Search results for: J. A. Omotayo
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19

Search results for: J. A. Omotayo

19 Physical Properties of Nine Nigerian Staple Food Flours Related to Bulk Handling and Processing

Authors: Ogunsina Babatunde, Aregbesola Omotayo, Adebayo Adewale, Odunlami Johnson

Abstract:

The physical properties of nine Nigerian staple food flours related to bulk handling and processing were investigated following standard procedures. The results showed that the moisture content, bulk density, angle of repose, water absorption capacity, swelling index, dispersability, pH and wettability of the flours ranged from 9.95 to 11.98%, 0.44 to 0.66 g/cm3, 31.43 to 39.65o, 198.3 to 291.7 g of water/100 g of sample, 5.53 to 7.63, 60.3 to 73.8%, 4.43 to 6.70, and 11 to 150 s. The particle size analysis of the flour samples indicated significant differences (p<0.05). The least gelation concentration of the flour samples ranged from 6 to 14%. The colour of the flours fell between light and saturated, with the exception of cassava, millet and maize flours which appear dark and dull. The properties of food flours depend largely on the inherent property of the food material and may influence their functional behaviour as food materials.

Keywords: properties, flours, staple food, bulk handling

Procedia PDF Downloads 482
18 Numerical Computation of Sturm-Liouville Problem with Robin Boundary Condition

Authors: Theddeus T. Akano, Omotayo A. Fakinlede

Abstract:

The modelling of physical phenomena, such as the earth’s free oscillations, the vibration of strings, the interaction of atomic particles, or the steady state flow in a bar give rise to Sturm-Liouville (SL) eigenvalue problems. The boundary applications of some systems like the convection-diffusion equation, electromagnetic and heat transfer problems requires the combination of Dirichlet and Neumann boundary conditions. Hence, the incorporation of Robin boundary condition in the analyses of Sturm-Liouville problem. This paper deals with the computation of the eigenvalues and eigenfunction of generalized Sturm-Liouville problems with Robin boundary condition using the finite element method. Numerical solutions of classical Sturm–Liouville problems are presented. The results show an agreement with the exact solution. High results precision is achieved with higher number of elements.

Keywords: Sturm-Liouville problem, Robin boundary condition, finite element method, eigenvalue problems

Procedia PDF Downloads 362
17 Environmental Variables as Determinants of Students Achievement in Biology Secondary Schools in South West Nigeria

Authors: Ayeni Margaret Foluso, K. A. Omotayo

Abstract:

This study investigated the impact of selected environmental variables as determinants of students’ achievements in biology in secondary schools. The selected environmental variables are class size and laboratory adequacy. The purpose was to find out whether these environmental variables can bring about improvement in the learning of biology by Senior Secondary School Students. The study design used was descriptive research of the survey type. Two instruments were used that is, Biology Achievement Test and School Environment Questionnaire .The population of the study consisted of all Biology students in both public and private Senior Secondary Schools class III (SSIII) in all the three selected states in South West Nigeria. A sample of 900 Biology students and 45 Biology Teachers from both public and private Senior Secondary Schools Class III were used. Two research hypotheses were generated for the study. The data collected were subjected to both descriptive statistics of mean and standard deviation; and the inferential statistics of regression Analyses was employed to test the hypotheses formulated. From the results, it was revealed that the selected environmental variables had influence on the students’ achievement in biology.

Keywords: environmental variables, determinants, students’ achievement, school science

Procedia PDF Downloads 490
16 Contact-Impact Analysis of Continuum Compliant Athletic Systems

Authors: Theddeus Tochukwu Akano, Omotayo Abayomi Fakinlede

Abstract:

Proper understanding of the behavior of compliant mechanisms use by athletes is important in order to avoid catastrophic failure. Such compliant mechanisms like the flex-run require the knowledge of their dynamic response and deformation behavior under quickly varying loads. The modeling of finite deformations of the compliant athletic system is described by Neo-Hookean model under contact-impact conditions. The dynamic impact-contact governing equations for both the target and impactor are derived based on the updated Lagrangian approach. A method where contactor and target are considered as a united body is applied in the formulation of the principle of virtual work for the bodies. In this paper, methods of continuum mechanics and nonlinear finite element method were deployed to develop a model that could capture the behavior of the compliant athletic system under quickly varying loads. A hybrid system of symbolic algebra (AceGEN) and a compiled back end (AceFEM) were employed, leveraging both ease of use and computational efficiency. The simulated results reveal the effect of the various contact-impact conditions on the deformation behavior of the impacting compliant mechanism.

