use of other lifetime distributions is violated.Keywords: fisher-snedecor distribution, beta-f distribution, outlier, maximum likelihood method
Procedia PDF Downloads 347130 Numerical Solutions of Generalized Burger-Fisher Equation by Modified Variational Iteration Method
Authors: M. O. Olayiwola
Abstract:
Numerical solutions of the generalized Burger-Fisher are obtained using a Modified Variational Iteration Method (MVIM) with minimal computational efforts. The computed results with this technique have been compared with other results. The present method is seen to be a very reliable alternative method to some existing techniques for such nonlinear problems.Keywords: burger-fisher, modified variational iteration method, lagrange multiplier, Taylor’s series, partial differential equation
Procedia PDF Downloads 429129 Quantum Fisher Information of Bound Entangled W-Like States
Authors: Fatih Ozaydin
Abstract:
Quantum Fisher information (QFI) is a multipartite entanglement witness and recently it has been studied extensively with separability and entanglement in the focus. On the other hand, bound entanglement is a special phenomena observed in mixed entangled states. In this work, we study the QFI of W states under a four-dimensional entanglement binding channel. Starting with initally pure W states of several qubits, we find how the QFI decreases as two qubits of the W state is subject to entanglement binding. We also show that as the size of the W state increases, the effect of entanglement binding is decreased.Keywords: Quantum Fisher information, W states, bound entanglement, entanglement binding
Procedia PDF Downloads 482128 Navigating the Complexity of Guillain-Barré Syndrome and Miller Fisher Syndrome Overlap Syndrome: A Pediatric Case Report
Authors: Kamal Chafiq, Youssef Hadzine, Adel Elmekkaoui, Othmane Benlenda, Houssam Rajad, Soukaina Wakrim, Hicham Nassik
Abstract:
Guillain-Barré syndrome/Miller Fishe syndrome (GBS/MFS) overlap syndrome is an extremely rare variant of Guillain-Barré syndrome (GBS) in which Miller Fisher syndrome (MFS) coexists with other characteristics of GBS, such as limb weakness, paresthesia, and facial paralysis. We report the clinical case of a 12-year-old patient, with no pathological history, who acutely presents with ophthalmoplegia, areflexia, facial diplegia, and swallowing and phonation disorders, followed by progressive, descending, and symmetrical paresis affecting first the upper limbs and then the lower limbs. An albuminocytological dissociation was found in the cerebrospinal fluid study. Magnetic resonance imaging of the spinal cord showed enhancement and thickening of the cauda equina roots. The patient was treated with immunoglobulins with a favorable clinical outcome.Keywords: Guillain-Barré syndrome, Miller Fisher syndrome, overlap syndrome, anti-GQ1b antibodies
Procedia PDF Downloads 77127 A Study on the Performance of 2-PC-D Classification Model
Authors: Nurul Aini Abdul Wahab, Nor Syamim Halidin, Sayidatina Aisah Masnan, Nur Izzati Romli
Abstract:
There are many applications of principle component method for reducing the large set of variables in various fields. Fisher’s Discriminant function is also a popular tool for classification. In this research, the researcher focuses on studying the performance of Principle Component-Fisher’s Discriminant function in helping to classify rice kernels to their defined classes. The data were collected on the smells or odour of the rice kernel using odour-detection sensor, Cyranose. 32 variables were captured by this electronic nose (e-nose). The objective of this research is to measure how well a combination model, between principle component and linear discriminant, to be as a classification model. Principle component method was used to reduce all 32 variables to a smaller and manageable set of components. Then, the reduced components were used to develop the Fisher’s Discriminant function. In this research, there are 4 defined classes of rice kernel which are Aromatic, Brown, Ordinary and Others. Based on the output from principle component method, the 32 variables were reduced to only 2 components. Based on the output of classification table from the discriminant analysis, 40.76% from the total observations were correctly classified into their classes by the PC-Discriminant function. Indirectly, it gives an idea that the classification model developed has committed to more than 50% of misclassifying the observations. As a conclusion, the Fisher’s Discriminant function that was built on a 2-component from PCA (2-PC-D) is not satisfying to classify the rice kernels into its defined classes.Keywords: classification model, discriminant function, principle component analysis, variable reduction
Procedia PDF Downloads 331126 A Multi-Dimensional Neural Network Using the Fisher Transform to Predict the Price Evolution for Algorithmic Trading in Financial Markets
Authors: Cristian Pauna
Abstract:
Trading the financial markets is a widespread activity today. A large number of investors, companies, public of private funds are buying and selling every day in order to make profit. Algorithmic trading is the prevalent method to make the trade decisions after the electronic trading release. The orders are sent almost instantly by computers using mathematical models. This paper will present a price prediction methodology based on a multi-dimensional neural network. Using the Fisher transform, the neural network will be instructed for a low-latency auto-adaptive process in order to predict the price evolution for the next period of time. The model is designed especially for algorithmic trading and uses the real-time price series. It was found that the characteristics of the Fisher function applied at the nodes scale level can generate reliable trading signals using the neural network methodology. After real time tests it was found that this method can be applied in any timeframe to trade the financial markets. The paper will also include the steps to implement the presented methodology into an automated trading system. Real trading results will be displayed and analyzed in order to qualify the model. As conclusion, the compared results will reveal that the neural network methodology applied together with the Fisher transform at the nodes level can generate a good price prediction and can build reliable trading signals for algorithmic trading.Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, neural network
