Search results for: B-mode Ultrasound Image
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3100

Search results for: B-mode Ultrasound Image

3070 Effect of Ultrasound-Assisted Pretreatment on Saccharification of Spent Coffee Grounds

Authors: Shady S. Hassan, Brijesh K. Tiwari, Gwilym A. Williams, Amit K. Jaiswal

Abstract:

EU is known as the destination with the highest rate of the coffee consumption per capita in the world. Spent coffee grounds (SCG) are the main by-product of coffee brewing. SCG is either disposed as a solid waste or employed as compost, although the polysaccharides from such lignocellulosic biomass might be used as feedstock for fermentation processes. However, SCG as a lignocellulose have a complex structure and pretreatment process is required to facilitate an efficient enzymatic hydrolysis of carbohydrates. However, commonly used pretreatment methods, such as chemical, physico-chemical and biological techniques are still insufficient to meet optimal industrial production requirements in a sustainable way. Ultrasound is a promising candidate as a sustainable green pretreatment solution for lignocellulosic biomass utilization in a large scale biorefinery. Thus, ultrasound pretreatment of SCG without adding harsh chemicals investigated as a green technology to enhance enzyme hydrolysis. In the present work, ultrasound pretreatment experiments were conducted on SCG using different ultrasound frequencies (25, 35, 45, 130, and 950 kHz) for 60 min. Regardless of ultrasound power, low ultrasound frequency is more effective than high ultrasound frequency in pretreatment of biomass. Ultrasound pretreatment of SCG (at ultrasound frequency of 25 kHz for 60 min) followed by enzymatic hydrolysis resulted in total reducing sugars of 56.1 ± 2.8 mg/g of biomass. Fourier transform Infrared Spectroscopy (FTIR) was employed to investigate changes in functional groups of biomass after pretreatment, while high-performance liquid chromatography (HPLC) was employed for determination of glucose. Pretreatment of lignocellulose by low frequency ultrasound in water only was found to be an effective green approach for SCG to improve saccharification and glucose yield compared to native biomass. Pretreatment conditions will be optimized, and the enzyme hydrolysate will be used as media component substitute for the production of ethanol.

Keywords: lignocellulose, ultrasound, pretreatment, spent coffee grounds

Procedia PDF Downloads 288
3069 Protein and Lipid Extraction from Microalgae with Ultrasound Assisted Osmotic Shock Method

Authors: Nais Pinta Adetya, H. Hadiyanto

Abstract:

Microalgae has a potential to be utilized as food and natural colorant. The microalgae components consists of three main parts, these are lipid, protein, and carbohydrate. Crucial step in producing lipid and protein from microalgae is extraction. Microalgae has high water level (70-90%), it causes drying process of biomass needs much more energy and also has potential to distract lipid and protein from microalgae. Extraction of lipid from wet biomass is able to take place efficiently with cell disruption of microalgae by osmotic shock method. In this study, osmotic shock method was going to be integrated with ultrasound to maximalize the extraction yield of lipid and protein from wet biomass Spirulina sp. with osmotic shock method assisted ultrasound. This study consisted of two steps, these were osmotic shock process toward wet biomass and ultrasound extraction assisted. NaCl solution was used as osmotic agent, with the variation of concentrations were 10%, 20%, and 30%. Extraction was conducted in 40°C for 20 minutes with frequency of ultrasound wave was 40kHz. The optimal yield of protein (2.7%) and (lipid 38%) were achieved at 20% osmotic agent concentration.

Keywords: extraction, lipid, osmotic shock, protein, ultrasound

Procedia PDF Downloads 323
3068 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection

Authors: Ali Hamza

Abstract:

Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.

Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network

Procedia PDF Downloads 46
3067 Comparison of Classical and Ultrasound-Assisted Extractions of Hyphaene thebaica Fruit and Evaluation of Its Extract as Antibacterial Activity in Reducing Severity of Erwinia carotovora

Authors: Hanan Moawad, Naglaa M. Abd EL-Rahman

Abstract:

Erwinia carotovora var. carotovora is the main cause of soft rot in potatoes. Hyphaene thebaica was studied for biocontrol of E. carotovora which inhibited growth of E. carotovora on solid medium, a comparative study of classical and ultrasound-assisted extractions of Hyphaene thebaica fruit. The use of ultrasound decreased significant the total time of treatment and increase the total amount of crude extract. The crude extract was subjected to determine the in vitro, by a bioassay technique revealed that the treatment of paper disks with ultrasound extraction of Hyphaene thebaica reduced the growth of pathogen and produced inhibition zones up to 38mm in diameter. The antioxidant activity of ultrasound-ethanolic extract of Doum fruits (Hyphaene thebaica) was determined. Data obtained showed that the extract contains the secondary metabolites such as Tannins, Saponin, Flavonoids, Phenols, Steroids, Terpenoids, Glycosides and Alkaloids.