Keywords: eigenvalue problems, finite element method, robin boundary condition, sturm-liouville problem

Procedia PDF Downloads 473
15 Adsorption Performance of Hydroxyapatite Powder in the Removal of Dyes in Wastewater

Authors: Aderonke A. Okoya, Oluwaseun A. Somoye, Omotayo S. Amuda, Ifeanyi E. Ofoezie

Abstract:

This study assessed the efficiency of Hydroxyapatite Powder (HAP) in the removal of dyes in wastewater in comparison with Commercial Activated Carbon (CAC). This was with a view to developing cost effective method that could be more environment friendly. The HAP and CAC were used as adsorbent while Indigo dye was used as the adsorbate. The batch adsorption experiment was carried out by varying initial concentrations of the indigo dye, contact time and adsorbent dosage. Adsorption efficiency was classified by adsorption Isotherms using Langmuir, Freundlich and D-R isotherm models. Physicochemical parameters of a textile industry wastewater were determined before and after treatment with the adsorbents. The results from the batch experiments showed that at initial concentration of 125 mg/L of adsorbate in simulated wastewater, 0.9276 ± 0.004618 mg/g and 3.121 ± 0.006928 mg/g of indigo adsorbed per unit time (qt) of HAP and CAC respectively. The ratio of HAP to CAC required for the removal of indigo dye in simulated wastewater was 2:1. The isotherm model of the simulated wastewater fitted well to Freundlich model, the adsorption intensity (1/n) presented 1.399 and 0.564 for HAP and CAC, respectively. This revealed that the HAP had weaker bond than the electrostatic interactions which were present in CAC. The values of some physicochemical parameters (acidity, COD, Cr, Cd) of textile wastewater when treated with HAP decreased. The study concluded that HAP, an environment-friendly adsorbent, could be effectively used to remove dye from textile industrial wastewater with added advantage of being regenerated.

Keywords: adsorption isotherm, commercial activated carbon, hydroxyapatite powder, indigo dye, textile wastewater

Procedia PDF Downloads 242
14 Assessment of the Impact of Teaching Methodology on Skill Acquisition in Music Education among Students in Emmanuel Alayande University of Education, Oyo

Authors: Omotayo Abidemi Funmilayo

Abstract:

Skill acquisition in professional fields has been prioritized and considered important to demonstrate the mastery of subject matter and present oneself as an expert in such profession. The ability to acquire skills in different fields, however calls for different method from the instructor or teacher during training. Music is not an exception of such profession, where there exist different area of skills acquisition require practical performance. This paper, however, focused on the impact and effects of different methods on acquisition of practical knowledge in the handling of some musical instruments among the students of Emmanuel Alayande College of Education, Oyo. In this study, 30 students were selected and divided into two groups based on the selected area of learning, further division were made on each of the two major groups to consist of five students each, to be trained using different methodology for two months and three hours per week. Comparison of skill acquired were made using standard research instrument at reliable level of significance, test were carried out on the thirty students considered for the study based on area of skill acquisition. The students that were trained on the keyboard and saxophone using play way method, followed by the students that were trained using demonstration method while the set of students that received teaching instruction through lecture method performed below average. In conclusion, the study reveals that ability to acquire professional skill on handling musical instruments are better enhanced using play way method.

Keywords: music education, skill acquisition, keyboard, saxophone

Procedia PDF Downloads 73
13 The Translation of Code-Switching in African Literature: Comparing the Two German Translations of Ngugi Wa Thiongo’s "Petals of Blood"

Authors: Omotayo Olalere

Abstract:

The relevance of code-switching for intercultural communication through literary translation cannot be overemphasized. The translation of code-switching and its implications for translations studies have been studied in the context of African literature. In these cases, code-switching was examined in the more general terms of its usage in source text and not particularly in Ngugi’s novels and its translations. In addition, the functions of translation and code-switching in the lyrics of some popular African songs have been studied, but this study is related more with oral performance than with written literature. As such, little has been done on the German translation of code-switching in African works. This study intends to fill this lacuna by examining the concept of code-switching in the German translations in Ngugi’s Petals of Blood. The aim is to highlight the significance of code-switching as a phenomenon in this African (Ngugi’s) novel written in English and to also focus on its representation in the two German translations. The target texts to be used are Verbrannte Blueten and Land der flammenden Blueten. “Abrogration“ as a concept will play an important role in the analysis of the data. Findings will show that the ideology of a translator plays a huge role in representing the concept of “abrogration” in the translation of code-switching in the selected source text. The study will contribute to knowledge in translation studies by bringing to limelight the need to foreground aspects of language contact in translation theory and practice, particularly in the African context. Relevant translation theories adopted for the study include Bandia’s (2008) postcolonial theory of translation and Snell-Hornby”s (1988) cultural translation theory.