Procedia PDF Downloads 160125 Object-Scene: Deep Convolutional Representation for Scene Classification
Authors: Yanjun Chen, Chuanping Hu, Jie Shao, Lin Mei, Chongyang Zhang
Abstract:
Traditional image classification is based on encoding scheme (e.g. Fisher Vector, Vector of Locally Aggregated Descriptor) with low-level image features (e.g. SIFT, HoG). Compared to these low-level local features, deep convolutional features obtained at the mid-level layer of convolutional neural networks (CNN) have richer information but lack of geometric invariance. For scene classification, there are scattered objects with different size, category, layout, number and so on. It is crucial to find the distinctive objects in scene as well as their co-occurrence relationship. In this paper, we propose a method to take advantage of both deep convolutional features and the traditional encoding scheme while taking object-centric and scene-centric information into consideration. First, to exploit the object-centric and scene-centric information, two CNNs that trained on ImageNet and Places dataset separately are used as the pre-trained models to extract deep convolutional features at multiple scales. This produces dense local activations. By analyzing the performance of different CNNs at multiple scales, it is found that each CNN works better in different scale ranges. A scale-wise CNN adaption is reasonable since objects in scene are at its own specific scale. Second, a fisher kernel is applied to aggregate a global representation at each scale and then to merge into a single vector by using a post-processing method called scale-wise normalization. The essence of Fisher Vector lies on the accumulation of the first and second order differences. Hence, the scale-wise normalization followed by average pooling would balance the influence of each scale since different amount of features are extracted. Third, the Fisher vector representation based on the deep convolutional features is followed by a linear Supported Vector Machine, which is a simple yet efficient way to classify the scene categories. Experimental results show that the scale-specific feature extraction and normalization with CNNs trained on object-centric and scene-centric datasets can boost the results from 74.03% up to 79.43% on MIT Indoor67 when only two scales are used (compared to results at single scale). The result is comparable to state-of-art performance which proves that the representation can be applied to other visual recognition tasks.Keywords: deep convolutional features, Fisher Vector, multiple scales, scale-specific normalization
Procedia PDF Downloads 331124 One Building at a Time for Tambak Lorok
Authors: Etika Sukma Adiyanti, H. N. Nurul Huda Putu Ekapraja, Gugun Gunawan
Abstract:
Global warming causes climate change and sea level rise. This is a threat for coastal regions, especially for coastal settlements with activities that are influenced by this natural phenomenon. Consequences are damage of houses, humid house environment, sustainability of the houses, obstructed economic activities and domestic works, disruption of sanitation facilities, lack of electricity, failure of transport system, psychological issues and other. Icons Tambak Lorok as 'Fisherman Village' is not something familiar to residents of the city of Semarang. Especially for the housewife who every day have to buy the ingredients high in protein and omega fish auction which is adjacent to the main street market in the village of Tambak Lorok. However, there are major problems that are being experienced by this small neighborhood. In fact, this issue includes seven infrastructure that should spoil the fishermen in activity with marine life. With this research, we will investigate water urbanism and climate change resiliency in Semarang, specifically the traditional fisher community of Tambak Lorok. We intend to find out how the local people in the fisher settlement Tambak Lorok deal with water urbanism, proverty and living with floods. So, we have a good solution for this problem, Floating Stage. We think that Tambak Lorok needs a new design for the common future. With this, One Building at A Time for Tambak Lorok, will be a good solution.Keywords: fisher community, environment, climate change, settlement
Procedia PDF Downloads 214123 Climate Variations and Fishers
Authors: S. Surapa Raju
Abstract:
In Andhra Pradesh, the symptoms of climate variations in coastal villages can be observed from various studies. The Andhra Pradesh coast is known its frequent tropical cyclones and associated floods and tidal surges causing loss of life and property in the region. In the last decade alone, the state experienced 18 devastating storms causing huge loss to coastal people. The year 2007 was the fourth warmest year on record since 1901 and 2009 witnessed the heat wave conditions prevailing over the coastal Andhra Pradesh. With regarding to sea level rise (SLR), 43 percent of the coastal areas considered to be at high risk. The main objectives of the study are: to know the perceptions of fisher people on climate variations and to find out the awareness of the fisher people on climate variations and its effects at village and on fishing households. Altogether 150 households were chosen purposively for this study and collected information from the households based on semi-structured schedule. The present field-based study observed that most of the fisher people are experienced about the changes in climate variations in their villages. The first generation fisher people expressed that the at least 1/2km of sea erosion taken place from the last 20 years and most of them displaced. With regard to fishing activities, first generation fisher people revealed that 20 years back they were fishing in near-shore areas, but now availability of near shore is decreased at a large extent. The present study observed the lot of variations in growth of species in marine districts of Andhra Pradesh from the year 2005-2010. Some species like Silver pomfret, Sole (flat fish), Chriocentrus, Thrisocies, Stakes, Rays etc. are in decaling. The results of the study indicate that huge variation observed in growth rates of fish species. Small and traditional fishers have drastically effected in El NiNo years than the normal years as they have not own suitable equipment such as crafts and nets. The study discovered that many changes taken place in the fishing activities and they are: go for long distance for fishing which increases the cost of fishing operations; decrease in fish catches. Need to take up in-depth studies in the marine villages and tackle the situation by creating more awareness about the negative effects of climate variations among fishing households. Suitable fish craft technology is to be supplied and create more employment opportunities for the fishers in other than fishery.Keywords: climate, Andhra Pradesh, El nino years, India
