Search results for: EHRs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17

Search results for: EHRs

17 Deployment of Electronic Healthcare Records and Development of Big Data Analytics Capabilities in the Healthcare Industry: A Systematic Literature Review

Authors: Tigabu Dagne Akal

Abstract:

Electronic health records (EHRs) can help to store, maintain, and make the appropriate handling of patient histories for proper treatment and decision. Merging the EHRs with big data analytics (BDA) capabilities enable healthcare stakeholders to provide effective and efficient treatments for chronic diseases. Though there are huge opportunities and efforts that exist in the deployment of EMRs and the development of BDA, there are challenges in addressing resources and organizational capabilities that are required to achieve the competitive advantage and sustainability of EHRs and BDA. The resource-based view (RBV), information system (IS), and non- IS theories should be extended to examine organizational capabilities and resources which are required for successful data analytics in the healthcare industries. The main purpose of this study is to develop a conceptual framework for the development of healthcare BDA capabilities based on past works so that researchers can extend. The research question was formulated for the search strategy as a research methodology. The study selection was made at the end. Based on the study selection, the conceptual framework for the development of BDA capabilities in the healthcare settings was formulated.

Keywords: EHR, EMR, Big data, Big data analytics, resource-based view

Procedia PDF Downloads 129
16 A Deep Learning Approach to Subsection Identification in Electronic Health Records

Authors: Nitin Shravan, Sudarsun Santhiappan, B. Sivaselvan

Abstract:

Subsection identification, in the context of Electronic Health Records (EHRs), is identifying the important sections for down-stream tasks like auto-coding. In this work, we classify the text present in EHRs according to their information, using machine learning and deep learning techniques. We initially describe briefly about the problem and formulate it as a text classification problem. Then, we discuss upon the methods from the literature. We try two approaches - traditional feature extraction based machine learning methods and deep learning methods. Through experiments on a private dataset, we establish that the deep learning methods perform better than the feature extraction based Machine Learning Models.

Keywords: deep learning, machine learning, semantic clinical classification, subsection identification, text classification

Procedia PDF Downloads 210
15 Blockchain-Based Approach on Security Enhancement of Distributed System in Healthcare Sector

Authors: Loong Qing Zhe, Foo Jing Heng

Abstract:

A variety of data files are now available on the internet due to the advancement of technology across the globe today. As more and more data are being uploaded on the internet, people are becoming more concerned that their private data, particularly medical health records, are being compromised and sold to others for money. Hence, the accessibility and confidentiality of patients' medical records have to be protected through electronic means. Blockchain technology is introduced to offer patients security against adversaries or unauthorised parties. In the blockchain network, only authorised personnel or organisations that have been validated as nodes may share information and data. For any change within the network, including adding a new block or modifying existing information about the block, a majority of two-thirds of the vote is required to confirm its legitimacy. Additionally, a consortium permission blockchain will connect all the entities within the same community. Consequently, all medical data in the network can be safely shared with all authorised entities. Also, synchronization can be performed within the cloud since the data is real-time. This paper discusses an efficient method for storing and sharing electronic health records (EHRs). It also examines the framework of roles within the blockchain and proposes a new approach to maintain EHRs with keyword indexes to search for patients' medical records while ensuring data privacy.

Keywords: healthcare sectors, distributed system, blockchain, electronic health records (EHR)

Procedia PDF Downloads 187
14 Nursing Students' Experience of Using Electronic Health Record System in Clinical Placements

Authors: Nurten Tasdemir, Busra Baloglu, Zeynep Cingoz, Can Demirel, Zeki Gezer, Barıs Efe

Abstract:

Student nurses are increasingly exposed to technology in the workplace after graduation with the growing numbers of electric health records (EHRs), handheld computers, barcode scanner medication dispensing systems, and automatic capture of patient data such as vital signs. Internationally, electronic health records (EHRs) systems are being implemented and evaluated. Students will inevitably encounter EHRs in the clinical learning environment and their professional practice. Nursing students must develop competency in the use of EHR. Aim: The study aimed to examine nursing students’ experiences of learning to use electronic health records (EHR) in clinical placements. Method: This study adopted a descriptive approach. The study population consisted of second and third-year nursing students at the Zonguldak School of Health in the West Black Sea Region of Turkey; the study was conducted during the 2015–2016 academic year. The sample consisted of 315 (74.1% of 425 students) nursing students who volunteered to participate. The students, who were involved in clinical practice, were invited to participate in the study Data were collected by a questionnaire designed by the researchers based on the relevant literature. Data were analyzed descriptively using the Statistical Package for Social Sciences (SPSS) for Windows version 16.0. The data are presented as means, standard deviations, and percentages. Approval for the study was obtained from the Ethical Committee of the University (Reg. Number: 29/03/2016/112) and the director of Nursing Department. Findings: A total of 315 students enrolled in this study, for a response rate of 74.1%. The mean age of the sample was 22.24 ± 1.37 (min: 19, max: 32) years, and most participants (79.7%) were female. Most of the nursing students (82.3%) stated that they use information technologies in clinical practice. Nearly half of the students (42.5%) reported that they have not accessed to EHR system. In addition, 61.6% of the students reported that insufficient computers available in clinical placement. Of the students, 84.7% reported that they prefer to have patient information from EHR system, and 63.8% of them found more effective to preparation for the clinical reporting. Conclusion: This survey indicated that nursing students experience to learn about EHR systems in clinical placements. For more effective learning environment nursing education should prepare nursing students for EHR systems in their educational life.

Keywords: electronic health record, clinical placement, nursing student, nursing education

Procedia PDF Downloads 287
13 Secure Data Sharing of Electronic Health Records With Blockchain

Authors: Kenneth Harper

Abstract:

The secure sharing of Electronic Health Records (EHRs) is a critical challenge in modern healthcare, demanding solutions to enhance interoperability, privacy, and data integrity. Traditional standards like Health Information Exchange (HIE) and HL7 have made significant strides in facilitating data exchange between healthcare entities. However, these approaches rely on centralized architectures that are often vulnerable to data breaches, lack sufficient privacy measures, and have scalability issues. This paper proposes a framework for secure, decentralized sharing of EHRs using blockchain technology, cryptographic tokens, and Non-Fungible Tokens (NFTs). The blockchain's immutable ledger, decentralized control, and inherent security mechanisms are leveraged to improve transparency, accountability, and auditability in healthcare data exchanges. Furthermore, we introduce the concept of tokenizing patient data through NFTs, creating unique digital identifiers for each record, which allows for granular data access controls and proof of data ownership. These NFTs can also be employed to grant access to authorized parties, establishing a secure and transparent data sharing model that empowers both healthcare providers and patients. The proposed approach addresses common privacy concerns by employing privacy-preserving techniques such as zero-knowledge proofs (ZKPs) and homomorphic encryption to ensure that sensitive patient information can be shared without exposing the actual content of the data. This ensures compliance with regulations like HIPAA and GDPR. Additionally, the integration of Fast Healthcare Interoperability Resources (FHIR) with blockchain technology allows for enhanced interoperability, enabling healthcare organizations to exchange data seamlessly and securely across various systems while maintaining data governance and regulatory compliance. Through real-world case studies and simulations, this paper demonstrates how blockchain-based EHR sharing can reduce operational costs, improve patient outcomes, and enhance the security and privacy of healthcare data. This decentralized framework holds great potential for revolutionizing healthcare information exchange, providing a transparent, scalable, and secure method for managing patient data in a highly regulated environment.

Keywords: blockchain, electronic health records (ehrs), fast healthcare interoperability resources (fhir), health information exchange (hie), hl7, interoperability, non-fungible tokens (nfts), privacy-preserving techniques, tokens, secure data sharing,

Procedia PDF Downloads 15
12 Using Visualization Techniques to Support Common Clinical Tasks in Clinical Documentation

Authors: Jonah Kenei, Elisha Opiyo

Abstract:

Electronic health records, as a repository of patient information, is nowadays the most commonly used technology to record, store and review patient clinical records and perform other clinical tasks. However, the accurate identification and retrieval of relevant information from clinical records is a difficult task due to the unstructured nature of clinical documents, characterized in particular by a lack of clear structure. Therefore, medical practice is facing a challenge thanks to the rapid growth of health information in electronic health records (EHRs), mostly in narrative text form. As a result, it's becoming important to effectively manage the growing amount of data for a single patient. As a result, there is currently a requirement to visualize electronic health records (EHRs) in a way that aids physicians in clinical tasks and medical decision-making. Leveraging text visualization techniques to unstructured clinical narrative texts is a new area of research that aims to provide better information extraction and retrieval to support clinical decision support in scenarios where data generated continues to grow. Clinical datasets in electronic health records (EHR) offer a lot of potential for training accurate statistical models to classify facets of information which can then be used to improve patient care and outcomes. However, in many clinical note datasets, the unstructured nature of clinical texts is a common problem. This paper examines the very issue of getting raw clinical texts and mapping them into meaningful structures that can support healthcare professionals utilizing narrative texts. Our work is the result of a collaborative design process that was aided by empirical data collected through formal usability testing.