Keywords: code switching, german translation, ngugi wa thiong’o, petals of blood

Procedia PDF Downloads 95
12 A Retrospective Cross Sectional Study of Blood Culture Results in a Tertiary Hospital, Ekiti, Nigeria

Authors: S. I. Nwadioha, M. S. Odimayo, J. A. Omotayo, A. Olu Taiwo, O. E. Olabiyi

Abstract:

The current study was conducted to determine the epidemiology and antibiotic sensitivity pattern of bacteria isolated from blood of septicemic patients for improved antibiotic therapy. A three-year descriptive study has been carried out at Microbiology Laboratory, Ekiti State University Teaching Hospital, Ado Ekiti, from April 2012 to April 2015. Information compiled from patients’ records includes age, sex, isolated organisms and antibiotic susceptibility patterns. Three hundred and thirteen blood cultures were collected from neonatology and pediatrics wards, Out Patients’ Department (OPD) and from other adult patients. Forty-one cultures yielded mono microbial growth (no polymicrobial growth), giving an incidence of 13.1% positive blood culture (N=41/313). There were 58.4% Gram-negative bacilli and 41.6% Gram-positive cocci in the microbial growth. Bacteria isolated were Staphylococcus aureus 34%(14/41), Klebsiella species22% (9/41), Enterococci 17%(7/41), Proteus species12%(5/41), Escherichia coli 7%(3/41) and Streptococcal pneumoniae 7%(3/41). There was a (35%) higher occurrence of septicemia in neonates than in any other age groups in the hospital. Bacterial sensitivity to 13 antibiotic agents was determined by antibiotics disc diffusion using modified Kirby Bauer’s method. Gram-positive organisms showed a higher antibiotic sensitivity ranging from 14- 100% than the Gram-negative bacteria (11-80%). Staphylococcus aureus and Klebsiella species are the most prevalent organisms. The third generation Cephalosporins (Ceftriaxone) and Floroquinolone(Levofloxacin, Ofloxacin) have proved reliable for management of these blood infections.

Keywords: blood cultures, septicemia, antibiogram, Nigeria

Procedia PDF Downloads 235
11 Effects of Tillage and Poultry Manure on Soil Properties and Yam Performance on Alfisol in Southwest Nigeria

Authors: Adeleye Ebenezer Omotayo

Abstract:

The main effects of tillage, poultry manure and interaction effects of tillage-poultry manure combinations on soil characteristics and yam yield were investigated in a factorial experiment involving four tillage techniques namely (ploughing (p), ploughing plus harrowing (PH), manual ridging (MR), manual heaping (MH) and poultry manure at two levels 0 t ha-1 and 10 t ha-1 arranged in split-plot design. Data obtained were subjected to analysis of variance using Statistical Analysis System (SAS) Institute Package. Soil moisture content, bulk density and total porosity were significantly (p>0.05) influenced by soil tillage techniques. Manually heaped and ridged plots had the lowest soil bulk density, moisture content and highest total porosity. The soil total N, exchangeable Mg, k, base saturation and CEC were better enhanced in manually tilled plots. Soil nutrients status declined at the end of the second cropping for all the tillage techniques in the order PH>P>MH>MR. Yam tuber yields were better enhanced in manually tilled plots than mechanically tilled plots. Poultry manure application reduced soil bulk density, temperature, increased total porosity and soil moisture content. It also improved soil organic matter, total N, available P, exchangeable Mg, Ca, K and lowered exchange acidity. It also increased yam tuber yield significantly. Tillage techniques plots amended with poultry manure enhanced yam tuber yield relative to tillage techniques plots without poultry manure application. It is concluded that yam production on alfisol in Southwest Nigeria requires loose soil structure for tuber development and that the use of poultry manure in combination with tillage is recommended as it will ensure stability of soil structure, improve soil organic matter status, nutrient availability and high yam tuber yield. Also, it will help to reduce the possible deleterious effects of tillage on soil properties and yam performance.

