Search results for: Chris Anderson
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 224

Search results for: Chris Anderson

104 Culture of Primary Cortical Neurons on Hydrophobic Nanofibers Induces the Formation of Organoid-Like Structures

Authors: Nick Weir, Robert Stevens, Alan Hargreaves, Martin McGinnity, Chris Tinsley

Abstract:

Hydrophobic materials have previously demonstrated the ability to elevate cell-cell interactions and promote the formation of neural networks whilst aligned nanofibers demonstrate the ability to induce extensive neurite outgrowth in an aligned manner. Hydrophobic materials typically elicit an immune response upon implantation and thus materials used for implantation are typically hydrophilic. Poly-L-lactic acid (PLLA) is a hydrophobic, non-immunogenic, FDA approved material that can be electrospun to form aligned nanofibers. Primary rat cortical neurons cultured for 10 days on aligned PLLA nanofibers formed 3D cell clusters, approximately 800 microns in diameter. Neurites that extended from these clusters were highly aligned due to the alignment of the nanofibers they were cultured upon and fasciculation was also evident. Plasma treatment of the PLLA nanofibers prior to seeding of cells significantly reduced the hydrophobicity and abolished the cluster formation and neurite fasciculation, whilst reducing the extent and directionality of neurite outgrowth; it is proposed that hydrophobicity induces the changes to cellular behaviors. Aligned PLLA nanofibers induced the formation of a structure that mimics the grey-white matter compartmentalization that is observed in vivo and thus represents a step forward in generating organoids or biomaterial-based implants. Upon implantation into the brain, the biomaterial architectures described here may provide a useful platform for both brain repair and brain remodeling initiatives.

Keywords: hydrophobicity, nanofibers, neurite fasciculation, neurite outgrowth, PLLA

Procedia PDF Downloads 128
103 Hip Resurfacing Makes for Easier Surgery with Better Functional Outcomes at Time of Revision: A Case Controlled Study

Authors: O. O. Onafowokan, K. Anderson, M. R. Norton, R. G. Middleton

Abstract:

Revision total hip arthroplasty (THA) is known to be a challenging procedure with potential for poor outcomes. Due to its lack of metaphyseal encroachment, hip resurfacing arthroplasty (HRA) is classified as a bone conserving procedure. Although the literature postulates that this is an advantage at time of revision surgery, there is no evidence to either support or refute this claim. We identified 129 hips that had undergone HRA and 129 controls undergoing first revision THA. We recorded the clinical assessment and survivorship of implants in a multi-surgeon, single centre, retrospective case control series for both arms. These were matched for age and sex. Data collected included demographics, indications for surgery, Oxford Hip Score (OHS), length of surgery, length of hospital stay, blood transfusion, implant complexity and further surgical procedures. Significance was taken as p < 0.05. Mean follow up was 7.5 years (1 to 15). There was a significant 6 point difference in postoperative OHS in favour of the revision resurfacing group (p=0.0001). The revision HRA group recorded 48 minutes less length of surgery (p<0.0001), 2 days less in length of hospital stay (p=0.018), a reduced need for blood transfusion (p=0.0001), a need for less complexity in revision implants (p=0.001) and a reduced probability of further surgery being required (P=0.003). Whilst we acknowledge the limitations of this study our results suggest that, in contrast to THA, the bone conservation element of HRA may make for a less traumatic revision procedure with better functional outcomes. Use of HRA has seen a dramatic decline as a result of concerns regarding metallosis. However, this information remains of relevance when counselling young active patients about their arthroplasty options and may become pertinent in the future if the promise of ceramic hip resurfacing is ever realized.

Keywords: hip resurfacing, metallosis, revision surgery, total hip arthroplasty

Procedia PDF Downloads 59
102 Cost Benefit Analysis: Evaluation among the Millimetre Wavebands and SHF Bands of Small Cell 5G Networks

Authors: Emanuel Teixeira, Anderson Ramos, Marisa Lourenço, Fernando J. Velez, Jon M. Peha

Abstract:

This article discusses the benefit cost analysis aspects of millimetre wavebands (mmWaves) and Super High Frequency (SHF). The devaluation along the distance of the carrier-to-noise-plus-interference ratio with the coverage distance is assessed by considering two different path loss models, the two-slope urban micro Line-of-Sight (UMiLoS) for the SHF band and the modified Friis propagation model, for frequencies above 24 GHz. The equivalent supported throughput is estimated at the 5.62, 28, 38, 60 and 73 GHz frequency bands and the influence of carrier-to-noise-plus-interference ratio in the radio and network optimization process is explored. Mostly owing to the lessening caused by the behaviour of the two-slope propagation model for SHF band, the supported throughput at this band is higher than at the millimetre wavebands only for the longest cell lengths. The benefit cost analysis of these pico-cellular networks was analysed for regular cellular topologies, by considering the unlicensed spectrum. For shortest distances, we can distinguish an optimal of the revenue in percentage terms for values of the cell length, R ≈ 10 m for the millimeter wavebands and for longest distances an optimal of the revenue can be observed at R ≈ 550 m for the 5.62 GHz. It is possible to observe that, for the 5.62 GHz band, the profit is slightly inferior than for millimetre wavebands, for the shortest Rs, and starts to increase for cell lengths approximately equal to the ratio between the break-point distance and the co-channel reuse factor, achieving a maximum for values of R approximately equal to 550 m.

Keywords: millimetre wavebands, SHF band, SINR, cost benefit analysis, 5G

Procedia PDF Downloads 118
101 Biochar Affects Compressive Strength of Portland Cement Composites: A Meta-Analysis

Authors: Zhihao Zhao, Ali El-Nagger, Johnson Kau, Chris Olson, Douglas Tomlinson, Scott X. Chang

Abstract:

One strategy to reduce CO₂ emissions from cement production is to reduce the amount of Portland cement produced by replacing it with supplementary cementitious materials (SCMs). Biochar is a potential SCM that is an eco-friendly and stable porous pyrolytic material. However, the effects of biochar addition on the performances of Portland cement composites are not fully understood. This meta-analysis investigated the impact of biochar addition on the 7- and 28-day compressive strength of Portland cement composites based on 606 paired observations. Biochar feedstock type, pyrolysis conditions, pre-treatments and modifications, biochar dosage, and curing type all influenced the compressive strength of Portland cement composites. Biochars obtained from plant-based feedstocks (except rice and hardwood) improved the 28-day compressive strength of Portland cement composites by 3-13%. Biochars produced at pyrolysis temperatures higher than 450 °C, with a heating rate of around 10 °C/min, increased the 28-day compressive strength more effectively. Furthermore, the addition of biochars with small particle sizes increased the compressive strength of Portland cement composites by 2-7% compared to those without biochar addition. Biochar dosage of < 2.5% of the binder weight enhanced both compressive strengths and common curing methods maintained the effect of biochar addition. However, when mixing the cement, adding fine and coarse aggregates such as sand and gravel affects the concrete and mortar's compressive strength, diminishing the effect of biochar addition and making the biochar effect nonsignificant. We conclude that appropriate biochar addition could maintain or enhance the mechanical performance of Portland cement composites, and future research should explore the mechanisms of biochar effects on the performance of cement composites.