Procedia PDF Downloads 421122 Text Based Shuffling Algorithm on Graphics Processing Unit for Digital Watermarking
Authors: Zayar Phyo, Ei Chaw Htoon
Abstract:
In a New-LSB based Steganography method, the Fisher-Yates algorithm is used to permute an existing array randomly. However, that algorithm performance became slower and occurred memory overflow problem while processing the large dimension of images. Therefore, the Text-Based Shuffling algorithm aimed to select only necessary pixels as hiding characters at the specific position of an image according to the length of the input text. In this paper, the enhanced text-based shuffling algorithm is presented with the powered of GPU to improve more excellent performance. The proposed algorithm employs the OpenCL Aparapi framework, along with XORShift Kernel including the Pseudo-Random Number Generator (PRNG) Kernel. PRNG is applied to produce random numbers inside the kernel of OpenCL. The experiment of the proposed algorithm is carried out by practicing GPU that it can perform faster-processing speed and better efficiency without getting the disruption of unnecessary operating system tasks.Keywords: LSB based steganography, Fisher-Yates algorithm, text-based shuffling algorithm, OpenCL, XORShiftKernel
Procedia PDF Downloads 149121 Comparison of the Logistic and the Gompertz Growth Functions Considering a Periodic Perturbation in the Model Parameters
Authors: Avan Al-Saffar, Eun-Jin Kim
Abstract:
Both the logistic growth model and the gompertz growth model are used to describe growth processes. Both models driven by perturbations in different cases are investigated using information theory as a useful measure of sustainability and the variability. Specifically, we study the effect of different oscillatory modulations in the system's parameters on the evolution of the system and Probability Density Function (PDF). We show the maintenance of the initial conditions for a long time. We offer Fisher information analysis in positive and/or negative feedback and explain its implications for the sustainability of population dynamics. We also display a finite amplitude solution due to the purely fluctuating growth rate whereas the periodic fluctuations in negative feedback can lead to break down the system's self-regulation with an exponentially growing solution. In the cases tested, the gompertz and logistic systems show similar behaviour in terms of information and sustainability although they develop differently in time.Keywords: dynamical systems, fisher information, probability density function (pdf), sustainability
Procedia PDF Downloads 431120 Combat Plastic Entering in Kanpur City, Uttar Pradesh, India Marine Environment
Authors: Arvind Kumar
Abstract:
The city of Kanpur is located in the terrestrial plain area on the bank of the river Ganges and is the second largest city in the state of Uttar Pradesh. The city generates approximately 1400-1600 tons per day of MSW. Kanpur has been known as a major point and non-points-based pollution hotspot for the river Ganges. The city has a major industrial hub, probably the largest in the state, catering to the manufacturing and recycling of plastic and other dry waste streams. There are 4 to 5 major drains flowing across the city, which receive a significant quantity of waste leakage, which subsequently adds to the Ganges flow and is carried to the Bay of Bengal. A river-to-sea flow approach has been established to account for leaked waste into urban drains, leading to the build-up of marine litter. Throughout its journey, the river accumulates plastic – macro, meso, and micro, from various sources and transports it towards the sea. The Ganges network forms the second-largest plastic-polluting catchment in the world, with over 0.12 million tonnes of plastic discharged into marine ecosystems per year and is among 14 continental rivers into which over a quarter of global waste is discarded 3.150 Kilo tons of plastic waste is generated in Kanpur, out of which 10%-13% of plastic is leaked into the local drains and water flow systems. With the Support of Kanpur Municipal Corporation, 1TPD capacity MRF for drain waste management was established at Krishna Nagar, Kanpur & A German startup- Plastic Fisher, was identified for providing a solution to capture the drain waste and achieve its recycling in a sustainable manner with a circular economy approach. The team at Plastic Fisher conducted joint surveys and identified locations on 3 drains at Kanpur using GIS maps developed during the survey. It suggested putting floating 'Boom Barriers' across the drains with a low-cost material, which reduced their cost to only 2000 INR per barrier. The project was built upon the self-sustaining financial model. The project includes activities where a cost-efficient model is developed and adopted for a socially self-inclusive model. The project has recommended the use of low-cost floating boom barriers for capturing waste from drains. This involves a one-time time cost and has no operational cost. Manpower is engaged in fishing and capturing immobilized waste, whose salaries are paid by the Plastic Fisher. The captured material is sun-dried and transported to the designated place, where the shed and power connection, which act as MRF, are provided by the city Municipal corporation. Material aggregation, baling, and transportation costs to end-users are borne by Plastic Fisher as well.Keywords: Kanpur, marine environment, drain waste management, plastic fisher
Procedia PDF Downloads 71119 Supervised-Component-Based Generalised Linear Regression with Multiple Explanatory Blocks: THEME-SCGLR
Authors: Bry X., Trottier C., Mortier F., Cornu G., Verron T.