Keywords: ploughing, poultry manure, yam, yield

Procedia PDF Downloads 272
10 Dietary Quality among U.S. Adults with Diabetes, Osteoarthritis, and Rheumatoid Arthritis: Age-Specific Associations from NHANES 2011-2022

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Limited research has examined the variations in dietary quality among U.S. adults diagnosed with chronic conditions like diabetes mellitus (DM), osteoarthritis (OA), and rheumatoid arthritis (RA), particularly across different age groups. Understanding how diet differs in relation to these conditions is crucial to developing targeted nutritional interventions. This cross-sectional study analyzed data from adult participants in the National Health and Nutrition Examination Survey (NHANES) between 2011 and 2021. Dietary quality was measured using the Healthy Eating Index (HEI)-2015 scores, encompassing both total and component scores for different dietary factors. Self-reported disease statuses for DM, OA, and RA were obtained, with age groups stratified into younger adults (20–59 years, n = 10,050) and older adults (60 years and older, n = 5,200). Logistic regression models, adjusted for demographic factors like sex, race/ethnicity, education, income, weight status, physical activity, and smoking, were used to examine the relationship between disease status and dietary quality, accounting for NHANES' complex survey design. Among younger adults, 8% had DM, 10% had OA, and 4% had RA. Among older adults, 22% had DM, 35% had OA, and 7% had RA. The results showed a consistent association between excess added sugar intake and DM in both age groups. In younger adults, excess sodium intake was also linked to DM, while low seafood and plant protein intake was associated with a higher prevalence of RA. Among older adults, a poor overall dietary pattern was strongly associated with RA, while OA showed varying associations depending on the intake of specific nutrients like fiber and saturated fats. The dietary quality of U.S. adults with DM, OA, and RA varies significantly by age group and disease type. Younger adults with these conditions demonstrated more specific dietary inadequacies, such as high sodium and low protein intake, while older adults exhibited a broader pattern of poor dietary quality, particularly in relation to RA. These findings suggest that personalized nutritional strategies are needed to address the unique dietary challenges faced by individuals with chronic conditions in different age groups.

Keywords: dietary, diabetes, osteoarthritis, rheumatoid arthritis, logistic regression

Procedia PDF Downloads 14
9 Adsorption and Photocatalytic Degradation of Textile Wastewater Using Green Synthesized Sequesters

Authors: Omotayo Sarafadeen Amuda, Kazeem Kolapo Salam, Oyediran Olarike Favour

Abstract:

This study carried out the physicochemical analysis of the Textile WasteWater (TWW) before and after the adsorption and photocatalytic processes. The adsorbents and catalysts that were used for this study were prepared from C. albidum seed shell activated with steam and then loaded with Titanium Dioxide Nanoparticles (TiO2NPs) and Copper Nanoparticles (Cu NPs), which were synthesized from green tea leaf extract and Citrus limon fruits extract, respectively. The photocatalytic activity was carried out under sunlight irradiation, and the effect of various parameters, such as catalyst dose, pH, contact time, and initial dye concentration, on the removal efficiency, were studied. The reusability of the catalyst was also observed to determine its stability and long-term efficacy. Ultra-violet visible spectroscopy (UV-Vis spectroscopy) was used to determine the dye concentration after each experiment. The adsorbents, nanoparticles, and photocatalysts were appropriately characterized for morphological, functional group, structural, and surface area using Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) analysis, and Brunauer–Emmett–Teller (BET) analysis respectively. Batch adsorption studies were carried out on the wastewater, using the composite adsorbents, to determine the effects of pH, adsorbent dose, initial dye concentration, and contact time. The batch adsorption studies were conducted based on the runs generated from the Definitive Screen Design (DSD) of the Response Surface Methodology (RSM). The obtained data were subjected to the pseudo-first-order, pseudo-second-order, and intra-particle diffusion kinetic models, the Langmuir and Freundlich isotherm models, and thermodynamic parameters. The findings of this study contribute to the existing knowledge by providing more insights into the identification of efficient, low-cost, and environmentally-friendly approach to textile wastewater treatment. This approach enhances the reduction of potential toxicity from the discharged textile wastewater into the environment and, thus, conforms to Sustainable Development Goal 6 (SDG 6), which ensures the sustainability of the water resources, wastewater, and ecosystems.