Keywords: biochar, Portland cement, constructure, compressive strength, meta-analysis

Procedia PDF Downloads 25
100 Quantification of Soft Tissue Artefacts Using Motion Capture Data and Ultrasound Depth Measurements

Authors: Azadeh Rouhandeh, Chris Joslin, Zhen Qu, Yuu Ono

Abstract:

The centre of rotation of the hip joint is needed for an accurate simulation of the joint performance in many applications such as pre-operative planning simulation, human gait analysis, and hip joint disorders. In human movement analysis, the hip joint center can be estimated using a functional method based on the relative motion of the femur to pelvis measured using reflective markers attached to the skin surface. The principal source of errors in estimation of hip joint centre location using functional methods is soft tissue artefacts due to the relative motion between the markers and bone. One of the main objectives in human movement analysis is the assessment of soft tissue artefact as the accuracy of functional methods depends upon it. Various studies have described the movement of soft tissue artefact invasively, such as intra-cortical pins, external fixators, percutaneous skeletal trackers, and Roentgen photogrammetry. The goal of this study is to present a non-invasive method to assess the displacements of the markers relative to the underlying bone using optical motion capture data and tissue thickness from ultrasound measurements during flexion, extension, and abduction (all with knee extended) of the hip joint. Results show that the artefact skin marker displacements are non-linear and larger in areas closer to the hip joint. Also marker displacements are dependent on the movement type and relatively larger in abduction movement. The quantification of soft tissue artefacts can be used as a basis for a correction procedure for hip joint kinematics.

Keywords: hip joint center, motion capture, soft tissue artefact, ultrasound depth measurement

Procedia PDF Downloads 254
99 Lateral Sural Artery Perforators: A Cadaveric Dissection Study to Assess Perforator Surface Anatomy Variability and Average Pedicle Length for Flap Reconstruction

Authors: L. Sun, O. Bloom, K. Anderson

Abstract:

The medial and lateral sural artery perforator flaps (MSAP and LSAP, respectively) are two recently described flaps that are less commonly used in lower limb trauma reconstructive surgeries compared to flaps such as the anterolateral thigh (ALT) flap or the gastrocnemius flap. The LSAP flap has several theoretical benefits over the MSAP, including the ability to be sensate and being more easily manoeuvred into position as a local flap for coverage of lateral knee or leg defects. It is less commonly used in part due to a lack of documented studies of the anatomical reliability of the perforator, and an unquantified average length of the pedicle used for microsurgical anastomosis (if used as a free flap) or flap rotation (if used as a pedicled flap). It has been shown to have significantly lower donor site morbidity compared to other flaps such as the ALT, due to the decreased need for intramuscular dissection and resulting in less muscle loss at the donor site. 11 cadaveric lower limbs were dissected, with a mean of 1.6 perforators per leg, with an average pedicle length of 45mm to the sural artery and 70mm to the popliteal artery. While the majority of perforating arteries lay close to the midline (average of 19mm lateral to the midline), there were patients whose artery was significantly lateral and would have been likely injured by the initial incision during an operation. Adding to the literature base of documented LSAP dissections provides a greater understanding of the anatomical basis of these perforator flaps, and the authors hope this will establish them as a more commonly used and discussed option when managing complicated lower limb trauma requiring soft tissue reconstruction.

Keywords: cadaveric, dissection, lateral, perforator flap, sural artery, surface anatomy

Procedia PDF Downloads 129
98 Predicting High-Risk Endometrioid Endometrial Carcinomas Using Protein Markers

Authors: Yuexin Liu, Gordon B. Mills, Russell R. Broaddus, John N. Weinstein

Abstract:

The lethality of endometrioid endometrial cancer (EEC) is primarily attributable to the high-stage diseases. However, there are no available biomarkers that predict EEC patient staging at the time of diagnosis. We aim to develop a predictive scheme to help in this regards. Using reverse-phase protein array expression profiles for 210 EEC cases from The Cancer Genome Atlas (TCGA), we constructed a Protein Scoring of EEC Staging (PSES) scheme for surgical stage prediction. We validated and evaluated its diagnostic potential in an independent cohort of 184 EEC cases obtained at MD Anderson Cancer Center (MDACC) using receiver operating characteristic curve analyses. Kaplan-Meier survival analysis was used to examine the association of PSES score with patient outcome, and Ingenuity pathway analysis was used to identify relevant signaling pathways. Two-sided statistical tests were used. PSES robustly distinguished high- from low-stage tumors in the TCGA cohort (area under the ROC curve [AUC]=0.74; 95% confidence interval [CI], 0.68 to 0.82) and in the validation cohort (AUC=0.67; 95% CI, 0.58 to 0.76). Even among grade 1 or 2 tumors, PSES was significantly higher in high- than in low-stage tumors in both the TCGA (P = 0.005) and MDACC (P = 0.006) cohorts. Patients with positive PSES score had significantly shorter progression-free survival than those with negative PSES in the TCGA (hazard ratio [HR], 2.033; 95% CI, 1.031 to 3.809; P = 0.04) and validation (HR, 3.306; 95% CI, 1.836 to 9.436; P = 0.0007) cohorts. The ErbB signaling pathway was most significantly enriched in the PSES proteins and downregulated in high-stage tumors. PSES may provide clinically useful prediction of high-risk tumors and offer new insights into tumor biology in EEC.