Abstract:
We address component-based regularization of a Multivariate Generalized Linear Model (MGLM). A set of random responses Y is assumed to depend, through a GLM, on a set X of explanatory variables, as well as on a set T of additional covariates. X is partitioned into R conceptually homogeneous blocks X1, ... , XR , viewed as explanatory themes. Variables in each Xr are assumed many and redundant. Thus, Generalised Linear Regression (GLR) demands regularization with respect to each Xr. By contrast, variables in T are assumed selected so as to demand no regularization. Regularization is performed searching each Xr for an appropriate number of orthogonal components that both contribute to model Y and capture relevant structural information in Xr. We propose a very general criterion to measure structural relevance (SR) of a component in a block, and show how to take SR into account within a Fisher-scoring-type algorithm in order to estimate the model. We show how to deal with mixed-type explanatory variables. The method, named THEME-SCGLR, is tested on simulated data.Keywords: Component-Model, Fisher Scoring Algorithm, GLM, PLS Regression, SCGLR, SEER, THEME
Procedia PDF Downloads 394118 Discrimination and Classification of Vestibular Neuritis Using Combined Fisher and Support Vector Machine Model
Authors: Amine Ben Slama, Aymen Mouelhi, Sondes Manoubi, Chiraz Mbarek, Hedi Trabelsi, Mounir Sayadi, Farhat Fnaiech
Abstract:
Vertigo is a sensation of feeling off balance; the cause of this symptom is very difficult to interpret and needs a complementary exam. Generally, vertigo is caused by an ear problem. Some of the most common causes include: benign paroxysmal positional vertigo (BPPV), Meniere's disease and vestibular neuritis (VN). In clinical practice, different tests of videonystagmographic (VNG) technique are used to detect the presence of vestibular neuritis (VN). The topographical diagnosis of this disease presents a large diversity in its characteristics that confirm a mixture of problems for usual etiological analysis methods. In this study, a vestibular neuritis analysis method is proposed with videonystagmography (VNG) applications using an estimation of pupil movements in the case of an uncontrolled motion to obtain an efficient and reliable diagnosis results. First, an estimation of the pupil displacement vectors using with Hough Transform (HT) is performed to approximate the location of pupil region. Then, temporal and frequency features are computed from the rotation angle variation of the pupil motion. Finally, optimized features are selected using Fisher criterion evaluation for discrimination and classification of the VN disease.Experimental results are analyzed using two categories: normal and pathologic. By classifying the reduced features using the Support Vector Machine (SVM), 94% is achieved as classification accuracy. Compared to recent studies, the proposed expert system is extremely helpful and highly effective to resolve the problem of VNG analysis and provide an accurate diagnostic for medical devices.Keywords: nystagmus, vestibular neuritis, videonystagmographic system, VNG, Fisher criterion, support vector machine, SVM
Procedia PDF Downloads 136117 Feature Extraction of MFCC Based on Fisher-Ratio and Correlated Distance Criterion for Underwater Target Signal
Authors: Han Xue, Zhang Lanyue
Abstract:
In order to seek more effective feature extraction technology, feature extraction method based on MFCC combined with vector hydrophone is exposed in the paper. The sound pressure signal and particle velocity signal of two kinds of ships are extracted by using MFCC and its evolution form, and the extracted features are fused by using fisher-ratio and correlated distance criterion. The features are then identified by BP neural network. The results showed that MFCC, First-Order Differential MFCC and Second-Order Differential MFCC features can be used as effective features for recognition of underwater targets, and the fusion feature can improve the recognition rate. Moreover, the results also showed that the recognition rate of the particle velocity signal is higher than that of the sound pressure signal, and it reflects the superiority of vector signal processing.Keywords: vector information, MFCC, differential MFCC, fusion feature, BP neural network
Procedia PDF Downloads 529116 Inference for Compound Truncated Poisson Lognormal Model with Application to Maximum Precipitation Data
Authors: M. Z. Raqab, Debasis Kundu, M. A. Meraou
Abstract:
In this paper, we have analyzed maximum precipitation data during a particular period of time obtained from different stations in the Global Historical Climatological Network of the USA. One important point to mention is that some stations are shut down on certain days for some reason or the other. Hence, the maximum values are recorded by excluding those readings. It is assumed that the number of stations that operate follows zero-truncated Poisson random variables, and the daily precipitation follows a lognormal random variable. We call this model a compound truncated Poisson lognormal model. The proposed model has three unknown parameters, and it can take a variety of shapes. The maximum likelihood estimators can be obtained quite conveniently using Expectation-Maximization (EM) algorithm. Approximate maximum likelihood estimators are also derived. The associated confidence intervals also can be obtained from the observed Fisher information matrix. Simulation results have been performed to check the performance of the EM algorithm, and it is observed that the EM algorithm works quite well in this case. When we analyze the precipitation data set using the proposed model, it is observed that the proposed model provides a better fit than some of the existing models.Keywords: compound Poisson lognormal distribution, EM algorithm, maximum likelihood estimation, approximate maximum likelihood estimation, Fisher information, skew distribution
Procedia PDF Downloads 108115 Electro-Fenton Degradation of Erythrosine B Using Carbon Felt as a Cathode: Doehlert Design as an Optimization Technique
Authors: Sourour Chaabane, Davide Clematis, Marco Panizza
Abstract:
This study investigates the oxidation of Erythrosine B (EB) food dye by a homogeneous electro-Fenton process using iron (II) sulfate heptahydrate as a catalyst, carbon felt as cathode, and Ti/RuO2. The treated synthetic wastewater contains 100 mg L⁻¹ of EB and has a pH = 3. The effects of three independent variables have been considered for process optimization, such as applied current intensity (0.1 – 0.5 A), iron concentration (1 – 10 mM), and stirring rate (100 – 1000 rpm). Their interactions were investigated considering response surface methodology (RSM) based on Doehlert design as optimization method. EB removal efficiency and energy consumption were considered model responses after 30 minutes of electrolysis. Analysis of variance (ANOVA) revealed that the quadratic model was adequately fitted to the experimental data with R² (0.9819), adj-R² (0.9276) and low Fisher probability (< 0.0181) for EB removal model, and R² (0.9968), adj-R² (0.9872) and low Fisher probability (< 0.0014) relative to the energy consumption model reflected a robust statistical significance. The energy consumption model significantly depends on current density, as expected. The foregoing results obtained by RSM led to the following optimal conditions for EB degradation: current intensity of 0.2 A, iron concentration of 9.397 mM, and stirring rate of 500 rpm, which gave a maximum decolorization rate of 98.15 % with a minimum energy consumption of 0.74 kWh m⁻³ at 30 min of electrolysis.Keywords: electrofenton, erythrosineb, dye, response serface methdology, carbon felt
Procedia PDF Downloads 72114 Critical Behaviour and Filed Dependence of Magnetic Entropy Change in K Doped Manganites Pr₀.₈Na₀.₂−ₓKₓMnO₃ (X = .10 And .15)
Authors: H. Ben Khlifa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou
Abstract:
The orthorhombic Pr₀.₈Na₀.₂−ₓKₓMnO₃ (x = 0.10 and 0.15) manganites are prepared by using the solid-state reaction at high temperatures. The critical exponents (β, γ, δ) are investigated through various techniques such as modified Arrott plot, Kouvel-Fisher method, and critical isotherm analysis based on the data of the magnetic measurements recorded around the Curie temperature. The critical exponents are derived from the magnetization data using the Kouvel-Fisher method, are found to be β = 0.32(4) and γ = 1.29(2) at TC ~ 123 K for x = 0.10 and β = 0.31(1) and γ = 1.25(2) at TC ~ 133 K for x = 0.15. The critical exponent values obtained for both samples are comparable to the values predicted by the 3D-Ising model and have also been verified by the scaling equation of state. Such results demonstrate the existence of ferromagnetic short-range order in our materials. The magnetic entropy changes of polycrystalline samples with a second-order phase transition are investigated. A large magnetic entropy change deduced from isothermal magnetization curves, is observed in our samples with a peak centered on their respective Curie temperatures (TC). The field dependence of the magnetic entropy changes are analyzed, which shows power-law dependence ΔSmax ≈ a(μ0 H)n at the transition temperature. The values of n obey the Curie Weiss law above the transition temperature. It is shown that for the investigated materials, the magnetic entropy change follows a master curve behavior. The rescaled magnetic entropy change curves for different applied fields collapse onto a single curve for both samples.Keywords: manganites, critical exponents, magnetization, magnetocaloric, master curve
Procedia PDF Downloads 164113 Non-Linear Regression Modeling for Composite Distributions
Authors: Mostafa Aminzadeh, Min Deng
Abstract:
Modeling loss data is an important part of actuarial science. Actuaries use models to predict future losses and manage financial risk, which can be beneficial for marketing purposes. In the insurance industry, small claims happen frequently while large claims are rare. Traditional distributions such as Normal, Exponential, and inverse-Gaussian are not suitable for describing insurance data, which often show skewness and fat tails. Several authors have studied classical and Bayesian inference for parameters of composite distributions, such as Exponential-Pareto, Weibull-Pareto, and Inverse Gamma-Pareto. These models separate small to moderate losses from large losses using a threshold parameter. This research introduces a computational approach using a nonlinear regression model for loss data that relies on multiple predictors. Simulation studies were conducted to assess the accuracy of the proposed estimation method. The simulations confirmed that the proposed method provides precise estimates for regression parameters. It's important to note that this approach can be applied to datasets if goodness-of-fit tests confirm that the composite distribution under study fits the data well. To demonstrate the computations, a real data set from the insurance industry is analyzed. A Mathematica code uses the Fisher information algorithm as an iteration method to obtain the maximum likelihood estimation (MLE) of regression parameters.Keywords: maximum likelihood estimation, fisher scoring method, non-linear regression models, composite distributions
Procedia PDF Downloads 32112 A Robust Spatial Feature Extraction Method for Facial Expression Recognition
Authors: H. G. C. P. Dinesh, G. Tharshini, M. P. B. Ekanayake, G. M. R. I. Godaliyadda
Abstract:
This paper presents a new spatial feature extraction method based on principle component analysis (PCA) and Fisher Discernment Analysis (FDA) for facial expression recognition. It not only extracts reliable features for classification, but also reduces the feature space dimensions of pattern samples. In this method, first each gray scale image is considered in its entirety as the measurement matrix. Then, principle components (PCs) of row vectors of this matrix and variance of these row vectors along PCs are estimated. Therefore, this method would ensure the preservation of spatial information of the facial image. Afterwards, by incorporating the spectral information of the eigen-filters derived from the PCs, a feature vector was constructed, for a given image. Finally, FDA was used to define a set of basis in a reduced dimension subspace such that the optimal clustering is achieved. The method of FDA defines an inter-class scatter matrix and intra-class scatter matrix to enhance the compactness of each cluster while maximizing the distance between cluster marginal points. In order to matching the test image with the training set, a cosine similarity based Bayesian classification was used. The proposed method was tested on the Cohn-Kanade database and JAFFE database. It was observed that the proposed method which incorporates spatial information to construct an optimal feature space outperforms the standard PCA and FDA based methods.Keywords: facial expression recognition, principle component analysis (PCA), fisher discernment analysis (FDA), eigen-filter, cosine similarity, bayesian classifier, f-measure