Keywords: adsorption, photocatalytic, textile wastewater, green synthesized sequesters, degradation

Procedia PDF Downloads 10
8 Adaptation of Extra Early Maize 'Zea Mays L.' Varieties for Climate Change Mitigation in South Western Nigeria

Authors: Akinwumi Omotayo, Badu-B Apraku, Joseph Olobasola, Petra Abdul Saghir, Yinka Sobowale

Abstract:

In southwestern Nigeria, climate change has led to loss of at least two months of rainfall. Consequently, only one cycle of maize can now be grown because of the shorter duration of rainy season as against two cycles in the past. The Early and Extra-early maturing varieties of maize were originally developed for the semi-arid and arid zones of West and Central Africa where there are seasonal challenges of water threatening optimum performance of the traditional maize grown, which are commonly late in maturity (115 to 120 days). The early varieties of maize mature in 90 to 95 days; while the Extra-Early maize varieties reach physiological maturity in less than 90 days. It was broadly hypothesized that the extra early varieties of maize could mitigate the effects of climate change in southwestern Nigeria with higher levels of rainfall by reinstating the original two cycles of rain-fed maize crop. Trials were therefore carried out in southwestern Nigeria on the possibility of adapting the extra early maize to mitigate the effects of climate change. The trial was the Mother/Baby design. The mother trial involves the evaluation of extra-early varieties following ideal recommendations and closely supervised centrally at the University research farm and the Agricultural Development Programmes (ADPs). This requires farmers to observe and evaluate the technology and the management regime meant to precede the second stage of evaluation at several satellite farmers field managed by selected farmers. The Baby Trial is expected to provide a realistic assessment of the technology by farmers in their own environment. A stratified selection of thirty farmers for the Baby Trial ensured appropriate representation across the different categories of the farming population by age and gender. Data from the trials indicate that extra early maize can be grown in two cycles rain fed in south west Nigeria and a third and fourth cycle could be obtained with irrigation. However the long duration varieties outyielded the extra early maize in both the mother and baby trials. When harvested green, the extra early maize served as source of food between March and May when there was scarcity of food. This represents a major advantage. The study recommends that further work needs to be done to improve the yield of extra early maize to encourage farmers to adopt.

Keywords: adaptation, climate change, extra early, maize varieties, mitigation

Procedia PDF Downloads 201
7 Application of Deep Learning and Ensemble Methods for Biomarker Discovery in Diabetic Nephropathy through Fibrosis and Propionate Metabolism Pathways

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Diabetic nephropathy (DN) is a major complication of diabetes, with fibrosis and propionate metabolism playing critical roles in its progression. Identifying biomarkers linked to these pathways may provide novel insights into DN diagnosis and treatment. This study aims to identify biomarkers associated with fibrosis and propionate metabolism in DN. Analyze the biological pathways and regulatory mechanisms of these biomarkers. Develop a machine learning model to predict DN-related biomarkers and validate their functional roles. Publicly available transcriptome datasets related to DN (GSE96804 and GSE104948) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds), and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were identified. The analysis began with the extraction of DN-differentially expressed genes (DN-DEGs) and propionate metabolism-related DEGs (PM-DEGs), followed by the intersection of these with fibrosis-related genes to identify key intersected genes. Instead of relying on traditional models, we employed a combination of deep neural networks (DNNs) and ensemble methods such as Gradient Boosting Machines (GBM) and XGBoost to enhance feature selection and biomarker discovery. Recursive feature elimination (RFE) was coupled with these advanced algorithms to refine the selection of the most critical biomarkers. Functional validation was conducted using convolutional neural networks (CNN) for gene set enrichment and immunoinfiltration analysis, revealing seven significant biomarkers—SLC37A4, ACOX2, GPD1, ACE2, SLC9A3, AGT, and PLG. These biomarkers are involved in critical biological processes such as fatty acid metabolism and glomerular development, providing a mechanistic link to DN progression. Furthermore, a TF–miRNA–mRNA regulatory network was constructed using natural language processing models to identify 8 transcription factors and 60 miRNAs that regulate these biomarkers, while a drug–gene interaction network revealed potential therapeutic targets such as UROKINASE–PLG and ATENOLOL–AGT. This integrative approach, leveraging deep learning and ensemble models, not only enhances the accuracy of biomarker discovery but also offers new perspectives on DN diagnosis and treatment, specifically targeting fibrosis and propionate metabolism pathways.