Keywords: endometrial carcinoma, protein, protein scoring of EEC staging (PSES), stage

Procedia PDF Downloads 197
97 Identifying Pathogenic Mycobacterium Species Using Multiple Gene Phylogenetic Analysis

Authors: Lemar Blake, Chris Oura, Ayanna C. N. Phillips Savage

Abstract:

Improved DNA sequencing technology has greatly enhanced bacterial identification, especially for organisms that are difficult to culture. Mycobacteriosis with consistent hyphema, bilateral exophthalmia, open mouth gape and ocular lesions, were observed in various fish populations at the School of Veterinary Medicine, Aquaculture/Aquatic Animal Health Unit. Objective: To identify the species of Mycobacterium that is affecting aquarium fish at the School of Veterinary Medicine, Aquaculture/Aquatic Animal Health Unit. Method: A total of 13 fish samples were collected and analyzed via: Ziehl-Neelsen, conventional polymerase chain reaction (PCR) and real-time PCR. These tests were carried out simultaneously for confirmation. The following combination of conventional primers: 16s rRNA (564 bp), rpoB (396 bp), sod (408 bp) were used. Concatenation of the gene fragments was carried out to phylogenetically classify the organism. Results: Acid fast non-branching bacilli were detected in all samples from homogenized internal organs. All 13 acid fast samples were positive for Mycobacterium via real-time PCR. Partial gene sequences using all three primer sets were obtained from two samples and demonstrated a novel strain. A strain 99% related to Mycobacterium marinum was also confirmed in one sample, using 16srRNA and rpoB genes. The two novel strains were clustered with the rapid growers and strains that are known to affect humans. Conclusions: Phylogenetic analysis demonstrated two novel Mycobacterium strains with the potential of being zoonotic and one strain 99% related to Mycobacterium marinum.

Keywords: polymerase chain reaction, phylogenetic, DNA sequencing, zoonotic

Procedia PDF Downloads 116
96 Comparison of Adsorbents for Ammonia Removal from Mining Wastewater

Authors: F. Al-Sheikh, C. Moralejo, M. Pritzker, W. A. Anderson, A. Elkamel

Abstract:

Ammonia in mining wastewater is a significant problem, and treatment can be especially difficult in cold climates where biological treatment is not feasible. An adsorption process is one of the alternative processes that can be used to reduce ammonia concentrations to acceptable limits, and therefore a LEWATIT resin strongly acidic H+ form ion exchange resin and a Bowie Chabazite Na form AZLB-Na zeolite were tested to assess their effectiveness. For these adsorption tests, two packed bed columns (a mini-column constructed from a 32-cm long x 1-cm diameter piece of glass tubing, and a 60-cm long x 2.5-cm diameter Ace Glass chromatography column) were used containing varying quantities of the adsorbents. A mining wastewater with ammonia concentrations of 22.7 mg/L was fed through the columns at controlled flowrates. In the experimental work, maximum capacities of the LEWATIT ion exchange resin were 0.438, 0.448, and 1.472 mg/g for 3, 6, and 9 g respectively in a mini column and 1.739 mg/g for 141.5 g in a larger Ace column while the capacities for the AZLB-Na zeolite were 0.424, and 0.784 mg/g for 3, and 6 g respectively in the mini column and 1.1636 mg/g for 38.5 g in the Ace column. In the theoretical work, Thomas, Adams-Bohart, and Yoon-Nelson models were constructed to describe a breakthrough curve of the adsorption process and find the constants of the above-mentioned models. In the regeneration tests, 5% hydrochloric acid, HCl (v/v) and 10% sodium hydroxide, NaOH (w/v) were used to regenerate the LEWATIT resin and AZLB-Na zeolite with 44 and 63.8% recovery, respectively. In conclusion, continuous flow adsorption using a LEWATIT ion exchange resin and an AZLB-Na zeolite is efficient when using a co-flow technique for removal of the ammonia from wastewater. Thomas, Adams-Bohart, and Yoon-Nelson models satisfactorily fit the data with R2 closer to 1 in all cases.

Keywords: AZLB-Na zeolite, continuous adsorption, Lewatit resin, models, regeneration

Procedia PDF Downloads 345
95 Integrating Molecular Approaches to Understand Diatom Assemblages in Marine Environment

Authors: Shruti Malviya, Chris Bowler

Abstract:

Environmental processes acting at multiple spatial scales control marine diatom community structure. However, the contribution of local factors (e.g., temperature, salinity, etc.) in these highly complex systems is poorly understood. We, therefore, investigated the diatom community organization as a function of environmental predictors and determined the relative contribution of various environmental factors on the structure of marine diatoms assemblages in the world’s ocean. The dataset for this study was derived from the Tara Oceans expedition, constituting 46 sampling stations from diverse oceanic provinces. The V9 hypervariable region of 18s rDNA was organized into assemblages based on their distributional co-occurrence. Using Ward’s hierarchical clustering, nine clusters were defined. The number of ribotypes and reads varied within each cluster-three clusters (II, VIII and IX) contained only a few reads whereas two of them (I and IV) were highly abundant. Of the nine clusters, seven can be divided into two categories defined by a positive correlation with phosphate and nitrate and a negative correlation with longitude and, the other by a negative correlation with salinity, temperature, latitude and positive correlation with Lyapunov exponent. All the clusters were found to be remarkably dominant in South Pacific Ocean and can be placed into three classes, namely Southern Ocean-South Pacific Ocean clusters (I, II, V, VIII, IX), South Pacific Ocean clusters (IV and VII), and cosmopolitan clusters (III and VI). Our findings showed that co-occurring ribotypes can be significantly associated into recognizable clusters which exhibit a distinct response to environmental variables. This study, thus, demonstrated distinct behavior of each recognized assemblage displaying a taxonomic and environmental signature.

Keywords: assemblage, diatoms, hierarchical clustering, Tara Oceans

Procedia PDF Downloads 164
94 In vitro Skin Model for Enhanced Testing of Antimicrobial Textiles

Authors: Steven Arcidiacono, Robert Stote, Erin Anderson, Molly Richards

Abstract:

There are numerous standard test methods for antimicrobial textiles that measure activity against specific microorganisms. However, many times these results do not translate to the performance of treated textiles when worn by individuals. Standard test methods apply a single target organism grown under optimal conditions to a textile, then recover the organism to quantitate and determine activity; this does not reflect the actual performance environment that consists of polymicrobial communities in less than optimal conditions or interaction of the textile with the skin substrate. Here we propose the development of in vitro skin model method to bridge the gap between lab testing and wear studies. The model will consist of a defined polymicrobial community of 5-7 commensal microbes simulating the skin microbiome, seeded onto a solid tissue platform to represent the skin. The protocol would entail adding a non-commensal test organism of interest to the defined community and applying a textile sample to the solid substrate. Following incubation, the textile would be removed and the organisms recovered, which would then be quantitated to determine antimicrobial activity. Important parameters to consider include identification and assembly of the defined polymicrobial community, growth conditions to allow the establishment of a stable community, and choice of skin surrogate. This model could answer the following questions: 1) is the treated textile effective against the target organism? 2) How is the defined community affected? And 3) does the textile cause unwanted effects toward the skin simulant? The proposed model would determine activity under conditions comparable to the intended application and provide expanded knowledge relative to current test methods.