Keywords: classification, electronic health records, narrative texts, visualization

Procedia PDF Downloads 116
11 Securing Health Monitoring in IoT with Blockchain-Based Proxy Re-Encryption

Authors: Jerlin George, R. Chitra

Abstract:

The devices with sensors that can monitor your temperature, heart rate, and other vital signs and link to the internet, known as the Internet of Things (IoT), have completely transformed the way we control health. Providing real-time health data, these sensors improve diagnostics and treatment outcomes. Security and privacy matters when IoT comes into play in healthcare. Cyberattacks on centralized database systems are also a problem. To solve these challenges, this project uses blockchain technology coupled with proxy re-encryption to secure health data. ThingSpeak IoT cloud analyzes the collected data and turns them into blockchain transactions which are safely kept on the DriveHQ cloud. Transparency and data integrity are ensured by blockchain, and secure data sharing among authorized users is made possible by proxy re-encryption. This results in a health monitoring system that preserves the accuracy and confidentiality of data while reducing the safety risks of IoT-driven healthcare applications.

Keywords: IoT, healthcare, sensors, EHRs, blockchain, proxy re-encryption, data privacy, data security.

Procedia PDF Downloads 0
10 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text

Authors: Duncan Wallace, M-Tahar Kechadi

Abstract:

In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.

Keywords: artificial neural networks, data-mining, machine learning, medical informatics

Procedia PDF Downloads 128
9 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models

Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand

Abstract:

Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models on two different realworld electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.

Keywords: EHR, machine learning, imputation, laboratory variables, algorithmic bias

Procedia PDF Downloads 81
8 A Comprehensive Review of Electronic Health Records Implementation in Healthcare

Authors: Lateefat Amao, Misagh Faezipour

Abstract:

Implementing electronic health records (EHR) in healthcare is a pivotal transition aimed at digitizing and optimizing patient health information management. The expectations associated with this transition are high, even towards other health information systems (HIS) and health technology. This multifaceted process involves careful planning and execution to improve the quality and efficiency of patient care, especially as healthcare technology is a sensitive niche. Key considerations include a thorough needs assessment, judicious vendor selection, robust infrastructure development, and training and adaptation of healthcare professionals. Comprehensive training programs, data migration from legacy systems and models, interoperability, as well as security and regulatory compliance are imperative for healthcare staff to navigate EHR systems adeptly. The purpose of this work is to offer a comprehensive review of the literature on EHR implementation. It explores the impact of this health technology on health practices, highlights challenges and barriers to its successful utility, and offers practical strategies that can impact its success in healthcare. This paper provides a thorough review of studies on the adoption of EHRs, emphasizing the wide range of experiences and results connected to EHR use in the medical field, especially across different types of healthcare organizations.

Keywords: healthcare, electronic health records, EHR implementation, patient care, interoperability

Procedia PDF Downloads 73
7 Advancing Dialysis Care Access and Health Information Management: A Blueprint for Nairobi Hospital

Authors: Kimberly Winnie Achieng Otieno

Abstract:

The Nairobi Hospital plays a pivotal role in healthcare provision in East and Central Africa, yet it faces challenges in providing accessible dialysis care. This paper explores strategic interventions to enhance dialysis care, improve access and streamline health information management, with an aim of fostering an integrated and patient-centered healthcare system in our region. Challenges at The Nairobi Hospital The Nairobi Hospital currently grapples with insufficient dialysis machines which results in extended turn around times. This issue stems from both staffing bottle necks and infrastructural limitations given our growing demand for renal care services. Our Paper-based record keeping system and fragmented flow of information downstream hinders the hospital’s ability to manage health data effectively. There is also a need for investment in expanding The Nairobi Hospital dialysis facilities to far reaching communities. Setting up satellite clinics that are closer to people who live in areas far from the main hospital will ensure better access to underserved areas. Community Outreach and Education Implementing education programs on kidney health within local communities is vital for early detection and prevention. Collaborating with local leaders and organizations can establish a proactive approach to renal health hence reducing the demand for acute dialysis interventions. We can amplify this effort by expanding The Nairobi Hospital’s corporate social responsibility outreach program with weekend engagement activities such as walks, awareness classes and fund drives. Enhancing Efficiency in Dialysis Care Demand for dialysis services continues to rise due to an aging Kenyan population and the increasing prevalence of chronic kidney disease (CKD). Present at this years International Nursing Conference are a diverse group of caregivers from around the world who can share with us their process optimization strategies, patient engagement techniques and resource utilization efficiencies to catapult The Nairobi Hospital to the 21st century and beyond. Plans are underway to offer ongoing education opportunities to keep staff updated on best practices and emerging technologies in addition to utilizing a patient feedback mechanisms to identify areas for improvement and enhance satisfaction. Staff empowerment and suggestion boxes address The Nairobi Hospital’s organizational challenges. Current financial constraints may limit a leapfrog in technology integration such as the acquisition of new dialysis machines and an investment in predictive analytics to forecast patient needs and optimize resource allocation. Streamlining Health Information Management Fully embracing a shift to 100% Electronic Health Records (EHRs) is a transformative step toward efficient health information management. Shared information promotes a holistic understanding of patients’ medical history, minimizing redundancies and enhancing overall care quality. To manage the transition to community-based care and EHRs effectively, a phased implementation approach is recommended. Conclusion By strategically enhancing dialysis care access and streamlining health information management, The Nairobi Hospital can strengthen its position as a leading healthcare institution in both East and Central Africa. This comprehensive approach aligns with the hospital’s commitment to providing high-quality, accessible, and patient-centered care in an evolving landscape of healthcare delivery.

Keywords: Africa, urology, diaylsis, healthcare

Procedia PDF Downloads 55
6 Best Practices to Enhance Patient Security and Confidentiality When Using E-Health in South Africa

Authors: Lethola Tshikose, Munyaradzi Katurura

Abstract:

Information and Communication Technology (ICT) plays a critical role in improving daily healthcare processes. The South African healthcare organizations have adopted Information Systems to integrate their patient records. This has made it much easier for healthcare organizations because patient information can now be accessible at any time. The primary purpose of this research study was to investigate the best practices that can be applied to enhance patient security and confidentiality when using e-health systems in South Africa. Security and confidentiality are critical in healthcare organizations as they ensure safety in EHRs. The research study used an inductive research approach that included a thorough literature review; therefore, no data was collected. The research paper’s scope included patient data and possible security threats associated with healthcare systems. According to the study, South African healthcare organizations discovered various patient data security and confidentiality issues. The study also revealed that when it comes to handling patient data, health professionals sometimes make mistakes. Some may not be computer literate, which posed issues and caused data to be tempered with. The research paper recommends that healthcare organizations ensure that security measures are adequately supported and promoted by their IT department. This will ensure that adequate resources are distributed to keep patient data secure and confidential. Healthcare organizations must correctly use standards set up by IT specialists to solve patient data security and confidentiality issues. Healthcare organizations must make sure that their organizational structures are adaptable to improve security and confidentiality.

Keywords: E-health, EHR, security, confidentiality, healthcare

Procedia PDF Downloads 52
5 An Educational Electronic Health Record with a Configurable User Interface

Authors: Floriane Shala, Evangeline Wagner, Yichun Zhao

Abstract:

Background: Proper educational training and support are proven to be major components of EHR (Electronic Health Record) implementation and use. However, the majority of health providers are not sufficiently trained in EHR use, leading to adverse events, errors, and decreased quality of care. In response to this, students studying Health Information Science, Public Health, Nursing, and Medicine should all gain a thorough understanding of EHR use at different levels for different purposes. The design of a usable and safe EHR system that accommodates the needs and workflows of different users, user groups, and disciplines is required for EHR learning to be efficient and effective. Objectives: This project builds several artifacts which seek to address both the educational and usability aspects of an educational EHR. The artifacts proposed are models for and examples of such an EHR with a configurable UI to be learned by students who need a background in EHR use during their degrees. Methods: Review literature and gather professional opinions from domain experts on usability, the use of workflow patterns, UI configurability and design, and the educational aspect of EHR use. Conduct interviews in a semi-casual virtual setting with open discussion in order to gain a deeper understanding of the principal aspects of EHR use in educational settings. Select a specific task and user group to illustrate how the proposed solution will function based on the current research. Develop three artifacts based on the available research, professional opinions, and prior knowledge of the topic. The artifacts capture the user task and user’s interactions with the EHR for learning. The first generic model provides a general understanding of the EHR system process. The second model is a specific example of performing the task of MRI ordering with a configurable UI. The third artifact includes UI mock-ups showcasing the models in a practical and visual way. Significance: Due to the lack of educational EHRs, medical professionals do not receive sufficient EHR training. Implementing an educational EHR with a usable and configurable interface to suit the needs of different user groups and disciplines will help facilitate EHR learning and training and ultimately improve the quality of patient care.