Keywords: diabetic nephropathy, deep neural networks, gradient boosting machines (GBM), XGBoost

Procedia PDF Downloads 12
6 Combined Impact of Physical Activity and Dietary Quality on Depression Symptoms in U.S. Adults: An Analysis of NHANES 2007-2020 Data

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Depression has emerged as a growing public health issue, with the limited effectiveness of current treatment methods driving the search for modifiable lifestyle factors. Physical inactivity and poor dietary habits are consistently identified as factors associated with increased depression symptoms. While the independent effects of physical activity (PA) and dietary quality (DQ) on mental health are well established, the combined influence of both factors on depression has not been thoroughly examined in a representative sample of U.S. adults. This study aims to explore the individual and joint associations of PA and DQ with depression symptoms, highlighting their combined impact on adults across the U.S. Using data from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2020, we evaluated the relationships between PA (measured through metabolic equivalent (MET) minutes per week) and DQ (assessed using the Healthy Eating Index [HEI]-2015) and depression symptoms (defined by a score of ≥10 on the 9-item Patient Health Questionnaire [PHQ-9]). Participants were classified into four lifestyle categories: (1) healthy diet and active, (2) unhealthy diet but active, (3) healthy diet but inactive, and (4) unhealthy diet and inactive. Logistic regression models adjusted for relevant covariates were used to examine associations, with age-adjusted prevalence rates for depression calculated according to NHANES guidelines. Data from 21,530 participants, representing approximately 954 million U.S. adults aged 20-80 years, were analyzed. The overall age-adjusted prevalence of depression symptoms was 7.15%. A total of 83.1% of participants met PA recommendations, and 27.3% scored above the 60th percentile in the HEI-2015 index. Higher PA levels were inversely related to depression symptoms (adjusted odds ratio [AOR]: 0.805; 95% CI: 0.724-0.920), as was better dietary quality (AOR: 0.788; 95% CI: 0.690-0.910). A combination of healthy diet and adequate PA was associated with the lowest risk of depression symptoms (AOR: 0.635; 95% CI: 0.520-0.775) compared to inactive participants with unhealthy diets. Notably, participants with either a healthy diet or adequate PA but not both did not experience the same reduction in depression risk. This study highlights that the combination of a healthy diet and regular physical activity offers a synergistic protective effect against depression symptoms in U.S. adults. Public health initiatives targeting both dietary improvements and increased physical activity may significantly reduce the burden of depression across populations. Further research should focus on understanding the mechanisms underlying these interactions.

Keywords: dietary quality, physical activity, depression, healthy eating

Procedia PDF Downloads 13
5 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.

Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine

Procedia PDF Downloads 12
4 The Impact of Physical Exercise on Gestational Diabetes and Maternal Weight Management: A Meta-Analysis

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Physiological changes during pregnancy, such as alterations in the circulatory, respiratory, and musculoskeletal systems, can negatively impact daily physical activity. This reduced activity is often associated with an increased risk of adverse maternal health outcomes, particularly gestational diabetes mellitus (GDM) and excessive weight gain. This meta-analysis aims to evaluate the effectiveness of structured physical exercise interventions during pregnancy in reducing the risk of GDM and managing maternal weight gain. A comprehensive search was conducted across six major databases: PubMed, Cochrane Library, EMBASE, Web of Science, ScienceDirect, and ClinicalTrials.gov, covering the period from database inception until 2023. Randomized controlled trials (RCTs) that explored the effects of physical exercise programs on pregnant women with low physical activity levels were included. The search was performed using EndNote and results were managed using RevMan (Review Manager) for meta-analysis. RCTs involving healthy pregnant women with low levels of physical activity or sedentary lifestyles were selected. These RCTs must have incorporated structured exercise programs during pregnancy and reported on outcomes related to GDM and maternal weight gain. From an initial pool of 5,112 articles, 65 RCTs (involving 11,400 pregnant women) met the inclusion criteria. Data extraction was performed, followed by a quality assessment of the selected studies using the Cochrane Risk of Bias tool. The meta-analysis was conducted using RevMan software, where pooled relative risks (RR) and weighted mean differences (WMD) were calculated using a random-effects model to address heterogeneity across studies. Sensitivity analyses, subgroup analyses (based on factors such as exercise intensity, duration, and pregnancy stage), and publication bias assessments were also conducted. Structured physical exercise during pregnancy led to a significant reduction in the risk of developing GDM (RR = 0.68; P < 0.001), particularly when the exercise program was performed throughout the pregnancy (RR = 0.62; P = 0.035). In addition, maternal weight gain was significantly reduced (WMD = −1.18 kg; 95% CI −1.54 to −0.85; P < 0.001). There were no significant adverse effects reported for either the mother or the neonate, confirming that exercise interventions are safe for both. This meta-analysis highlights the positive impact of regular moderate physical activity during pregnancy in reducing the risk of GDM and managing maternal weight gain. These findings suggest that physical exercise should be encouraged as a routine part of prenatal care. However, more research is required to refine exercise recommendations and determine the most effective interventions based on individual risk factors and pregnancy stages.

