Search results for: Google Translate
715 Google Translate: AI Application
Authors: Shaima Almalhan, Lubna Shukri, Miriam Talal, Safaa Teskieh
Abstract:
Since artificial intelligence is a rapidly evolving topic that has had a significant impact on technical growth and innovation, this paper examines people's awareness, use, and engagement with the Google Translate application. To see how familiar aware users are with the app and its features, quantitative and qualitative research was conducted. The findings revealed that consumers have a high level of confidence in the application and how far people they benefit from this sort of innovation and how convenient it makes communication.Keywords: artificial intelligence, google translate, speech recognition, language translation, camera translation, speech to text, text to speech
Procedia PDF Downloads 154714 Optimizing the Use of Google Translate in Translation Teaching: A Case Study at Prince Sultan University
Authors: Saadia Elamin
Abstract:
The quasi-universal use of smart phones with internet connection available all the time makes it a reflex action for translation undergraduates, once they encounter the least translation problem, to turn to the freely available web resource: Google Translate. Like for other translator resources and aids, the use of Google Translate needs to be moderated in such a way that it contributes to developing translation competence. Here, instead of interfering with students’ learning by providing ready-made solutions which might not always fit into the contexts of use, it can help to consolidate the skills of analysis and transfer which students have already acquired. One way to do so is by training students to adhere to the basic principles of translation work. The most important of these is that analyzing the source text for comprehension comes first and foremost before jumping into the search for target language equivalents. Another basic principle is that certain translator aids and tools can be used for comprehension, while others are to be confined to the phase of re-expressing the meaning into the target language. The present paper reports on the experience of making a measured and reasonable use of Google Translate in translation teaching at Prince Sultan University (PSU), Riyadh. First, it traces the development that has taken place in the field of translation in this age of information technology, be it in translation teaching and translator training, or in the real-world practice of the profession. Second, it describes how, with the aim of reflecting this development onto the way translation is taught, senior students, after being trained on post-editing machine translation output, are authorized to use Google Translate in classwork and assignments. Third, the paper elaborates on the findings of this case study which has demonstrated that Google Translate, if used at the appropriate levels of training, can help to enhance students’ ability to perform different translation tasks. This help extends from the search for terms and expressions, to the tasks of drafting the target text, revising its content and finally editing it. In addition, using Google Translate in this way fosters a reflexive and critical attitude towards web resources in general, maximizing thus the benefit gained from them in preparing students to meet the requirements of the modern translation job market.Keywords: Google Translate, post-editing machine translation output, principles of translation work, translation competence, translation teaching, translator aids and tools
Procedia PDF Downloads 473713 Efficiency of Google Translate and Bing Translator in Translating Persian-to-English Texts
Authors: Samad Sajjadi
Abstract:
Machine translation is a new subject increasingly being used by academic writers, especially students and researchers whose native language is not English. There are numerous studies conducted on machine translation, but few investigations have assessed the accuracy of machine translation from Persian to English at lexical, semantic, and syntactic levels. Using Groves and Mundt’s (2015) Model of error taxonomy, the current study evaluated Persian-to-English translations produced by two famous online translators, Google Translate and Bing Translator. A total of 240 texts were randomly selected from different academic fields (law, literature, medicine, and mass media), and 60 texts were considered for each domain. All texts were rendered by the two translation systems and then by four human translators. All statistical analyses were applied using SPSS. The results indicated that Google translations were more accurate than the translations produced by the Bing Translator, especially in the domains of medicine (lexis: 186 vs. 225; semantic: 44 vs. 48; syntactic: 148 vs. 264 errors) and mass media (lexis: 118 vs. 149; semantic: 25 vs. 32; syntactic: 110 vs. 220 errors), respectively. Nonetheless, both machines are reasonably accurate in Persian-to-English translation of lexicons and syntactic structures, particularly from mass media and medical texts.Keywords: machine translations, accuracy, human translation, efficiency
Procedia PDF Downloads 78712 Literary Translation Human vs Machine: An Essay about Online Translation
Authors: F. L. Bernardo, R. A. S. Zacarias
Abstract:
The ways to translate are manifold since textual genres undergoing translations are diverse. In this essay, our goal is to give special attention to the literary genre and to the online translation tool Google Translate (GT), widely used either by nonprofessionals or by scholars, in order to show evidence of the indispensability of human wit in a good translation. Our study has its basis on a literary review of prominent authors, with emphasis on translation categories. Also highlighting the issue of polysemous literary translation, we aim to shed light on the translator’s craft and the fallible nature of online translation. To better illustrate these principles, the methodology consisted on performing a comparative analysis involving the original text Moll Flanders by Daniel Defoe in English to its online translation given by GT and to a translation into Brazilian Portuguese performed by a human. We proceeded to identifying and analyzing the degrees of textual equivalence according to the following categories: volume, levels and order. The results have attested the unsuitability in a translation done by a computer connected to the World Wide Web.Keywords: Google Translator, human translation, literary translation, Moll Flanders
Procedia PDF Downloads 651711 Blended Learning through Google Classroom
Authors: Lee Bih Ni
Abstract:
This paper discusses that good learning involves all academic groups in the school. Blended learning is learning outside the classroom. Google Classroom is a free service learning app for schools, non-profit organizations and anyone with a personal Google account. Facilities accessed through computers and mobile phones are very useful for school teachers and students. Blended learning classrooms using both traditional and technology-based methods for teaching have become the norm for many educators. Using Google Classroom gives students access to online learning. Even if the teacher is not in the classroom, the teacher can provide learning. This is the supervision of the form of the teacher when the student is outside the school.Keywords: blended learning, learning app, google classroom, schools
Procedia PDF Downloads 146710 Corpus-Based Neural Machine Translation: Empirical Study Multilingual Corpus for Machine Translation of Opaque Idioms - Cloud AutoML Platform
Authors: Khadija Refouh
Abstract:
Culture bound-expressions have been a bottleneck for Natural Language Processing (NLP) and comprehension, especially in the case of machine translation (MT). In the last decade, the field of machine translation has greatly advanced. Neural machine translation NMT has recently achieved considerable development in the quality of translation that outperformed previous traditional translation systems in many language pairs. Neural machine translation NMT is an Artificial Intelligence AI and deep neural networks applied to language processing. Despite this development, there remain some serious challenges that face neural machine translation NMT when translating culture bounded-expressions, especially for low resources language pairs such as Arabic-English and Arabic-French, which is not the case with well-established language pairs such as English-French. Machine translation of opaque idioms from English into French are likely to be more accurate than translating them from English into Arabic. For example, Google Translate Application translated the sentence “What a bad weather! It runs cats and dogs.” to “يا له من طقس سيء! تمطر القطط والكلاب” into the target language Arabic which is an inaccurate literal translation. The translation of the same sentence into the target language French was “Quel mauvais temps! Il pleut des cordes.” where Google Translate Application used the accurate French corresponding idioms. This paper aims to perform NMT experiments towards better translation of opaque idioms using high quality clean multilingual corpus. This Corpus will be collected analytically from human generated idiom translation. AutoML translation, a Google Neural Machine Translation Platform, is used as a custom translation model to improve the translation of opaque idioms. The automatic evaluation of the custom model will be compared to the Google NMT using Bilingual Evaluation Understudy Score BLEU. BLEU is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Human evaluation is integrated to test the reliability of the Blue Score. The researcher will examine syntactical, lexical, and semantic features using Halliday's functional theory.Keywords: multilingual corpora, natural language processing (NLP), neural machine translation (NMT), opaque idioms
Procedia PDF Downloads 149709 English Grammatical Errors of Arabic Sentence Translations Done by Machine Translations
Authors: Muhammad Fathurridho
Abstract:
Grammar as a rule used by every language to be understood by everyone is always related to syntax and morphology. Arabic grammar is different with another languages’ grammars. It has more rules and difficulties. This paper aims to investigate and describe the English grammatical errors of machine translation systems in translating Arabic sentences, including declarative, exclamation, imperative, and interrogative sentences, specifically in year 2018 which can be supported with artificial intelligence’s role. The Arabic sample sentences which are divided into two; verbal and nominal sentence of several Arabic published texts will be examined as the source language samples. The translated sentences done by several popular online machine translation systems, including Google Translate, Microsoft Bing, Babylon, Facebook, Hellotalk, Worldlingo, Yandex Translate, and Tradukka Translate are the material objects of this research. Descriptive method that will be taken to finish this research will show the grammatical errors of English target language, and classify them. The conclusion of this paper has showed that the grammatical errors of machine translation results are varied and generally classified into morphological, syntactical, and semantic errors in all type of Arabic words (Noun, Verb, and Particle), and it will be one of the evaluations for machine translation’s providers to correct them in order to improve their understandable results.Keywords: Arabic, Arabic-English translation, machine translation, grammatical errors