Keywords: ultrasound, classical extract, biological control, Erwinia carotovora, Hyphaene thebaica

Procedia PDF Downloads 493
3066 The Detection of Implanted Radioactive Seeds on Ultrasound Images Using Convolution Neural Networks

Authors: Edward Holupka, John Rossman, Tye Morancy, Joseph Aronovitz, Irving Kaplan

Abstract:

A common modality for the treatment of early stage prostate cancer is the implantation of radioactive seeds directly into the prostate. The radioactive seeds are positioned inside the prostate to achieve optimal radiation dose coverage to the prostate. These radioactive seeds are positioned inside the prostate using Transrectal ultrasound imaging. Once all of the planned seeds have been implanted, two dimensional transaxial transrectal ultrasound images separated by 2 mm are obtained through out the prostate, beginning at the base of the prostate up to and including the apex. A common deep neural network, called DetectNet was trained to automatically determine the position of the implanted radioactive seeds within the prostate under ultrasound imaging. The results of the training using 950 training ultrasound images and 90 validation ultrasound images. The commonly used metrics for successful training were used to evaluate the efficacy and accuracy of the trained deep neural network and resulted in an loss_bbox (train) = 0.00, loss_coverage (train) = 1.89e-8, loss_bbox (validation) = 11.84, loss_coverage (validation) = 9.70, mAP (validation) = 66.87%, precision (validation) = 81.07%, and a recall (validation) = 82.29%, where train and validation refers to the training image set and validation refers to the validation training set. On the hardware platform used, the training expended 12.8 seconds per epoch. The network was trained for over 10,000 epochs. In addition, the seed locations as determined by the Deep Neural Network were compared to the seed locations as determined by a commercial software based on a one to three months after implant CT. The Deep Learning approach was within \strikeout off\uuline off\uwave off2.29\uuline default\uwave default mm of the seed locations determined by the commercial software. The Deep Learning approach to the determination of radioactive seed locations is robust, accurate, and fast and well within spatial agreement with the gold standard of CT determined seed coordinates.

Keywords: prostate, deep neural network, seed implant, ultrasound

Procedia PDF Downloads 164
3065 Fundamental Study on Reconstruction of 3D Image Using Camera and Ultrasound

Authors: Takaaki Miyabe, Hideharu Takahashi, Hiroshige Kikura

Abstract:

The Government of Japan and Tokyo Electric Power Company Holdings, Incorporated (TEPCO) are struggling with the decommissioning of Fukushima Daiichi Nuclear Power Plants, especially fuel debris retrieval. In fuel debris retrieval, amount of fuel debris, location, characteristics, and distribution information are important. Recently, a survey was conducted using a robot with a small camera. Progress report in remote robot and camera research has speculated that fuel debris is present both at the bottom of the Pressure Containment Vessel (PCV) and inside the Reactor Pressure Vessel (RPV). The investigation found a 'tie plate' at the bottom of the containment, this is handles on the fuel rod. As a result, it is assumed that a hole large enough to allow the tie plate to fall is opened at the bottom of the reactor pressure vessel. Therefore, exploring the existence of holes that lead to inside the RCV is also an issue. Investigations of the lower part of the RPV are currently underway, but no investigations have been made inside or above the PCV. Therefore, a survey must be conducted for future fuel debris retrieval. The environment inside of the RPV cannot be imagined due to the effect of the melted fuel. To do this, we need a way to accurately check the internal situation. What we propose here is the adaptation of a technology called 'Structure from Motion' that reconstructs a 3D image from multiple photos taken by a single camera. The plan is to mount a monocular camera on the tip of long-arm robot, reach it to the upper part of the PCV, and to taking video. Now, we are making long-arm robot that has long-arm and used at high level radiation environment. However, the environment above the pressure vessel is not known exactly. Also, fog may be generated by the cooling water of fuel debris, and the radiation level in the environment may be high. Since camera alone cannot provide sufficient sensing in these environments, we will further propose using ultrasonic measurement technology in addition to cameras. Ultrasonic sensor can be resistant to environmental changes such as fog, and environments with high radiation dose. these systems can be used for a long time. The purpose is to develop a system adapted to the inside of the containment vessel by combining a camera and an ultrasound. Therefore, in this research, we performed a basic experiment on 3D image reconstruction using a camera and ultrasound. In this report, we select the good and bad condition of each sensing, and propose the reconstruction and detection method. The results revealed the strengths and weaknesses of each approach.