Keywords: gestational diabetes, maternal weight management, meta-analysis, randomized controlled trials

Procedia PDF Downloads 18
3 Identifying Biomarker Response Patterns to Vitamin D Supplementation in Type 2 Diabetes Using K-means Clustering: A Meta-Analytic Approach to Glycemic and Lipid Profile Modulation

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Background and Aims: This meta-analysis aimed to evaluate the effect of vitamin D supplementation on key metabolic and cardiovascular parameters, such as glycated hemoglobin (HbA1C), fasting blood sugar (FBS), low-density lipoprotein (LDL), high-density lipoprotein (HDL), systolic blood pressure (SBP), and total vitamin D levels in patients with Type 2 diabetes mellitus (T2DM). Methods: A systematic search was performed across databases, including PubMed, Scopus, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov, from January 1990 to January 2024. A total of 4,177 relevant studies were initially identified. Using an unsupervised K-means clustering algorithm, publications were grouped based on common text features. Maximum entropy classification was then applied to filter studies that matched a pre-identified training set of 139 potentially relevant articles. These selected studies were manually screened for relevance. A parallel manual selection of all initially searched studies was conducted for validation. The final inclusion of studies was based on full-text evaluation, quality assessment, and meta-regression models using random effects. Sensitivity analysis and publication bias assessments were also performed to ensure robustness. Results: The unsupervised K-means clustering algorithm grouped the patients based on their responses to vitamin D supplementation, using key biomarkers such as HbA1C, FBS, LDL, HDL, SBP, and total vitamin D levels. Two primary clusters emerged: one representing patients who experienced significant improvements in these markers and another showing minimal or no change. Patients in the cluster associated with significant improvement exhibited lower HbA1C, FBS, and LDL levels after vitamin D supplementation, while HDL and total vitamin D levels increased. The analysis showed that vitamin D supplementation was particularly effective in reducing HbA1C, FBS, and LDL within this cluster. Furthermore, BMI, weight gain, and disease duration were identified as factors that influenced cluster assignment, with patients having lower BMI and shorter disease duration being more likely to belong to the improvement cluster. Conclusion: The findings of this machine learning-assisted meta-analysis confirm that vitamin D supplementation can significantly improve glycemic control and reduce the risk of cardiovascular complications in T2DM patients. The use of automated screening techniques streamlined the process, ensuring the comprehensive evaluation of a large body of evidence while maintaining the validity of traditional manual review processes.

Keywords: HbA1C, T2DM, SBP, FBS

Procedia PDF Downloads 17
2 Advanced Statistical Approaches for Identifying Predictors of Poor Blood Pressure Control: A Comprehensive Analysis Using Multivariable Logistic Regression and Generalized Estimating Equations (GEE)

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Effective management of hypertension remains a critical public health challenge, particularly among racially and ethnically diverse populations. This study employs sophisticated statistical models to rigorously investigate the predictors of poor blood pressure (BP) control, with a specific focus on demographic, socioeconomic, and clinical risk factors. Leveraging a large sample of 19,253 adults drawn from the National Health and Nutrition Examination Survey (NHANES) across three distinct time periods (2013-2014, 2015-2016, and 2017-2020), we applied multivariable logistic regression and generalized estimating equations (GEE) to account for the clustered structure of the data and potential within-subject correlations. Our multivariable models identified significant associations between poor BP control and several key predictors, including race/ethnicity, age, gender, body mass index (BMI), prevalent diabetes, and chronic kidney disease (CKD). Non-Hispanic Black individuals consistently exhibited higher odds of poor BP control across all periods (OR = 1.99; 95% CI: 1.69, 2.36 for the overall sample; OR = 2.33; 95% CI: 1.79, 3.02 for 2017-2020). Younger age groups demonstrated substantially lower odds of poor BP control compared to individuals aged 75 and older (OR = 0.15; 95% CI: 0.11, 0.20 for ages 18-44). Men also had a higher likelihood of poor BP control relative to women (OR = 1.55; 95% CI: 1.31, 1.82), while BMI ≥35 kg/m² (OR = 1.76; 95% CI: 1.40, 2.20) and the presence of diabetes (OR = 2.20; 95% CI: 1.80, 2.68) were associated with increased odds of poor BP management. Further analysis using GEE models, accounting for temporal correlations and repeated measures, confirmed the robustness of these findings. Notably, individuals with chronic kidney disease displayed markedly elevated odds of poor BP control (OR = 3.72; 95% CI: 3.09, 4.48), with significant differences across the survey periods. Additionally, higher education levels and better self-reported diet quality were associated with improved BP control. College graduates exhibited a reduced likelihood of poor BP control (OR = 0.64; 95% CI: 0.46, 0.89), particularly in the 2015-2016 period (OR = 0.48; 95% CI: 0.28, 0.84). Similarly, excellent dietary habits were associated with significantly lower odds of poor BP control (OR = 0.64; 95% CI: 0.44, 0.94), underscoring the importance of lifestyle factors in hypertension management. In conclusion, our findings provide compelling evidence of the complex interplay between demographic, clinical, and socioeconomic factors in predicting poor BP control. The application of advanced statistical techniques such as GEE enhances the reliability of these results by addressing the correlated nature of repeated observations. This study highlights the need for targeted interventions that consider racial/ethnic disparities, clinical comorbidities, and lifestyle modifications in improving BP control outcomes.