Procedia PDF Downloads 425111 Susceptibility of Different Clones of Eucalyptus Species against Gall Wasp, Leptocybe invasa Fisher and La Salle in Punjab, India
Authors: Ashwinder K. Dhaliwal, G. P. S. Dhillon
Abstract:
Eucalyptus is one of the most important forest tree species that can tolerate and grow well on degraded and unfertile soils which are not suitable for other tree species. Besides this, these trees have a short rotation and good economic value. However, the gall inducing wasp Leptocybe invasa Fisher and La Salle has been reported from many countries throughout the world. The spread of L. invasa is of huge economic concern as more than 20,000 ha of young Eucalyptus trees have already been affected in southern states of India. The host plant resistance being the first line of defense against insect pests demands the screening of different germplasm source against L. invasa. Keeping this in view, fourteen different clones of Eucalyptus spp. were evaluated for their susceptibility to L. invasa from a replicated clonal trial planted at Punjab Agricultural University, Ludhiana. The degree of gall infestation was recorded from three plants of each clone in each replication. Three branches selected from the lower, middle and upper canopy of the trees were selected for recording the total number of galls induced by L. invasa. The statistical analysis was done as per the procedure laid down for completely randomised block design (CRBD), analysis of variance (ANOVA), critical difference (CD) and variance components using Proc GLM (SAS software 9.3, SAS Institute Ltd. U.S.A). All possible treatment means were compared with Duncan’s multiple range test (DMRT) at 1 % probability level. The results showed that the clones C-9, C-45 and C-42 were completely free from the infestation of L. invasa. However, there was minor infestation of L. invasa on C-2135, C-413, C-407, C-35, C-72 and C-37 clones. The clone C-6 was severely infested by L. invasa followed by C-11, C-12, F-316 and C-25 clones. The information generated by this study will be helpful for future breeding and use in afforestation programmes.Keywords: eucalyptus clones, gall wasp, Leptocybe invasa, screening, susceptibility
Procedia PDF Downloads 221110 Effectiveness of the New Perilaryngeal Airway (CobraPLA™) in Comparison with the Laryngeal Mask Airway (LMA™) to Improve Airway Sealing Pressures among Obese and Overweight Patients
Authors: Siamak Yaghoubi, Mohammad Reza Abootorabi, Hamid Kayalha
Abstract:
Objective: The study was aimed to evaluate the applicability of the Cobra Perilaryngeal Airway (Cobra PLATM) for patients under general anesthesia and also compare result with the Laryngeal Mask Airway (LMA). Methods: Seventy three obese and overweight patients were included in the study. The patients were randomly assigned to either LMA or Cobra PLATM. Time required for intubation, successful intubation attempt, airway sealing pressure, the incidences of complications including blood staining, sore throat and dysphagia were assessed and noted. Results: Thirty six and thirty seven patients were allocated randomly to either LMA or Cobra PLATM, respectively. Most of the patients were male and were in Mallampati Class II airway in both groups. The first attempt and overall insertion success for the Cobra PLATM was significantly more frequent compared to the LMA (p<0.05). Tube insertion was more successful (Cobra PLATM, 94%; LMA™, 77%; P = 0.027) with the Cobra PLATM. The insertion times were similar with the Cobra PLATM and LMA™ (Cobra PLATM, 29.94±16.35s; LMA™, 27.00±7.88s). The airway sealing pressure in the Cobra PLATM (24.80±0.90 H2O) was significantly more than LMA™ (19.13 ±0.58 H2O, p<0.001). Sore throat was more frequent in the LMA™ groups that did not reach statistical significance (Fisher’s exact test, P = 0.33). Incidences of blood staining on airway tube were seen for both groups that was higher in the Cobra PLATM group (Fisher’s exact test, P = 0.02). Incidence of dysphagia was not different between the two groups. Conclusion: The CobraPLA™ was found to be safe and low complications, better airway sealing and high rate of the first insertion success for suing in obese and overweight patients. The study recommended using the CobraPLA™ as a rescue device in an emergency situation among obese and overweight patients.Keywords: CobraPLA™, flexible laryngeal mask airway, obese patients, perilaryngeal airway
Procedia PDF Downloads 379109 Computerized Adaptive Testing for Ipsative Tests with Multidimensional Pairwise-Comparison Items
Authors: Wen-Chung Wang, Xue-Lan Qiu
Abstract:
Ipsative tests have been widely used in vocational and career counseling (e.g., the Jackson Vocational Interest Survey). Pairwise-comparison items are a typical item format of ipsative tests. When the two statements in a pairwise-comparison item measure two different constructs, the item is referred to as a multidimensional pairwise-comparison (MPC) item. A typical MPC item would be: Which activity do you prefer? (A) playing with young children, or (B) working with tools and machines. These two statements aim at the constructs of social interest and investigative interest, respectively. Recently, new item response theory (IRT) models for ipsative tests with MPC items have been developed. Among them, the Rasch ipsative model (RIM) deserves special attention because it has good measurement properties, in which the log-odds of preferring statement A to statement B are defined as a competition between two parts: the sum of a person’s latent trait to which statement A is measuring and statement A’s utility, and the sum of a person’s latent trait to which statement B is measuring and statement B’s utility. The RIM has been extended to polytomous responses, such as preferring statement A strongly, preferring statement A, preferring statement B, and preferring statement B strongly. To promote the new initiatives, in this study we developed computerized adaptive testing algorithms for MFC items and evaluated their performance using simulations and two real tests. Both the RIM and its polytomous extension are multidimensional, which calls for multidimensional computerized adaptive testing (MCAT). A particular issue in MCAT for MPC items is the within-person statement exposure (WPSE); that is, a respondent may keep seeing the same statement (e.g., my life is empty) for many times, which is certainly annoying. In this study, we implemented two methods to control the WPSE rate. In the first control method, items would be frozen when their statements had been administered more than a prespecified times. In the second control method, a random component was added to control the contribution of the information at different stages of MCAT. The second control method was found to outperform the first control method in our simulation studies. In addition, we investigated four item selection methods: (a) random selection (as a baseline), (b) maximum Fisher information method without WPSE control, (c) maximum Fisher information method with the first control method, and (d) maximum Fisher information method with the second control method. These four methods were applied to two real tests: one was a work survey with dichotomous MPC items and the other is a career interests survey with polytomous MPC items. There were three dependent variables: the bias and root mean square error across person measures, and measurement efficiency which was defined as the number of items needed to achieve the same degree of test reliability. Both applications indicated that the proposed MCAT algorithms were successful and there was no loss in measurement proficiency when the control methods were implemented, and among the four methods, the last method performed the best.Keywords: computerized adaptive testing, ipsative tests, item response theory, pairwise comparison
Procedia PDF Downloads 246108 A Proposed Mechanism for Skewing Symmetric Distributions
Authors: M. T. Alodat
Abstract:
In this paper, we propose a mechanism for skewing any symmetric distribution. The new distribution is called the deflation-inflation distribution (DID). We discuss some statistical properties of the DID such moments, stochastic representation, log-concavity. Also we fit the distribution to real data and we compare it to normal distribution and Azzlaini's skew normal distribution. Numerical results show that the DID fits the the tree ring data better than the other two distributions.Keywords: normal distribution, moments, Fisher information, symmetric distributions
Procedia PDF Downloads 656107 Similar Correlation of Meat and Sugar to Global Obesity Prevalence
Authors: Wenpeng You, Maciej Henneberg
Abstract:
Background: Sugar consumption has been overwhelmingly advocated as a major dietary offender to obesity prevalence. Meat intake has been hypothesized as an obesity contributor in previous publications, but a moderate amount of meat to be included in our daily diet still has been suggested in many dietary guidelines. Comparable sugar and meat exposure data were obtained to assess the difference in relationships between the two major food groups and obesity prevalence at population level. Methods: Population level estimates of obesity and overweight rates, per capita per day exposure of major food groups (meat, sugar, starch crops, fibers, fats and fruits) and total calories, per capita per year GDP, urbanization and physical inactivity prevalence rate were extracted and matched for statistical analysis. Correlation coefficient (Pearson and partial) comparisons with Fisher’s r-to-z transformation and β range (β ± 2 SE) and overlapping in multiple linear regression (Enter and Stepwise) were used to examine potential differences in the relationships between obesity prevalence and sugar exposure and meat exposure respectively. Results: Pearson and partial correlations (controlled for total calories, physical inactivity prevalence, GDP and urbanization) analyses revealed that sugar and meat exposures correlated to obesity and overweight prevalence significantly. Fisher's r-to-z transformation did not show statistically significant difference in Pearson correlation coefficients (z=-0.53, p=0.5961) or partial correlation coefficients (z=-0.04, p=0.9681) between obesity prevalence and both sugar exposure and meat exposure. Both Enter and Stepwise models in multiple linear regression analysis showed that sugar and meat exposure were most significant predictors of obesity prevalence. Great β range overlapping in the Enter (0.289-0.573) and Stepwise (0.294-0.582) models indicated statistically sugar and meat exposure correlated to obesity without significant difference. Conclusion: Worldwide sugar and meat exposure correlated to obesity prevalence at the same extent. Like sugar, minimal meat exposure should also be suggested in the dietary guidelines.Keywords: meat, sugar, obesity, energy surplus, meat protein, fats, insulin resistance
Procedia PDF Downloads 306106 Measurement of Viscosity and Moisture of Oil in Supradistribution Transformers Using Ultrasonic Waves
Authors: Ehsan Kadkhodaie, Shahin Parvar, Soroush Senemar, Mostafa Shriat, Abdolrasoul Malekpour
Abstract:
The role of oil in supra distribution transformers is so critical and, several standards in determining the quality of oil have been offered. So far, moisture, viscosity and insulation protection of the oil have been measured based on mechanical and chemical methods and systems such as kart fisher, falling ball and TDM 4000 that most of these techniques are destructive and have many problems such as pollution. In this study, due to the properties of oil and also physical behavior of ultrasound wave new method was designed to in the determination of oil indicators including viscosity and moisture. The results show the oil viscosity can be found from the relationship μ = 42.086/√EE and moisture from (PLUS+) = −15.65 (PPM) + 26040 relationship.Keywords: oil, viscosity, moisture, ultrasonic waves