Keywords: camera, image processing, reconstruction, ultrasound

Procedia PDF Downloads 81
3064 Gaussian Mixture Model Based Identification of Arterial Wall Movement for Computation of Distension Waveform

Authors: Ravindra B. Patil, P. Krishnamoorthy, Shriram Sethuraman

Abstract:

This work proposes a novel Gaussian Mixture Model (GMM) based approach for accurate tracking of the arterial wall and subsequent computation of the distension waveform using Radio Frequency (RF) ultrasound signal. The approach was evaluated on ultrasound RF data acquired using a prototype ultrasound system from an artery mimicking flow phantom. The effectiveness of the proposed algorithm is demonstrated by comparing with existing wall tracking algorithms. The experimental results show that the proposed method provides 20% reduction in the error margin compared to the existing approaches in tracking the arterial wall movement. This approach coupled with ultrasound system can be used to estimate the arterial compliance parameters required for screening of cardiovascular related disorders.

Keywords: distension waveform, Gaussian Mixture Model, RF ultrasound, arterial wall movement

Procedia PDF Downloads 473
3063 Enhancing of Laser Imaging by Using Ultrasound Effect

Authors: Hayder Raad Hafuze, Munqith Saleem Dawood, Jamal Abdul Jabbar

Abstract:

The effect of using both ultrasounds with laser in medical imaging of the biological tissue has been studied in this paper. Different wave lengths of incident laser light (405 nm, 532 nm, 650 nm, 808 nm and 1064 nm) were used with different ultrasound frequencies (1MHz and 3.3MHz). The results showed that, the change of acoustic intensity enhance the laser penetration of the tissue for different thickness. The existence of the ideal Raman-Nath diffraction pattern were investigated in terms of phase delay and incident angle.

Keywords: tissue, laser, ultrasound, effect, imaging

Procedia PDF Downloads 392
3062 Quantitative Assessment of Soft Tissues by Statistical Analysis of Ultrasound Backscattered Signals

Authors: Da-Ming Huang, Ya-Ting Tsai, Shyh-Hau Wang

Abstract:

Ultrasound signals backscattered from the soft tissues are mainly depending on the size, density, distribution, and other elastic properties of scatterers in the interrogated sample volume. The quantitative analysis of ultrasonic backscattering is frequently implemented using the statistical approach due to that of backscattering signals tends to be with the nature of the random variable. Thus, the statistical analysis, such as Nakagami statistics, has been applied to characterize the density and distribution of scatterers of a sample. Yet, the accuracy of statistical analysis could be readily affected by the receiving signals associated with the nature of incident ultrasound wave and acoustical properties of samples. Thus, in the present study, efforts were made to explore such effects as the ultrasound operational modes and attenuation of biological tissue on the estimation of corresponding Nakagami statistical parameter (m parameter). In vitro measurements were performed from healthy and pathological fibrosis porcine livers using different single-element ultrasound transducers and duty cycles of incident tone burst ranging respectively from 3.5 to 7.5 MHz and 10 to 50%. Results demonstrated that the estimated m parameter tends to be sensitively affected by the use of ultrasound operational modes as well as the tissue attenuation. The healthy and pathological tissues may be characterized quantitatively by m parameter under fixed measurement conditions and proper calibration.

Keywords: ultrasound backscattering, statistical analysis, operational mode, attenuation

Procedia PDF Downloads 290
3061 Ultrasound Markers in Evaluation of Hernias

Authors: Aniruddha Kulkarni

Abstract:

In very few cases of external hernias we require imaging modalities as on most occasions clinical examination tests are good enough. Ultrasound will help in chronic abdominal or groin pain, equivocal clinical results & complicated hernias. Ultrasound is useful in assessment of cause of raised intrabdominal pressure. In certain cases will comment about etiology, complications and chronicicty of lesion. Screening of rest of abdominal organs too is important advantage being real time modality. Cost effectiveness, no radiation allows modality be used repeatedly in indicated cases. Sonography is better accepted by patients too as it is cost effective. Best advanced tissue harmonic equipment and increasing expertise making it popular. Ultrasound can define surgical anatomy, rent size, contents, etiological /recurrence factors in great detail and with authority hence accidental findings in a planned surgical procedure can be easily avoided. Clinical dynamic valselva and reducibility test can better documented by real time ultrasound study. In case of recurrence, Sonography will help in assessing the hernia details better as being dynamic real time investigation. Ultrasound signs in case of internal hernias are well comparable with CT findings.