Keywords: hypertension, blood pressure, NHANES, generalized estimating equations

Procedia PDF Downloads 16
1 Trends in Blood Pressure Control and Associated Risk Factors Among US Adults with Hypertension from 2013 to 2020: Insights from NHANES Data

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Controlling blood pressure is critical to reducing the risk of cardiovascular disease. However, BP control rates (systolic BP < 140 mm Hg and diastolic BP < 90 mm Hg) have declined since 2013, warranting further analysis to identify contributing factors and potential interventions. This study investigates the factors associated with the decline in blood pressure (BP) control among U.S. adults with hypertension over the past decade. Data from the U.S. National Health and Nutrition Examination Survey (NHANES) were used to assess BP control trends between 2013 and 2020. The analysis included 18,927 U.S. adults with hypertension aged 18 years and older who completed study interviews and examinations. The dataset, obtained from the cardioStatsUSA and RNHANES R packages, was merged based on survey IDs. Key variables analyzed included demographic factors, lifestyle behaviors, hypertension status, BMI, comorbidities, antihypertensive medication use, and cardiovascular disease history. The prevalence of BP control declined from 78.0% in 2013-2014 to 71.6% in 2017-2020. Non-Hispanic Whites had the highest BP control prevalence (33.6% in 2013-2014), but this declined to 26.5% by 2017-2020. In contrast, BP control among Non-Hispanic Blacks increased slightly. Younger adults (aged 18-44) exhibited better BP control, but control rates declined over time. Obesity prevalence increased, contributing to poorer BP control. Antihypertensive medication use rose from 26.1% to 29.2% across the study period. Lifestyle behaviors, such as smoking and diet, also affected BP control, with nonsmokers and those with better diets showing higher control rates. Key findings indicate significant disparities in blood pressure control across racial/ethnic groups. Non-Hispanic Black participants had consistently higher odds (OR ranging from 1.84 to 2.33) of poor blood pressure control compared to Non-Hispanic Whites, while odds among Non-Hispanic Asians varied by cycle. Younger age groups (18-44 and 45-64) showed significantly lower odds of poor blood pressure control compared to those aged 75+, highlighting better control in younger populations. Men had consistently higher odds of poor control compared to women, though this disparity slightly decreased in 2017-2020. Medical comorbidities such as diabetes and chronic kidney disease were associated with significantly higher odds of poor blood pressure control across all cycles. Participants with chronic kidney disease had particularly elevated odds (OR=5.54 in 2015-2016), underscoring the challenge of managing hypertension in these populations. Antihypertensive medication use was also linked with higher odds of poor control, suggesting potential difficulties in achieving target blood pressure despite treatment. Lifestyle factors such as alcohol consumption and physical activity showed no consistent association with blood pressure control. However, dietary quality appeared protective, with those reporting an excellent diet showing lower odds (OR=0.64) of poor control in the overall sample. Increased BMI was associated with higher odds of poor blood pressure control, particularly in the 30-35 and 35+ BMI categories during 2015-2016. The study highlights a significant decline in BP control among U.S. adults with hypertension, particularly among certain demographic groups and those with increasing obesity rates. Lifestyle behaviors, antihypertensive medication use, and socioeconomic factors all played a role in these trends.

Keywords: diabetes, blood pressure, obesity, logistic regression, odd ratio

Procedia PDF Downloads 16