Keywords: antimicrobial textiles, defined polymicrobial community, in vitro skin model, skin microbiome

Procedia PDF Downloads 113
93 Unpacking the Summarising Event in Trauma Emergencies: The Case of Pre-briefings

Authors: Professor Jo Angouri, Polina Mesinioti, Chris Turner

Abstract:

In order for a group of ad-hoc professional to perform as a team, a shared understanding of the problem at hand and an agreed action plan are necessary components. This is particularly significant in complex, time sensitive professional settings such as in trauma emergencies. In this context, team briefings prior to the patient arrival (pre-briefings) constitute a critical event for the performance of the team; they provide the necessary space for co-constructing a shared understanding of the situation through summarising information available to the team: yet the act of summarising is widely assumed in medical practice but not systematically researched. In the vast teamwork literature, terms such as ‘shared mental model’, ‘mental space’ and ‘cognate labelling’ are used extensively, and loosely, to denote the outcome of the summarising process, but how exactly this is done interactionally remains under researched. This paper reports on the forms and functions of pre-briefings in a major trauma centre in the UK. Taking an interactional approach, we draw on 30 simulated and real-life trauma emergencies (15 from each dataset) and zoom in on the use of pre-briefings, which we consider focal points in the management of trauma emergencies. We show how ad hoc teams negotiate sharedness of future orientation through summarising, synthesising information, and establishing common understanding of the situation. We illustrate the role, characteristics, and structure of pre-briefing sequences that have been evaluated as ‘efficient’ in our data and the impact (in)effective pre-briefings have on teamwork. Our work shows that the key roles in the event own the act of summarising and we problematise the implications for leadership in trauma emergencies. We close the paper with a model for pre-briefing and provide recommendations for clinical practice, arguing that effective pre-briefing practice is teachable.

Keywords: summarising, medical emergencies, interaction analysis, shared/mental models

Procedia PDF Downloads 61
92 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 105
91 A Mixed-Methods Approach to Developing and Evaluating an SME Business Support Model for Innovation in Rural England

Authors: Steve Fish, Chris Lambert

Abstract:

Cumbria is a geo-political county in Northwest England within which the Lake District National Park, a UNESCO World Heritage site is located. Whilst the area has a formidable reputation for natural beauty and historic assets, the innovation ecosystem is described as ‘patchy’ for a number of reasons. The county is one of the largest in England by area and is sparsely populated. This paper describes the needs, development and delivery of an SME business-support programme funded by the European Regional Development Fund, Lancaster University and the University of Cumbria. The Cumbria Innovations Platform (CUSP) Project has been designed to respond to the nuanced needs of SMEs in this locale, whilst promoting the adoption of research and innovation. CUSP utilizes a funnel method to support rural businesses with access to university innovation intervention. CUSP has been built on a three-tier model: Communicate, Collaborate and Create. The paper describes this project in detail and presents results in terms of output indicators achieved, a beneficiary telephone survey and wider economic forecasts. From a pragmatic point-of-view, the paper provides experiences and reflections of those people who are delivering and evaluating knowledge exchange. The authors discuss some of the benefits, challenges and implications for both policy makers and practitioners. Finally, the paper aims to serve as an invitation to others who may consider adopting a similar method of university-industry collaboration in their own region.

Keywords: regional business support, rural business support, university-industry collaboration, collaborative R&D, SMEs, knowledge exchange

Procedia PDF Downloads 100
90 MAGNI Dynamics: A Vision-Based Kinematic and Dynamic Upper-Limb Model for Intelligent Robotic Rehabilitation

Authors: Alexandros Lioulemes, Michail Theofanidis, Varun Kanal, Konstantinos Tsiakas, Maher Abujelala, Chris Collander, William B. Townsend, Angie Boisselle, Fillia Makedon

Abstract:

This paper presents a home-based robot-rehabilitation instrument, called ”MAGNI Dynamics”, that utilized a vision-based kinematic/dynamic module and an adaptive haptic feedback controller. The system is expected to provide personalized rehabilitation by adjusting its resistive and supportive behavior according to a fuzzy intelligence controller that acts as an inference system, which correlates the user’s performance to different stiffness factors. The vision module uses the Kinect’s skeletal tracking to monitor the user’s effort in an unobtrusive and safe way, by estimating the torque that affects the user’s arm. The system’s torque estimations are justified by capturing electromyographic data from primitive hand motions (Shoulder Abduction and Shoulder Forward Flexion). Moreover, we present and analyze how the Barrett WAM generates a force-field with a haptic controller to support or challenge the users. Experiments show that by shifting the proportional value, that corresponds to different stiffness factors of the haptic path, can potentially help the user to improve his/her motor skills. Finally, potential areas for future research are discussed, that address how a rehabilitation robotic framework may include multisensing data, to improve the user’s recovery process.

Keywords: human-robot interaction, kinect, kinematics, dynamics, haptic control, rehabilitation robotics, artificial intelligence

Procedia PDF Downloads 297
89 Comparison of FNTD and OSLD Detectors' Responses to Light Ion Beams Using Monte Carlo Simulations and Exprimental Data

Authors: M. R. Akbari, H. Yousefnia, A. Ghasemi

Abstract:

Al2O3:C,Mg fluorescent nuclear track detector (FNTD) and Al2O3:C optically stimulated luminescence detector (OSLD) are becoming two of the applied detectors in ion dosimetry. Therefore, the response of these detectors to hadron beams is highly of interest in radiation therapy (RT) using ion beams. In this study, these detectors' responses to proton and Helium-4 ion beams were compared using Monte Carlo simulations. The calculated data for proton beams were compared with Markus ionization chamber (IC) measurement (in water phantom) from M.D. Anderson proton therapy center. Monte Carlo simulations were performed via the FLUKA code (version 2011.2-17). The detectors were modeled in cylindrical shape at various depths of the water phantom without shading each other for obtaining relative depth dose in the phantom. Mono-energetic parallel ion beams in different incident energies (100 MeV/n to 250 MeV/n) were collided perpendicularly on the phantom surface. For proton beams, the results showed that the simulated detectors have over response relative to IC measurements in water phantom. In all cases, there were good agreements between simulated ion ranges in the water with calculated and experimental results reported by the literature. For proton, maximum peak to entrance dose ratio in the simulated water phantom was 4.3 compared with about 3 obtained from IC measurements. For He-4 ion beams, maximum peak to entrance ratio calculated by both detectors was less than 3.6 in all energies. Generally, it can be said that FLUKA is a good tool to calculate Al2O3:C,Mg FNTD and Al2O3:C OSLD detectors responses to therapeutic proton and He-4 ion beams. It can also calculate proton and He-4 ion ranges with a reasonable accuracy.