Procedia PDF Downloads 155708 Comparison of the H-Index of Researchers of Google Scholar and Scopus
Authors: Adian Fatchur Rochim, Abdul Muis, Riri Fitri Sari
Abstract:
H-index has been widely used as a performance indicator of researchers around the world especially in Indonesia. The Government uses Scopus and Google scholar as indexing references in providing recognition and appreciation. However, those two indexing services yield to different H-index values. For that purpose, this paper evaluates the difference of the H-index from those services. Researchers indexed by Webometrics, are used as reference’s data in this paper. Currently, Webometrics only uses H-index from Google Scholar. This paper observed and compared corresponding researchers’ data from Scopus to get their H-index score. Subsequently, some researchers with huge differences in score are observed in more detail on their paper’s publisher. This paper shows that the H-index of researchers in Google Scholar is approximately 2.45 times of their Scopus H-Index. Most difference exists due to the existence of uncertified publishers, which is considered in Google Scholar but not in Scopus.Keywords: Google Scholar, H-index, Scopus, performance indicator
Procedia PDF Downloads 275707 Utilizing Google Earth for Internet GIS
Authors: Alireza Derambakhsh
Abstract:
The objective of this examination is to explore the capability of utilizing Google Earth for Internet GIS applications. The study particularly analyzes the utilization of vector and characteristic information and the capability of showing and preparing this information in new ways utilizing the Google Earth stage. It has progressively been perceived that future improvements in GIS will fixate on Internet GIS, and in three noteworthy territories: GIS information access, spatial data scattering and GIS displaying/preparing. Google Earth is one of the group of geobrowsers that offer a free and simple to utilize administration that empower information with a spatial part to be overlain on top of a 3-D model of the Earth. This examination makes a methodological structure to accomplish its objective that comprises of three noteworthy parts: A database level, an application level and a customer level. As verification of idea a web model has been produced, which incorporates a differing scope of datasets and lets clients direst inquiries and make perceptions of this custom information. The outcomes uncovered that both vector and property information can be successfully spoken to and imagined utilizing Google Earth. In addition, the usefulness to question custom information and envision results has been added to the Google Earth stage.Keywords: Google earth, internet GIS, vector, characteristic information
Procedia PDF Downloads 308706 The Pedagogical Functions of Arts and Cultural-Heritage Education with ICTs in Museums – A Case Study of FINNA and Google Art
Authors: Pei Zhao, Sara Sintonen, Heikki Kynäslahti
Abstract:
Digital museums and arts galleries have become popular in museum education and management. Museum and arts galleries website is one of the most effective and efficient ways. Google, a corporation specializing in Internet-related services and projects, not only puts high-resolution arts images online, but also uses augmented-reality in digital art gallery. The Google Art Project, Google’s production, provides users a platform in appreciating and learning arts. After Google Art Project, more and more countries released their own museum and arts gallery websites, like British Paining in BBC, and FINNA in Finland. Pedagogical function in these websites is one of the most important functions. In this paper, we use Google Art Project and FINNA as the case studies to investigate what kinds of pedagogical functions exist in these websites. Finally, this paper will give the recommendation to digital museums and websites development, especially the pedagogical functions development, in the future.Keywords: arts education, cultural-heritage education, education with ICTs, pedagogical functions
Procedia PDF Downloads 548705 Estimating Current Suicide Rates Using Google Trends
Authors: Ladislav Kristoufek, Helen Susannah Moat, Tobias Preis
Abstract:
Data on the number of people who have committed suicide tends to be reported with a substantial time lag of around two years. We examine whether online activity measured by Google searches can help us improve estimates of the number of suicide occurrences in England before official figures are released. Specifically, we analyse how data on the number of Google searches for the terms “depression” and “suicide” relate to the number of suicides between 2004 and 2013. We find that estimates drawing on Google data are significantly better than estimates using previous suicide data alone. We show that a greater number of searches for the term “depression” is related to fewer suicides, whereas a greater number of searches for the term “suicide” is related to more suicides. Data on suicide related search behaviour can be used to improve current estimates of the number of suicide occurrences.Keywords: nowcasting, search data, Google Trends, official statistics