Keywords: laparoscopic repair, Hernia, CT findings, chronic pain

Procedia PDF Downloads 467
3060 Influence of the Low Frequency Ultrasound on the Cadmium (II) Biosorption by an Ecofriendly Biocomposite (Extraction Solid Waste of Ammi visnaga / Calcium Alginate): Kinetic Modeling

Authors: L. Nouri Taiba, Y. Bouhamidi, F. Kaouah, Z. Bendjama, M. Trari

Abstract:

In the present study, an ecofriendly biocomposite namely calcium alginate immobilized Ammi Visnaga (Khella) extraction waste (SWAV/CA) was prepared by electrostatic extrusion method and used on the cadmium biosorption from aqueous phase with and without the assistance of ultrasound in batch conditions. The influence of low frequency ultrasound (37 and 80 KHz) on the cadmium biosorption kinetics was studied. The obtained results show that the ultrasonic irradiation significantly enhances and improves the efficiency of the cadmium removal. The Pseudo first order, Pseudo-second-order, Intraparticle diffusion, and Elovich models were evaluated using the non-linear curve fitting analysis method. Modeling of kinetic results shows that biosorption process is best described by the pseudo-second order and Elovich, in both the absence and presence of ultrasound.

Keywords: biocomposite, biosorption, cadmium, non-linear analysis, ultrasound

Procedia PDF Downloads 249
3059 Feasibility Study for Removing Atherosclerotic Plaque Using the Thermal Effects of a Planar Rectangular High Intensity Ultrasound Transducer

Authors: Christakis Damianou, Christos Christofi, Nicos Mylonas

Abstract:

The aim of this paper was to conduct a feasibility study using a flat rectangular (3x10 mm2) MRI compatible transducer operating at 5 MHz for destroying atherosclerotic plaque using the thermal effects of ultrasound in in vitro models. A parametric study was performed where the time needed to ablate the plaque was studied as a function of Spatial Average Temporal Average (SATA) intensity, and pulse duration. The time needed to ablate plaque is directly related to intensity, and pulse duration. The temperature measured close to the artery is above safe limits and therefore thermal ultrasound does not have a place in removing plaques in arteries.

Keywords: ultrasound, atherosclerotic, plaque, pulse

Procedia PDF Downloads 255
3058 Prostatic Cyst in Suprapubic Ultrasound Examination

Authors: Angelis P. Barlampas, Ghita Bianca-Andreea

Abstract:

A case of a prostatic midline cyst is presented, which was found during a routine general ultrasound examination in an otherwise healthy young man. The incidence of prostatic cysts discovered in suprapubic ultrasound examination has constantly been rising over the previous decades. Despite the fact that the majority of them are benign, a significant amount is related to symptoms, such as pain, dysuria, infertility, and even cancer. The wide use of ultrasound examination and the increasing availability of high-resolution ultrasound systems have rendered new diagnostic challenges. Once upon a time a suprapubic ultrasound was only useful for measuring only the size and the dimensions of the prostatic gland. It did not have the ability to analyze and resolve structures such as cystic or solid nodules. The current machine equipment has managed to depict the imaging characteristics of lesions with high acuity that compares of an intrarectal ultrasound. But the last one is a specialized examination, which demands expertise and good knowledge. Maybe the time has come for the general radiologist and, especially the one who uses suprapubic ultrasound, to pay more attention to the examination of the prostate gland and to take advantage of the superb abilities and the high resolution of the new ultrasound systems. That is exactly, what this case is emphasizing. The incidental discovery of prostatic cysts, and the relatively little available literature about managing them turns them into an interesting theme for exploring and studying. The prostatic cysts are further divided into midline and paramidline cysts, with the first being usually utricle cysts. A more precise categorization is as follows: A midline cystic lesion usually regards a Mullerian duct cyst, a prostatic utricle cyst, an ejaculatory duct cyst, a prostatic cystadenoma, a ductus deferens cyst, and a TURP. On the other hand, a lateral cystic lesion usually refers to a cystic degeneration of benign prostatic hyperplasia, a prostatic retention cyst, a seminal vesicle cyst, diverticular prostatitis, a prostatic abscess, cavitatory prostatitis from chronic prostatitis, a parasitic prostatic cyst, a cystic prostatic carcinoma, e.t.c.