Keywords: comparison, FNTD and OSLD detectors response, light ion beams, Monte Carlo simulations

Procedia PDF Downloads 310
88 Comparison Approach for Wind Resource Assessment to Determine Most Precise Approach

Authors: Tasir Khan, Ishfaq Ahmad, Yejuan Wang, Muhammad Salam

Abstract:

Distribution models of the wind speed data are essential to assess the potential wind speed energy because it decreases the uncertainty to estimate wind energy output. Therefore, before performing a detailed potential energy analysis, the precise distribution model for data relating to wind speed must be found. In this research, material from numerous criteria goodness-of-fits, such as Kolmogorov Simonov, Anderson Darling statistics, Chi-Square, root mean square error (RMSE), AIC and BIC were combined finally to determine the wind speed of the best-fitted distribution. The suggested method collectively makes each criterion. This method was useful in a circumstance to fitting 14 distribution models statistically with the data of wind speed together at four sites in Pakistan. The consequences show that this method provides the best source for selecting the most suitable wind speed statistical distribution. Also, the graphical representation is consistent with the analytical results. This research presents three estimation methods that can be used to calculate the different distributions used to estimate the wind. In the suggested MLM, MOM, and MLE the third-order moment used in the wind energy formula is a key function because it makes an important contribution to the precise estimate of wind energy. In order to prove the presence of the suggested MOM, it was compared with well-known estimation methods, such as the method of linear moment, and maximum likelihood estimate. In the relative analysis, given to several goodness-of-fit, the presentation of the considered techniques is estimated on the actual wind speed evaluated in different time periods. The results obtained show that MOM certainly provides a more precise estimation than other familiar approaches in terms of estimating wind energy based on the fourteen distributions. Therefore, MOM can be used as a better technique for assessing wind energy.

Keywords: wind-speed modeling, goodness of fit, maximum likelihood method, linear moment

Procedia PDF Downloads 58
87 Association Between Short-term NOx Exposure and Asthma Exacerbations in East London: A Time Series Regression Model

Authors: Hajar Hajmohammadi, Paul Pfeffer, Anna De Simoni, Jim Cole, Chris Griffiths, Sally Hull, Benjamin Heydecker

Abstract:

Background: There is strong interest in the relationship between short-term air pollution exposure and human health. Most studies in this field focus on serious health effects such as death or hospital admission, but air pollution exposure affects many people with less severe impacts, such as exacerbations of respiratory conditions. A lack of quantitative analysis and inconsistent findings suggest improved methodology is needed to understand these effectsmore fully. Method: We developed a time series regression model to quantify the relationship between daily NOₓ concentration and Asthma exacerbations requiring oral steroids from primary care settings. Explanatory variables include daily NOₓ concentration measurements extracted from 8 available background and roadside monitoring stations in east London and daily ambient temperature extracted for London City Airport, located in east London. Lags of NOx concentrations up to 21 days (3 weeks) were used in the model. The dependent variable was the daily number of oral steroid courses prescribed for GP registered patients with asthma in east London. A mixed distribution model was then fitted to the significant lags of the regression model. Result: Results of the time series modelling showed a significant relationship between NOₓconcentrations on each day and the number of oral steroid courses prescribed in the following three weeks. In addition, the model using only roadside stations performs better than the model with a mixture of roadside and background stations.

Keywords: air pollution, time series modeling, public health, road transport

Procedia PDF Downloads 113
86 A Remotely Piloted Aerial Application System to Control Rangeland Grasshoppers

Authors: Daniel Martin, Roberto Rodriguez, Derek Woller, Chris Reuter, Lonnie Black, Mohamed Latheef

Abstract:

The grasshoppers comprised of heterogeneous assemblages of Acrididae (Family: Orthoptera) species periodically reach outbreak levels by their gregarious behavior and voracious feeding habits, devouring stems and leaves of food crops and rangeland pasture. Cattle consume about 1.5-2.5% of their body weight in forage per day, so pound for pound, a grasshopper will eat 12-20 times as much plant material as a steer and cause serious economic damage to the cattle industry, especially during a drought when forage is already scarce. Grasshoppers annually consume more than 20% of rangeland forages in the western United States at an estimated loss of $1.25 billion per year in forage. A remotely piloted aerial application system with both a spreader and spray application system was used to apply granular insect bait and a liquid formulation of Carbaryl for control of grasshopper infestations on rangeland in New Mexico, United States. Pattern testing and calibration of both the granular and liquid application systems were conducted to determine proper application rate set up and distribution pattern. From these tests, an effective swath was calculated. Results showed that 14 days after application, granular baits were only effective on those grasshopper species that accepted the baits. The liquid formulation at 16 ounces per acre was highly successful at controlling all grasshopper species. Results of this study indicated that a remotely piloted aerial application system can be used to effectively deliver grasshopper control products in both granular and liquid form. However, the spray application treatment proved to be most effective and efficient for all grasshopper species present.