Keywords: education, EHR, usability, configurable

Procedia PDF Downloads 155
4 Unlocking Health Insights: Studying Data for Better Care

Authors: Valentina Marutyan

Abstract:

Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.

Keywords: data mining, healthcare, big data, large amounts of data

Procedia PDF Downloads 73
3 Long Term Survival after a First Transient Ischemic Attack in England: A Case-Control Study

Authors: Padma Chutoo, Elena Kulinskaya, Ilyas Bakbergenuly, Nicholas Steel, Dmitri Pchejetski

Abstract:

Transient ischaemic attacks (TIAs) are warning signs for future strokes. TIA patients are at increased risk of stroke and cardio-vascular events after a first episode. A majority of studies on TIA focused on the occurrence of these ancillary events after a TIA. Long-term mortality after TIA received only limited attention. We undertook this study to determine the long-term hazards of all-cause mortality following a first episode of a TIA using anonymised electronic health records (EHRs). We used a retrospective case-control study using electronic primary health care records from The Health Improvement Network (THIN) database. Patients born prior to or in year 1960, resident in England, with a first diagnosis of TIA between January 1986 and January 2017 were matched to three controls on age, sex and general medical practice. The primary outcome was all-cause mortality. The hazards of all-cause mortality were estimated using a time-varying Weibull-Cox survival model which included both scale and shape effects and a random frailty effect of GP practice. 20,633 cases and 58,634 controls were included. Cases aged 39 to 60 years at the first TIA event had the highest hazard ratio (HR) of mortality compared to matched controls (HR = 3.04, 95% CI (2.91 - 3.18)). The HRs for cases aged 61-70 years, 71-76 years and 77+ years were 1.98 (1.55 - 2.30), 1.79 (1.20 - 2.07) and 1.52 (1.15 - 1.97) compared to matched controls. Aspirin provided long-term survival benefits to cases. Cases aged 39-60 years on aspirin had HR of 0.93 (0.84 - 1.00), 0.90 (0.82 - 0.98) and 0.88 (0.80 - 0.96) at 5 years, 10 years and 15 years, respectively, compared to cases in the same age group who were not on antiplatelets. Similar beneficial effects of aspirin were observed in other age groups. There were no significant survival benefits with other antiplatelet options. No survival benefits of antiplatelet drugs were observed in controls. Our study highlights the excess long-term risk of death of TIA patients and cautions that TIA should not be treated as a benign condition. The study further recommends aspirin as the better option for secondary prevention for TIA patients compared to clopidogrel recommended by NICE guidelines. Management of risk factors and treatment strategies should be important challenges to reduce the burden of disease.

Keywords: dual antiplatelet therapy (DAPT), General Practice, Multiple Imputation, The Health Improvement Network(THIN), hazard ratio (HR), Weibull-Cox model

Procedia PDF Downloads 142
2 A Digital Health Approach: Using Electronic Health Records to Evaluate the Cost Benefit of Early Diagnosis of Alpha-1 Antitrypsin Deficiency in the UK

Authors: Sneha Shankar, Orlando Buendia, Will Evans

Abstract:

Alpha-1 antitrypsin deficiency (AATD) is a rare, genetic, and multisystemic condition. Underdiagnosis is common, leading to chronic pulmonary and hepatic complications, increased resource utilization, and additional costs to the healthcare system. Currently, there is limited evidence of the direct medical costs of AATD diagnosis in the UK. This study explores the economic impact of AATD patients during the 3 years before diagnosis and to identify the major cost drivers using primary and secondary care electronic health record (EHR) data. The 3 years before diagnosis time period was chosen based on the ability of our tool to identify patients earlier. The AATD algorithm was created using published disease criteria and applied to 148 known AATD patients’ EHR found in a primary care database of 936,148 patients (413,674 Biobank and 501,188 in a single primary care locality). Among 148 patients, 9 patients were flagged earlier by the tool and, on average, could save 3 (1-6) years per patient. We analysed 101 of the 148 AATD patients’ primary care journey and 20 patients’ Hospital Episode Statistics (HES) data, all of whom had at least 3 years of clinical history in their records before diagnosis. The codes related to laboratory tests, clinical visits, referrals, hospitalization days, day case, and inpatient admissions attributable to AATD were examined in this 3-year period before diagnosis. The average cost per patient was calculated, and the direct medical costs were modelled based on the mean prevalence of 100 AATD patients in a 500,000 population. A deterministic sensitivity analysis (DSA) of 20% was performed to determine the major cost drivers. Cost data was obtained from the NHS National tariff 2020/21, National Schedule of NHS Costs 2018/19, PSSRU 2018/19, and private care tariff. The total direct medical cost of one hundred AATD patients three years before diagnosis in primary and secondary care in the UK was £3,556,489, with an average direct cost per patient of £35,565. A vast majority of this total direct cost (95%) was associated with inpatient admissions (£3,378,229). The DSA determined that the costs associated with tier-2 laboratory tests and inpatient admissions were the greatest contributors to direct costs in primary and secondary care, respectively. This retrospective study shows the role of EHRs in calculating direct medical costs and the potential benefit of new technologies for the early identification of patients with AATD to reduce the economic burden in primary and secondary care in the UK.

Keywords: alpha-1 antitrypsin deficiency, costs, digital health, early diagnosis

Procedia PDF Downloads 164
1 Delivering Safer Clinical Trials; Using Electronic Healthcare Records (EHR) to Monitor, Detect and Report Adverse Events in Clinical Trials

Authors: Claire Williams

Abstract:

Randomised controlled Trials (RCTs) of efficacy are still perceived as the gold standard for the generation of evidence, and whilst advances in data collection methods are well developed, this progress has not been matched for the reporting of adverse events (AEs). Assessment and reporting of AEs in clinical trials are fraught with human error and inefficiency and are extremely time and resource intensive. Recent research conducted into the quality of reporting of AEs during clinical trials concluded it is substandard and reporting is inconsistent. Investigators commonly send reports to sponsors who are incorrectly categorised and lacking in critical information, which can complicate the detection of valid safety signals. In our presentation, we will describe an electronic data capture system, which has been designed to support clinical trial processes by reducing the resource burden on investigators, improving overall trial efficiencies, and making trials safer for patients. This proprietary technology was developed using expertise proven in the delivery of the world’s first prospective, phase 3b real-world trial, ‘The Salford Lung Study, ’ which enabled robust safety monitoring and reporting processes to be accomplished by the remote monitoring of patients’ EHRs. This technology enables safety alerts that are pre-defined by the protocol to be detected from the data extracted directly from the patients EHR. Based on study-specific criteria, which are created from the standard definition of a serious adverse event (SAE) and the safety profile of the medicinal product, the system alerts the investigator or study team to the safety alert. Each safety alert will require a clinical review by the investigator or delegate; examples of the types of alerts include hospital admission, death, hepatotoxicity, neutropenia, and acute renal failure. This is achieved in near real-time; safety alerts can be reviewed along with any additional information available to determine whether they meet the protocol-defined criteria for reporting or withdrawal. This active surveillance technology helps reduce the resource burden of the more traditional methods of AE detection for the investigators and study teams and can help eliminate reporting bias. Integration of multiple healthcare data sources enables much more complete and accurate safety data to be collected as part of a trial and can also provide an opportunity to evaluate a drug’s safety profile long-term, in post-trial follow-up. By utilising this robust and proven method for safety monitoring and reporting, a much higher risk of patient cohorts can be enrolled into trials, thus promoting inclusivity and diversity. Broadening eligibility criteria and adopting more inclusive recruitment practices in the later stages of drug development will increase the ability to understand the medicinal products risk-benefit profile across the patient population that is likely to use the product in clinical practice. Furthermore, this ground-breaking approach to AE detection not only provides sponsors with better-quality safety data for their products, but it reduces the resource burden on the investigator and study teams. With the data taken directly from the source, trial costs are reduced, with minimal data validation required and near real-time reporting enables safety concerns and signals to be detected more quickly than in a traditional RCT.

Keywords: more comprehensive and accurate safety data, near real-time safety alerts, reduced resource burden, safer trials

Procedia PDF Downloads 83