Procedia PDF Downloads 357704 Mountain Photo Sphere: An Android Application of Mountain Hiking Street View
Authors: Yanto Budisusanto, Aulia Rachmawati
Abstract:
Land navigation technology that is being developed is Google Street View to provide 360° street views, enabling the user to know the road conditions physically with the photo display. For climbers, especially beginners, detail information of climbing terrain is needed so climbers can prepare supplies and strategies before climbing. Therefore, we built a mountaineer guide application named Mountain Photo Sphere. This application displays a 360̊ panoramic view of mountain hiking trail and important points along the hiking path and its surrounding conditions. By combining panoramic photos 360̊ and tracking paths from coordinate data, a virtual tour will be formed. It is built using Java language and Android Studio. The hiking trail map composed by Google Maps API (Gaining access to google maps), Google GEO API (Gaining access to google maps), and OpenStreetMap API (Getting map files to be accessed offline on the Application). This application can be accessed offline so that climbers can use the application during climbing activities.Keywords: google street view, panoramic photo 360°, mountain hiking, mountain photo sphere
Procedia PDF Downloads 166703 Semantic Search Engine Based on Query Expansion with Google Ranking and Similarity Measures
Authors: Ahmad Shahin, Fadi Chakik, Walid Moudani
Abstract:
Our study is about elaborating a potential solution for a search engine that involves semantic technology to retrieve information and display it significantly. Semantic search engines are not used widely over the web as the majorities are still in Beta stage or under construction. Many problems face the current applications in semantic search, the major problem is to analyze and calculate the meaning of query in order to retrieve relevant information. Another problem is the ontology based index and its updates. Ranking results according to concept meaning and its relation with query is another challenge. In this paper, we are offering a light meta-engine (QESM) which uses Google search, and therefore Google’s index, with some adaptations to its returned results by adding multi-query expansion. The mission was to find a reliable ranking algorithm that involves semantics and uses concepts and meanings to rank results. At the beginning, the engine finds synonyms of each query term entered by the user based on a lexical database. Then, query expansion is applied to generate different semantically analogous sentences. These are generated randomly by combining the found synonyms and the original query terms. Our model suggests the use of semantic similarity measures between two sentences. Practically, we used this method to calculate semantic similarity between each query and the description of each page’s content generated by Google. The generated sentences are sent to Google engine one by one, and ranked again all together with the adapted ranking method (QESM). Finally, our system will place Google pages with higher similarities on the top of the results. We have conducted experimentations with 6 different queries. We have observed that most ranked results with QESM were altered with Google’s original generated pages. With our experimented queries, QESM generates frequently better accuracy than Google. In some worst cases, it behaves like Google.Keywords: semantic search engine, Google indexing, query expansion, similarity measures
Procedia PDF Downloads 425702 The Democratization of 3D Capturing: An Application Investigating Google Tango Potentials
Authors: Carlo Bianchini, Lorenzo Catena
Abstract:
The appearance of 3D scanners and then, more recently, of image-based systems that generate point clouds directly from common digital images have deeply affected the survey process in terms of both capturing and 2D/3D modelling. In this context, low cost and mobile systems are increasingly playing a key role and actually paving the way to the democratization of what in the past was the realm of few specialized technicians and expensive equipment. The application of Google Tango on the ancient church of Santa Maria delle Vigne in Pratica di Mare – Rome presented in this paper is one of these examples.Keywords: the architectural survey, augmented/mixed/virtual reality, Google Tango project, image-based 3D capturing
Procedia PDF Downloads 148701 The Potential of Cloud Computing in Overcoming the Problems of Collective Learning
Authors: Hussah M. AlShayea
Abstract:
This study aimed to identify the potential of cloud computing, "Google Drive" in overcoming the problems of collective learning from the viewpoint of Princess Noura University students. The study included (92) students from the College of Education. To achieve the goal of the study, several steps have been taken. First, the most important problems of collective learning were identified from the viewpoint of the students. After that, a survey identifying the potential of cloud computing "Google Drive" in overcoming the problems of collective learning was distributed among the students. The study results showed that the students believe that the use of Google Drive contributed to overcoming these problems. In the light of those results, the researcher presented a set of recommendations and proposals, including: encouraging teachers and learners to employ cloud computing to overcome the problems and constraints of collective learning.Keywords: cloud computing, collective learning, Google drive, Princess Noura University