Keywords: Carbaryl, Grasshopper, Insecticidal Efficacy, Remotely Piloted Aerial Application System

Procedia PDF Downloads 189
85 The Predictors of Head and Neck Cancer-Head and Neck Cancer-Related Lymphedema in Patients with Resected Advanced Head and Neck Cancer

Authors: Shu-Ching Chen, Li-Yun Lee

Abstract:

The purpose of the study was to identify the factors associated with head and neck cancer-related lymphoedema (HNCRL)-related symptoms, body image, and HNCRL-related functional outcomes among patients with resected advanced head and neck cancer. A cross-sectional correlational design was conducted to examine the predictors of HNCRL-related functional outcomes in patients with resected advanced head and neck cancer. Eligible patients were recruited from a single medical center in northern Taiwan. Consecutive patients were approached and recruited from the Radiation Head and Neck Outpatient Department of this medical center. Eligible subjects were assessed for the Symptom Distress Scale–Modified for Head and Neck Cancer (SDS-mhnc), Brief International Classification of Functioning, Disability and Health (ICF) Core Set for Head and Neck Cancer (BCSQ-H&N), Body Image Scale–Modified (BIS-m), The MD Anderson Head and Neck Lymphedema Rating Scale (MDAHNLRS), The Foldi’s Stages of Lymphedema (Foldi’s Scale), Patterson’s Scale, UCLA Shoulder Rating Scale (UCLA SRS), and Karnofsky’s Performance Status Index (KPS). The results showed that the worst problems with body HNCRL functional outcomes. Patients’ HNCRL symptom distress and performance status are robust predictors across over for overall HNCRL functional outcomes, problems with body HNCRL functional outcomes, and activity and social functioning HNCRL functional outcomes. Based on the results of this period research program, we will develop a Cancer Rehabilitation and Lymphedema Care Program (CRLCP) to use in the care of patients with resected advanced head and neck cancer.

Keywords: head and neck cancer, resected, lymphedema, symptom, body image, functional outcome

Procedia PDF Downloads 221
84 Design and Fabrication of Stiffness Reduced Metallic Locking Compression Plates through Topology Optimization and Additive Manufacturing

Authors: Abdulsalam A. Al-Tamimi, Chris Peach, Paulo Rui Fernandes, Paulo J. Bartolo

Abstract:

Bone fixation implants currently used to treat traumatic fractured bones and to promote fracture healing are built with biocompatible metallic materials such as stainless steel, cobalt chromium and titanium and its alloys (e.g., CoCrMo and Ti6Al4V). The noticeable stiffness mismatch between current metallic implants and host bone associates with negative outcomes such as stress shielding which causes bone loss and implant loosening leading to deficient fracture treatment. This paper, part of a major research program to design the next generation of bone fixation implants, describes the combined use of three-dimensional (3D) topology optimization (TO) and additive manufacturing powder bed technology (Electron Beam Melting) to redesign and fabricate the plates based on the current standard one (i.e., locking compression plate). Topology optimization is applied with an objective function to maximize the stiffness and constraint by volume reductions (i.e., 25-75%) in order to obtain optimized implant designs with reduced stress shielding phenomenon, under different boundary conditions (i.e., tension, bending, torsion and combined loads). The stiffness of the original and optimised plates are assessed through a finite-element study. The TO results showed actual reduction in the stiffness for most of the plates due to the critical values of volume reduction. Additionally, the optimized plates fabricated using powder bed techniques proved that the integration between the TO and additive manufacturing presents the capability of producing stiff reduced plates with acceptable tolerances.

Keywords: additive manufacturing, locking compression plate, finite element, topology optimization

Procedia PDF Downloads 175
83 Unfolding Global Biodiversity Patterns of Marine Planktonic Diatom Communities across the World's Oceans

Authors: Shruti Malviya, Chris Bowler

Abstract:

Analysis of microbial eukaryotic diversity is fundamental to understanding ecosystems’ structure, biology, and ecology. Diatoms (Stramenopiles, Bacillariophyceae) are one of the most diverse and ecologically prominent groups of phytoplankton. This study was performed to enhance the understanding of global biodiversity patterns and structure of planktonic diatom communities across the world's oceans. We used the metabarcoding data set generated from the biological samples and associated environmental data collected during the Tara Oceans (2009-2013) global circumnavigation covering all major oceanic provinces. A total of ~18 million diatom V9-18S rDNA tags from 126 sampling stations, constituting 631 size-fractionated plankton communities were generated. Using ~250,000 unique diatom metabarcodes, the global diatom distribution and diversity across size classes, genus and ecological niches was assessed. Notably, our analysis revealed: (i) a new estimate of the total number of planktonic diatom species, (ii) a considerable unknown diversity and exceptionally high diversity in the open ocean, and (iii) complex diversity patterns across oceanic provinces. Also, co-occurrence of several ribotypes in locations separated by great geographic distances (equatorial stations) demonstrated a widespread but not ubiquitous distribution. This work provides a comprehensive perspective on diatom distribution and diversity in the world’s oceans and elaborates interconnections between associated theories and underlying drivers. It shows how meta-barcoding approaches can provide a framework to investigate environmental diversity at a global scale, which is deemed as an essential step in answering various ecological research questions. Consequently, this work also provides a reference point to explore how microbial communities will respond to environmental conditions.

Keywords: diatoms, Tara Oceans, biodiversity, metabarcoding

Procedia PDF Downloads 114
82 The Importance of Psychiatric Nursing in the Care of Mental Health in Transex Patient in Brazil

Authors: Aline Giardin, Ana Fontoura, Thomas Anderson

Abstract:

Transsexuality is a condition that requires the work of professionals from various fields for diagnosis and treatment. The correct diagnosis is very important because the surgery is irreversible. Diagnostic elements are essentially clinical and an observation period of two years prior to surgery is recommended. In this review article, we discuss the importance of psychiatric nursing for the care of transgender patients, as well as their mental health. Transsexuality is a phenomenon that contrasts our common understandings of sexuality, but it is not a sexual issue. Also called gender dysphoria is a mismatch between the anatomical sex of an individual and their gender identity. In relation to mental health, among transsexuals, we find variations ranging from psychoses to total normality. As the etiology is still controversial, there is no biological marker and only the clinical criteria can be used. Portaria nº 2803, of November 19, 2013, Brazil, regulates the surgical reassignment of sex by the SUS and the nurse started to work also in operational groups (transsexuals who wish to perform surgery and other procedures of reassignment of sex). Health and education, establishes links and guides the care that female and male transsexual patients will have to have before and after surgery. It is also important to say that the work of health education is not only concerned with aspects related to the sexual reassignment surgery, but also with the mental health of its patients and with the family. One of the main complaints of patients is the impression that professionals seem to find them strange and feel extremely uncomfortable when they talk about their desire to undergo sex-change surgery: Investigate the role of nursing in the process of change sexual. Our methodology was a review of articles produced between 1994 and 2015. It was concluded that nursing should specialize for this new demand, which is growing more and more in our health services. We believe that nursing is specializing to enter this context and the expectations are good for the professionals and for the reception of the transsexual patient.