Procedia PDF Downloads 581105 Factors That Determine International Competitiveness of Agricultural Products in Latin America 1990-2020
Authors: Oluwasefunmi Eunice Irewole, Enrique Armas Arévalos
Abstract:
Agriculture has played a crucial role in the economy and the development of many countries. Moreover, the basic needs for human survival are; food, shelter, and cloth are link on agricultural production. Most developed countries see that agriculture provides them with food and raw materials for different goods such as (shelter, medicine, fuel and clothing) which has led to an increase in incomes, livelihoods and standard of living. This study aimed at analysing the relationship between International competitiveness of agricultural products, with the area, fertilizer, labour force, economic growth, foreign direct investment, exchange rate and inflation rate in Latin America during the period of 1991-to 2019. In this study, panel data econometric methods were used, as well as cross-section dependence (Pesaran test), unit root (cross-section Augumented Dickey Fuller and Cross-sectional Im, Pesaran, and Shin tests), cointergration (Pedroni and Fisher-Johansen tests), and heterogeneous causality (Pedroni and Fisher-Johansen tests) (Hurlin and Dumitrescu test). The results reveal that the model has cross-sectional dependency and that they are integrated at one I. (1). The "fully modified OLS and dynamic OLS estimators" were used to examine the existence of a long-term relationship, and it was found that a long-term relationship existed between the selected variables. The study revealed a positive significant relationship between International Competitiveness of the agricultural raw material and area, fertilizer, labour force, economic growth, and foreign direct investment, while international competitiveness has a negative relationship with the advantages of the exchange rate and inflation. The economy policy recommendations deducted from this investigation is that Foreign Direct Investment and the labour force have a positive contribution to the increase of International Competitiveness of agricultural products.Keywords: revealed comparative advantage, agricultural products, area, fertilizer, economic growth, granger causality, panel unit root
Procedia PDF Downloads 100104 On Parameter Estimation of Simultaneous Linear Functional Relationship Model for Circular Variables
Authors: N. A. Mokhtar, A. G. Hussin, Y. Z. Zubairi
Abstract:
This paper proposes a new simultaneous simple linear functional relationship model by assuming equal error variances. We derive the maximum likelihood estimate of the parameters in the simultaneous model and the covariance. We show by simulation study the small bias values of the parameters suggest the suitability of the estimation method. As an illustration, the proposed simultaneous model is applied to real data of the wind direction and wave direction measured by two different instruments.Keywords: simultaneous linear functional relationship model, Fisher information matrix, parameter estimation, circular variables
Procedia PDF Downloads 366103 Investigating Suicide Cases in Attica, Greece: Insight from an Autopsy-Based Study
Authors: Ioannis N. Sergentanis, Stavroula Papadodima, Maria Tsellou, Dimitrios Vlachodimitropoulos, Sotirios Athanaselis, Chara Spiliopoulou
Abstract:
Introduction: The aim of this study is the investigation of characteristics of suicide, as documented in autopsies during a five-year interval in the greater area of Attica, including the city of Athens. This could reveal possible protective or aggravating factors for suicide risk during a period strongly associated with the Greek debt crisis. Materials and Methods: Data was obtained following registration of suicide cases among autopsies performed in the Forensic Medicine and Toxicology Department, School of Medicine, National and Kapodistrian University of Athens, Greece, during the time interval from January 2011 to December 2015. Anonymity and medical secret were respected. A series of demographic and social factors in addition to special characteristics of suicide were entered into a specially established pre-coded database. These factors include social data as well as psychiatric background and certain autopsy characteristics. Data analysis was performed using descriptive statistics and Fisher’s exact test. The software used was STATA/SE 13 (Stata Corp., College Station, TX, USA). Results: A total of 162 cases were studied, 128 men and 34 women. Age ranged from 14 to 97 years old with an average of 53 years, presenting two peaks around 40 and 60 years. A 56% of cases were single/ divorced/ widowed. 25% of cases occurred during the weekend, and 66% of cases occurred in the house. A predominance of hanging as the leading method of suicide (41.4%) followed by jumping from a height (22.8%) and firearms (19.1%) was noted. Statistical analysis showed an association was found between suicide method and gender (P < 0.001, Fisher’s exact test); specifically, no woman used a firearm while only one man used medication overdose (against four women). Discussion: Greece has historically been one of the countries with the lowest suicide rates in Europe. Given a possible change in suicide trends during the financial crisis, further research seems necessary in order to establish risk factors. According to our study, suicide is more frequent in men who are not married, inside their house. Gender seems to be a factor affecting the method of suicide. These results seem in accordance with the international literature. Stronger than expected predominance in male suicide can be associated with failure to live up to social and family expectations for financial reasons.Keywords: autopsy, Greece, risk factors, suicide
Procedia PDF Downloads 220