Procedia PDF Downloads 492700 Comparison of Slope Data between Google Earth and the Digital Terrain Model, for Registration in Car
Authors: André Felipe Gimenez, Flávia Alessandra Ribeiro da Silva, Roberto Saverio Souza Costa
Abstract:
Currently, the rural producer has been facing problems regarding environmental regularization, which is precisely why the CAR (Rural Environmental Registry) was created. CAR is an electronic registry for rural properties with the purpose of assimilating notions about legal reserve areas, permanent preservation areas, areas of limited use, stable areas, forests and remnants of native vegetation, and all rural properties in Brazil. . The objective of this work was to evaluate and compare altimetry and slope data from google Earth with a digital terrain model (MDT) generated by aerophotogrammetry, in three plots of a steep slope, for the purpose of declaration in the CAR (Rural Environmental Registry). The realization of this work is justified in these areas, in which rural landowners have doubts about the reliability of the use of the free software Google Earth to diagnose inclinations greater than 25 degrees, as recommended by federal law 12651/2012. Added to the fact that in the literature, there is a deficiency of this type of study for the purpose of declaration of the CAR. The results showed that when comparing the drone altimetry data with the Google Earth image data, in areas of high slope (above 40% slope), Google underestimated the real values of terrain slope. Thus, it is concluded that Google Earth is not reliable for diagnosing areas with an inclination greater than 25 degrees (46% declivity) for the purpose of declaration in the CAR, being essential to carry out the local topographic survey.Keywords: MDT, drone, RPA, SiCar, photogrammetry
Procedia PDF Downloads 131699 Creative Culture to Innovative Culture: Transformal Operation
Authors: Peer M. Sathikh
Abstract:
Creativity and innovation have become an important phenomenon today, whose potential is being realized through the success of Apple, Google/Android, Nike, Virgin, Dyson and other multinationals that are a household name today. Creativity and Innovation are, many times, used interchangeably, causing confusion as to what each represents and are capable of. Attempts to understand creativity and innovation clearly point to the difference, and at the same time, inter-dependency of one on the other. The assumption that having more creative personnel in a team will translate into innovation sooner or later seems generally counterproductive. What helps define the role of creativity and innovation in an organization and how can one build an innovative team? This paper points to the importance of understanding creative culture and innovation culture in order to bring about the desired innovation outcome and proposes a means to transform one to another as ideas move from mere ideas to useful innovation.Keywords: creativity, innovation, creative culture, innovation culture, transformal operators
Procedia PDF Downloads 406698 A Pilot Study to Investigate the Use of Machine Translation Post-Editing Training for Foreign Language Learning
Authors: Hong Zhang
Abstract:
The main purpose of this study is to show that machine translation (MT) post-editing (PE) training can help our Chinese students learn Spanish as a second language. Our hypothesis is that they might make better use of it by learning PE skills specific for foreign language learning. We have developed PE training materials based on the data collected in a previous study. Training material included the special error types of the output of MT and the error types that our Chinese students studying Spanish could not detect in the experiment last year. This year we performed a pilot study in order to evaluate the PE training materials effectiveness and to what extent PE training helps Chinese students who study the Spanish language. We used screen recording to record these moments and made note of every action done by the students. Participants were speakers of Chinese with intermediate knowledge of Spanish. They were divided into two groups: Group A performed PE training and Group B did not. We prepared a Chinese text for both groups, and participants translated it by themselves (human translation), and then used Google Translate to translate the text and asked them to post-edit the raw MT output. Comparing the results of PE test, Group A could identify and correct the errors faster than Group B students, Group A did especially better in omission, word order, part of speech, terminology, mistranslation, official names, and formal register. From the results of this study, we can see that PE training can help Chinese students learn Spanish as a second language. In the future, we could focus on the students’ struggles during their Spanish studies and complete the PE training materials to teach Chinese students learning Spanish with machine translation.Keywords: machine translation, post-editing, post-editing training, Chinese, Spanish, foreign language learning
Procedia PDF Downloads 144697 An Online Adaptive Thresholding Method to Classify Google Trends Data Anomalies for Investor Sentiment Analysis
Authors: Duygu Dere, Mert Ergeneci, Kaan Gokcesu
Abstract:
Google Trends data has gained increasing popularity in the applications of behavioral finance, decision science and risk management. Because of Google’s wide range of use, the Trends statistics provide significant information about the investor sentiment and intention, which can be used as decisive factors for corporate and risk management fields. However, an anomaly, a significant increase or decrease, in a certain query cannot be detected by the state of the art applications of computation due to the random baseline noise of the Trends data, which is modelled as an Additive white Gaussian noise (AWGN). Since through time, the baseline noise power shows a gradual change an adaptive thresholding method is required to track and learn the baseline noise for a correct classification. To this end, we introduce an online method to classify meaningful deviations in Google Trends data. Through extensive experiments, we demonstrate that our method can successfully classify various anomalies for plenty of different data.Keywords: adaptive data processing, behavioral finance , convex optimization, online learning, soft minimum thresholding
Procedia PDF Downloads 167696 Activation of Google Classroom Features to Engage Introvert Students in Comprehensible Output
Authors: Raghad Dwaik
Abstract:
It is well known in language acquisition literature that a mere understanding of a reading text is not enough to help students build proficiency in comprehension. Students should rather follow understanding by attempting to express what has been understood by pushing their competence to the limit. Learners' attempt to push their competence was given the term "comprehensible output" by Swain (1985). Teachers in large classes, however, find it sometimes difficult to give all students a chance to communicate their views or to share their ideas during the short class time. In most cases, students who are outgoing dominate class discussion and get more opportunities for practice which leads to ignoring the shy students totally while helping the good ones become better. This paper presents the idea of using Google Classroom features of posting and commenting to allow students who hesitate to participate in class discussions about a reading text to write their views on the wall of a Google Classroom and share them later after they have received feedback and comments from classmates. Such attempts lead to developing their proficiency through additional practice in comprehensible output and to enhancing their confidence in themselves and their views. It was found that virtual classroom interaction would help students maintain vocabulary, use more complex structures and focus on meaning besides form.Keywords: learning groups, reading TESOL, Google Classroom, comprehensible output
Procedia PDF Downloads 75695 State of Play of Mobile Government Apps on Google Play Store
Authors: Abdelbaset Rabaiah
Abstract:
e-Government mobile applications provide an extension for effective e-government services in today’s omniconnected world. They constitute part of m-government platforms. This study explores the usefulness, availability, discoverability and maturity of such applications. While this study impacts theory by addressing a relatively lacking area, it impacts practice more. The outcomes of this study suggest valuable recommendations for practitioners-developers of e-government applications. The methodology followed is to examine a large number of e-government smartphone applications. The focus is on applications available at the Google Play Store. Moreover, the study investigates applications published on government portals of a number of countries. A sample of 15 countries is researched. The results show a diversity in the level of discoverability, development, maturity, and usage of smartphone apps dedicated for use of e-government services. It was found that there are major issues in discovering e-government applications on both the Google Play Store and as-well-as on local government portals. The study found that only a fraction of mobile government applications was published on the Play Store. Only 19% of apps were multilingual, and 43% were developed by third parties including private individuals. Further analysis was made, and important recommendations are suggested in this paper for a better utilization of e-government smartphone applications. These recommendations will result in better discoverability, maturity, and usefulness of e-government applications.Keywords: mobile applications, e-government, m-government, Google Play Store
Procedia PDF Downloads 149694 Combined Automatic Speech Recognition and Machine Translation in Business Correspondence Domain for English-Croatian
Authors: Sanja Seljan, Ivan Dunđer
Abstract:
The paper presents combined automatic speech recognition (ASR) for English and machine translation (MT) for English and Croatian in the domain of business correspondence. The first part presents results of training the ASR commercial system on two English data sets, enriched by error analysis. The second part presents results of machine translation performed by online tool Google Translate for English and Croatian and Croatian-English language pairs. Human evaluation in terms of usability is conducted and internal consistency calculated by Cronbach's alpha coefficient, enriched by error analysis. Automatic evaluation is performed by WER (Word Error Rate) and PER (Position-independent word Error Rate) metrics, followed by investigation of Pearson’s correlation with human evaluation.Keywords: automatic machine translation, integrated language technologies, quality evaluation, speech recognition
Procedia PDF Downloads 484693 A Study of Factors Affecting the Elapsed Time of Housing Renewal Project Implementation in Seoul