Keywords: transex, nursing, importance, patient

Procedia PDF Downloads 238
81 The Psychology of Virtual Relationships Provides Solutions to the Challenges of Online Learning: A Pragmatic Review and Case Study from the University of Birmingham, UK

Authors: Catherine Mangan, Beth Anderson

Abstract:

There has been a significant drive to use online or hybrid learning in Higher Education (HE) over recent years. HEs with a virtual presence offer their communities a range of benefits, including the potential for greater inclusivity, diversity, and collaboration; more flexible learning packages; and more engaging, dynamic content. Institutions can also experience significant challenges when seeking to extend learning spaces in this way, as can learners themselves. For example, staff members’ and learners’ digital literacy varies (as do their perceptions of technologies in use), and there can be confusion about optimal approaches to implementation. Furthermore, the speed with which HE institutions have needed to shift to fully online or hybrid models, owing to the COVID19 pandemic, has highlighted the significant barriers to successful implementation. HE environments have been shown to predict a range of organisational, academic, and experiential outcomes, both positive and negative. Much research has focused on the social aspect of virtual platforms, as well as the nature and effectiveness of the technologies themselves. There remains, however, a relative paucity of synthesised knowledge on the psychology of learners’ relationships with their institutions; specifically, how individual difference and interpersonal factors predict students’ ability and willingness to engage with novel virtual learning spaces. Accordingly, extending learning spaces remains challenging for institutions, and wholly remote courses, in particular, can experience high attrition rates. Focusing on the last five years, this pragmatic review summarises evidence from the psychological and pedagogical literature. In particular, the review highlights the importance of addressing the psychological and relational complexities of students’ shift from offline to online engagement. In doing so, it identifies considerations for HE institutions looking to deliver in this way.

Keywords: higher education, individual differences, interpersonal relationships, online learning, virtual environment

Procedia PDF Downloads 145
80 Polymer Mixing in the Cavity Transfer Mixer

Authors: Giovanna Grosso, Martien A. Hulsen, Arash Sarhangi Fard, Andrew Overend, Patrick. D. Anderson

Abstract:

In many industrial applications and, in particular in polymer industry, the quality of mixing between different materials is fundamental to guarantee the desired properties of finished products. However, properly modelling and understanding polymer mixing often presents noticeable difficulties, because of the variety and complexity of the physical phenomena involved. This is the case of the Cavity Transfer Mixer (CTM), for which a clear understanding of mixing mechanisms is still missing, as well as clear guidelines for the system optimization. This device, invented and patented by Gale at Rapra Technology Limited, is an add-on to be mounted downstream of existing extruders, in order to improve distributive mixing. It consists of two concentric cylinders, the rotor and stator, both provided with staggered rows of hemispherical cavities. The inner cylinder (rotor) rotates, while the outer (stator) remains still. At the same time, the pressure load imposed upstream, pushes the fluid through the CTM. Mixing processes are driven by the flow field generated by the complex interaction between the moving geometry, the imposed pressure load and the rheology of the fluid. In such a context, the present work proposes a complete and accurate three dimensional modelling of the CTM and results of a broad range of simulations assessing the impact on mixing of several geometrical and functioning parameters. Among them, we find: the number of cavities per row, the number of rows, the size of the mixer, the rheology of the fluid and the ratio between the rotation speed and the fluid throughput. The model is composed of a flow part and a mixing part: a finite element solver computes the transient velocity field, which is used in the mapping method implementation in order to simulate the concentration field evolution. Results of simulations are summarized in guidelines for the device optimization.

Keywords: Mixing, non-Newtonian fluids, polymers, rheology.

Procedia PDF Downloads 346
79 Mechanisms of Action in Mindfulness-Based Cognitive Therapy (MBCT) and Mindfulness-Based Stress Reduction (MBSR) in People with Physical and/or Psychological Conditions: A Systematic Review

Authors: Modi Alsubaie, Willem Kuyken, Rebecca Abbott, Barnaby Dunn, Chris Dickens, Tina Keil, William Henley

Abstract:

Background: Recently, there has been an increased interest in studying the effects of mindfulness-based interventions for people with psychological and physical problems. However, the mechanisms of action in these interventions that lead to beneficial physical and psychological outcomes have yet to be clearly identified. Purpose: The aim of this paper is to review, systematically, the evidence to date on the mechanisms of action in mindfulness interventions in populations with physical and/or psychological conditions. Method: Searches of seven databases (PsycINFO, Medline (Ovid), Cochrane Central Register of Controlled Trials, EMBASE, CINAHL, AMED, ClinicalTrials.gov) were undertaken in June 2014 and July 2015. We evaluated to what extent the studies we identified met the criteria suggested by Kazdin for establishing mechanisms of action within a psychological treatment (2007, 2009). Results: We identified four trials examining mechanisms of mindfulness interventions in those with comorbid psychological and physical health problems and 14 in those with psychological conditions. These studies examined a diverse range of potential mechanisms, including mindfulness and rumination. Of these candidate mechanisms, the most consistent finding was that greater self-reported change in mindfulness mediated superior clinical outcomes. However, very few studies fully met the Kazdin criteria for examining treatment mechanisms. Conclusion: There was evidence that global changes in mindfulness are linked to better outcomes. This evidence pertained more to interventions targeting psychological rather than physical health conditions. While there is promising evidence that MBCT/MBSR intervention effects are mediated by hypothesised mechanisms, there is a lack of methodological rigour in the field of testing mechanisms of action for both MBCT and MBSR, which precludes definitive conclusions.

Keywords: MBCT, MBSR, mechanisms, physical conditions, psychological conditions, systematic review

Procedia PDF Downloads 294
78 Integrated Approach to Reduce Intimate Partner Violence and Improve Mental Health among Pregnant Women: Mixed-Method Study from Nepal

Authors: Diksha Sapkota, Kathleen Baird, Amornrat Saito, Debra Anderson

Abstract:

Background: Violence during pregnancy is global public health problem incurring huge amount of social, economic and human costs. It is of particular concern as it affects health of mother, neonates and also disrupt family functioning. Mental illness is one of its commonest consequences affecting both mother and baby and likely to be chronic if left unattended. Past decade has seen advances in knowledge about different forms of violence, its health impacts and intervention/s helping to confront the violence. However, limited range and lack of consistency in measurable outcomes undermine overall effect of interventions, and available evidence are largely slanted towards high-income countries. Despite recognition of integrating screening and counselling for abused pregnant women in health settings, there is a dearth of evidence on its effectiveness from developing countries limiting its applicability and feasibility. This study intends to summarise the high-quality evidence on intimate partner violence interventions in reducing violence and improving mental health and implement the promising intervention in our context. Methods: Quantitative systematic review will be done using PRISMA statement and based on its finding; randomised controlled intervention will be carried out. The study will be conducted among women attending ANC clinic of Dhulikhel Hospital, Nepal. Being the pilot study, samples just adequate to draw the inferences i.e. not less than 30 in each arm will be taken. Phenomological approach will be used to explore the strengths and weaknesses of tested intervention and recommendations for better planning in future. Conclusion: This study intends to provide concrete evidence on what works best in our context and will assist policymakers, programme planners, donors in informed decision making.

Keywords: intimate partner violence/prevention and control, mental health, Nepal, pregnant

Procedia PDF Downloads 237
77 The Effectiveness of Synthesizing A-Pillar Structures in Passenger Cars

Authors: Chris Phan, Yong Seok Park

Abstract:

The Toyota Camry is one of the best-selling cars in America. It is economical, reliable, and most importantly, safe. These attributes allowed the Camry to be the trustworthy choice when choosing dependable vehicle. However, a new finding brought question to the Camry’s safety. Since 1997, the Camry received a “good” rating on its moderate overlap front crash test through the Insurance Institute of Highway Safety. In 2012, the Insurance Institute of Highway Safety introduced a frontal small overlap crash test into the overall evaluation of vehicle occupant safety test. The 2012 Camry received a “poor” rating on this new test, while the 2015 Camry redeemed itself with a “good” rating once again. This study aims to find a possible solution that Toyota implemented to reduce the severity of a frontal small overlap crash in the Camry during a mid-cycle update. The purpose of this study is to analyze and evaluate the performance of various A-pillar shapes as energy absorbing structures in improving passenger safety in a frontal crash. First, A-pillar structures of the 2012 and 2015 Camry were modeled using CAD software, namely SolidWorks. Then, a crash test simulation using ANSYS software, was applied to the A-pillars to analyze the behavior of the structures in similar conditions. Finally, the results were compared to safety values of cabin intrusion to determine the crashworthy behaviors of both A-pillar structures by measuring total deformation. This study highlights that it is possible that Toyota improved the shape of the A-pillar in the 2015 Camry in order to receive a “good” rating from the IIHS safety evaluation once again. These findings can possibly be used to increase safety performance in future vehicles to decrease passenger injury or fatality.

Keywords: A-pillar, Crashworthiness, Design Synthesis, Finite Element Analysis

Procedia PDF Downloads 92
76 A Paradigm Shift towards Personalized and Scalable Product Development and Lifecycle Management Systems in the Aerospace Industry

Authors: David E. Culler, Noah D. Anderson

Abstract:

Integrated systems for product design, manufacturing, and lifecycle management are difficult to implement and customize. Commercial software vendors, including CAD/CAM and third party PDM/PLM developers, create user interfaces and functionality that allow their products to be applied across many industries. The result is that systems become overloaded with functionality, difficult to navigate, and use terminology that is unfamiliar to engineers and production personnel. For example, manufacturers of automotive, aeronautical, electronics, and household products use similar but distinct methods and processes. Furthermore, each company tends to have their own preferred tools and programs for controlling work and information flow and that connect design, planning, and manufacturing processes to business applications. This paper presents a methodology and a case study that addresses these issues and suggests that in the future more companies will develop personalized applications that fit to the natural way that their business operates. A functioning system has been implemented at a highly competitive U.S. aerospace tooling and component supplier that works with many prominent airline manufacturers around the world including The Boeing Company, Airbus, Embraer, and Bombardier Aerospace. During the last three years, the program has produced significant benefits such as the automatic creation and management of component and assembly designs (parametric models and drawings), the extensive use of lightweight 3D data, and changes to the way projects are executed from beginning to end. CATIA (CAD/CAE/CAM) and a variety of programs developed in C#, VB.Net, HTML, and SQL make up the current system. The web-based platform is facilitating collaborative work across multiple sites around the world and improving communications with customers and suppliers. This work demonstrates that the creative use of Application Programming Interface (API) utilities, libraries, and methods is a key to automating many time-consuming tasks and linking applications together.

Keywords: PDM, PLM, collaboration, CAD/CAM, scalable systems

Procedia PDF Downloads 153
75 Assessment of Bioaerosol and Microbial Volatile Organic Compounds in Different Sections of Library

Authors: Himanshu Lal, Bipasha Ghosh, Arun Srivastava

Abstract:

A pilot study of indoor air quality in terms of bioaerosol (fungus and bacteria) and few selective microbial volatile organic compounds (MVOCs) was carried out in different indoor sections of a library for two seasons, namely monsoon and post monsoon. Bioaerosol sampling was carried out using Anderson six stage viable sampler at a flow rate of 28.3 L/min while MVOCs were collected on activated charcoal tubes ORBOTM 90 Carboxen 564.Collected MVOCs were desorbed using carbon disulphide (CS2) and analysed by GC-FID. Microscopic identification for fungus was only carried out. Surface dust was collected by sterilised buds and cultured to identify fungal contaminants. Unlike bacterial size distribution, fungal bioaerosol concentration was found to be highest in the fourth stage in different sections of the library. In post monsoon season both fungal bioaerosol (710 to 3292cfu/m3) and bacterial bioaerosol (298 to 1475cfu/m3) were fund at much greater concentration than in monsoon. In monsoon season unlike post monsoon, I/O ratio for both the bioaerosol fractions was more than one. Rain washout could be the reason of lower outdoor concentration in monsoon season. On the contrary most of the MVOCs namely 1-hexene, 1-pentanol and 1-octen-3-ol were found in the monsoon season instead of post monsoon season with the highest being 1-hexene with 7.09µg/m3 concentration. Among the six identified fungal bioaerosol Aspergillus, Cladosporium and Penicillium were found in maximum concentration while Aspergillus niger, Curvuleria lunata, Cladosporium cladosporioides and Penicillium sp., was indentified in surface dust samples. According to regression analysis apart from environmental factors other factors also played an important role. Thus apart from outdoor infiltration and human sources, accumulated surface dust mostly on organic materials like books, wooden furniture and racks can be attributed to being one of the major sources of both fungal bioaerosols as well as MVOCs found in the library.

Keywords: bacteria, Fungi, indoor air, MVOCs

Procedia PDF Downloads 280