Authors: In Su Na, Gunwon Lee, Seiyong Kim
Abstract:
This study analyzed the effect of area variables and economic variables on the length of each period of the project in order to analyze the effect of agreement rate on project implementation in housing renewal projects. In conclusion, as can be seen from these results, a low agreement rate may not translate into project promotion, and a higher agreement rate may not translate into project delay. The expectation of the policy is that the lower the agreement rate, the more projects would be promoted, but that is not the actual effect. From a policy consistency viewpoint, changing the agreement rate frequently, depending on the decision of the public, is not reasonable. The policy of using agreement rate as a necessary condition for project implementation should be reconsidered.Keywords: Area and Economic Variables, Elapsed time, Housing Renewal Project
Procedia PDF Downloads 455692 Machine Translation Analysis of Chinese Dish Names
Authors: Xinyu Zhang, Olga Torres-Hostench
Abstract:
This article presents a comparative study evaluating and comparing the quality of machine translation (MT) output of Chinese gastronomy nomenclature. Chinese gastronomic culture is experiencing an increased international acknowledgment nowadays. The nomenclature of Chinese gastronomy not only reflects a specific aspect of culture, but it is related to other areas of society such as philosophy, traditional medicine, etc. Chinese dish names are composed of several types of cultural references, such as ingredients, colors, flavors, culinary techniques, cooking utensils, toponyms, anthroponyms, metaphors, historical tales, among others. These cultural references act as one of the biggest difficulties in translation, in which the use of translation techniques is usually required. Regarding the lack of Chinese food-related translation studies, especially in Chinese-Spanish translation, and the current massive use of MT, the quality of the MT output of Chinese dish names is questioned. Fifty Chinese dish names with different types of cultural components were selected in order to complete this study. First, all of these dish names were translated by three different MT tools (Google Translate, Baidu Translate and Bing Translator). Second, a questionnaire was designed and completed by 12 Chinese online users (Chinese graduates of a Hispanic Philology major) in order to find out user preferences regarding the collected MT output. Finally, human translation techniques were observed and analyzed to identify what translation techniques would be observed more often in the preferred MT proposals. The result reveals that the MT output of the Chinese gastronomy nomenclature is not of high quality. It would be recommended not to trust the MT in occasions like restaurant menus, TV culinary shows, etc. However, the MT output could be used as an aid for tourists to have a general idea of a dish (the main ingredients, for example). Literal translation turned out to be the most observed technique, followed by borrowing, generalization and adaptation, while amplification, particularization and transposition were infrequently observed. Possibly because that the MT engines at present are limited to relate equivalent terms and offer literal translations without taking into account the whole context meaning of the dish name, which is essential to the application of those less observed techniques. This could give insight into the post-editing of the Chinese dish name translation. By observing and analyzing translation techniques in the proposals of the machine translators, the post-editors could better decide which techniques to apply in each case so as to correct mistakes and improve the quality of the translation.Keywords: Chinese dish names, cultural references, machine translation, translation techniques
Procedia PDF Downloads 137691 Relevance of History to National Development
Authors: Abdulsalami Muyideen Deji
Abstract:
Achievement of one age serves as a starting point for the next generation. History explains the significance of past and present achievement which serves a guide principle for great minds to determine the next line of action in personal life which translate to national development. If history does this in human life, it is not out of place to accept history as a vanguard of national development. History remained the only relevant discipline which shapes the affairs of developed society. It gives adequate knowledge of great people in any society, how they used their ability and leadership prowess to develop their environment. As a result of this people use the idea of those heroes as guiding principle to determine the present issues. The custodian of identity is history, while identity builds confidence in man; it also makes man to master his environment for rapid development. Adequate developments of man’s environment translate to national development.Keywords: history, national development, leadership prowess, identity
Procedia PDF Downloads 398690 Empirical Study on Factors Influencing SEO
Authors: Pakinee Aimmanee, Phoom Chokratsamesiri
Abstract:
Search engine has become an essential tool nowadays for people to search for their needed information on the internet. In this work, we evaluate the performance of the search engine from three factors: the keyword frequency, the number of inbound links, and the difficulty of the keyword. The evaluations are based on the ranking position and the number of days that Google has seen or detect the webpage. We find that the keyword frequency and the difficulty of the keyword do not affect the Google ranking where the number of inbound links gives remarkable improvement of the ranking position. The optimal number of inbound links found in the experiment is 10.Keywords: SEO, information retrieval, web search, knowledge technologies
Procedia PDF Downloads 283689 Brief Guide to Cloud-Based AI Prototyping: Key Insights from Selected Case Studies Using Google Cloud Platform
Authors: Kamellia Reshadi, Pranav Ragji, Theodoros Soldatos
Abstract:
Recent advancements in cloud computing and storage, along with rapid progress in artificial intelligence (AI), have transformed approaches to developing efficient, scalable applications. However, integrating AI with cloud computing poses challenges as these fields are often disjointed, and many advancements remain difficult to access, obscured in complex documentation or scattered across research reports. For this reason, we share experiences from prototype projects combining these technologies. Specifically, we focus on Google Cloud Platform (GCP) functionalities and describe vision and speech activities applied to labeling, subtitling, and urban traffic flow tasks. We describe challenges, pricing, architecture, and other key features, considering the goal of real-time performance. We hope our demonstrations provide not only essential guidelines for using these functionalities but also enable more similar approaches.Keywords: artificial intelligence, cloud computing, real-time applications, case studies, knowledge management, research and development, text labeling, video annotation, urban traffic analysis, public safety, prototyping, Google Cloud Platform
Procedia PDF Downloads 10688 A Review of Existing Turnover Intention Theories
Authors: Pauline E. Ngo-Henha
Abstract:
Existing turnover intention theories are reviewed in this paper. This review was conducted with the help of the search keyword “turnover intention theories” in Google Scholar during the month of July 2017. These theories include: The Theory of Organizational Equilibrium (TOE), Social Exchange Theory, Job Embeddedness Theory, Herzberg’s Two-Factor Theory, the Resource-Based View, Equity Theory, Human Capital Theory, and the Expectancy Theory. One of the limitations of this review paper is that data were only collected from Google Scholar where many papers were sometimes not freely accessible. However, this paper attempts to contribute to the research in clarifying the distinction between theories and models in the context of turnover intention.Keywords: Literature Review, Theory, Turnover, Turnover intention
Procedia PDF Downloads 455687 Business Intelligence Proposal to Improve Decision Making in Companies Using Google Cloud Platform and Microsoft Power BI
Authors: Joel Vilca Tarazona, Igor Aguilar-Alonso
Abstract:
The problem of this research related to business intelligence is the lack of a tool that supports automated and efficient financial analysis for decision-making and allows an evaluation of the financial statements, which is why the availability of the information is difficult. Relevant information to managers and users as an instrument in decision making financial, and administrative. For them, a business intelligence solution is proposed that will reduce information access time, personnel costs, and process automation, proposing a 4-layer architecture based on what was reviewed by the research methodology.Keywords: decision making, business intelligence, Google Cloud, Microsoft Power BI
Procedia PDF Downloads 99686 When Digital Innovation Augments Cultural Heritage: An Innovation from Tradition Story
Authors: Danilo Pesce, Emilio Paolucci, Mariolina Affatato
Abstract:
Looking at the future and at the post-digital era, innovations commonly tend to dismiss the old and replace it with the new. The aim of this research is to study the role that digital innovation can play alongside the information chain within the traditional sectors and the subsequent value creation opportunities that actors and stakeholders can exploit. By drawing on a wide body of literature on innovation and strategic management and by conducting a case study on the cultural heritage industry, namely Google Arts & Culture, this study shows that technology augments complements, and amplifies the way people experience their cultural interests and experience. Furthermore, the study shows a process of democratization of art since museums can exploit new digital and virtual ways to distribute art globally. Moreover, new needs arose from the 2020 pandemic that hit and forced the world to a state of cultural fasting and caused a radical transformation of the paradigm online vs. onsite. Finally, the study highlights the capabilities that are emerging at different stages of the value chain, owing to the technological innovation available in the market. In essence, this research underlines the role of Google in allowing museums to reach users worldwide, thus unlocking new mechanisms of value creation in the cultural heritage industry. Likewise, this study points out how Google provides value to users by means of increasing the provision of artworks, improving the audience engagement and virtual experience, and providing new ways to access the online contents. The paper ends with a discussion of managerial and policy-making implications.Keywords: big data, digital platforms, digital transformation, digitization, Google Arts and Culture, stakeholders’ interests
Procedia PDF Downloads 157