Keywords: prostatic cyst, radiology, benign prostatic lesions, prostatic cancer, suprapubic prostatic ultrasound

Procedia PDF Downloads 19
3057 Design and Implementation of Image Super-Resolution for Myocardial Image

Authors: M. V. Chidananda Murthy, M. Z. Kurian, H. S. Guruprasad

Abstract:

Super-resolution is the technique of intelligently upscaling images, avoiding artifacts or blurring, and deals with the recovery of a high-resolution image from one or more low-resolution images. Single-image super-resolution is a process of obtaining a high-resolution image from a set of low-resolution observations by signal processing. While super-resolution has been demonstrated to improve image quality in scaled down images in the image domain, its effects on the Fourier-based technique remains unknown. Super-resolution substantially improved the spatial resolution of the patient LGE images by sharpening the edges of the heart and the scar. This paper aims at investigating the effects of single image super-resolution on Fourier-based and image based methods of scale-up. In this paper, first, generate a training phase of the low-resolution image and high-resolution image to obtain dictionary. In the test phase, first, generate a patch and then difference of high-resolution image and interpolation image from the low-resolution image. Next simulation of the image is obtained by applying convolution method to the dictionary creation image and patch extracted the image. Finally, super-resolution image is obtained by combining the fused image and difference of high-resolution and interpolated image. Super-resolution reduces image errors and improves the image quality.

Keywords: image dictionary creation, image super-resolution, LGE images, patch extraction

Procedia PDF Downloads 340
3056 The Effect of Ultrasound on Permeation Flux and Changes in Blocking Mechanisms during Dead-End Microfiltration of Carrot Juice

Authors: A. Hemmati, H. Mirsaeedghazi, M. Aboonajmi

Abstract:

Carrot juice is one of the most nutritious foods that are consumed around the world. Large particles in carrot juice causing turbid appearance make some problems in the concentration process such as off-flavor due to the large particles burnt on the walls of evaporators. Microfiltration (MF) is a pressure driven membrane separation method that can clarify fruit juices without enzymatic treatment. Fouling is the main problem in the membrane process causing reduction of permeate flux. Ultrasound as a cleaning technique was applied at 20 kHz to reduce fouling in membrane clarification of carrot juice using dead-end MF system with polyvinylidene fluoride (PVDF) membrane. Results showed that application of ultrasound waves reduce diphasic characteristic of carrot juice and permeate flux increased. Evaluation of different membrane fouling mechanisms showed that application of ultrasound waves changed creation time of each fouling mechanism. Also, its behavior was changed with varying transmembrane pressure.

Keywords: Carrot juice, Dead end, Microfiltration, Ultrasound

Procedia PDF Downloads 298
3055 Ultrasound-Assisted Soil Washing Process for the Removal of Heavy Metals from Clays

Authors: Sophie Herr, Antoine Leybros, Yves Barre, Sergey Nikitenko, Rachel Pflieger

Abstract:

The proportion of soil contaminated by a wide range of pollutants (heavy metals, PCBs, pesticides, etc.) of anthropogenic origin is constantly increasing, and it is becoming urgent to address this issue. Among remediation methods, soil washing is an effective, relatively fast, and widely used process. This study assesses its coupling with ultrasound: indeed, sonication induces the formation of cavitation bubbles in solution that enhance local mass transfer through agitation and particle erosion. The removal of target toxic elements Ni(II) and Zn(II) from vermiculite clay has been studied under 20 kHz ultrasound and silent conditions. Several acids were tested, and HCl was chosen as the solvent. The effects of solid/liquid ratio and particle size were investigated. Metal repartition in the clay has been followed by Tessier's sequential extraction procedure. The results showed that more metal elements bound to the challenging residual phase were desorbed with 20 kHz ultrasound than in silent conditions. This supports the promising application of ultrasound for heavy metal desorption in difficult conditions. Further experiments were performed at high-frequency US (362 kHz), and it was shown that fragmentation of the vermiculite particles is then limited, while positive effects of US in the decontamination are kept.

Keywords: desorption, heavy metals, ultrasound, vermiculite

Procedia PDF Downloads 108
3054 Ultrasound Enhanced Release of Active Targeting Liposomes Used for Cancer Treatment

Authors: Najla M. Salkho, Vinod Paul, Pierre Kawak, Rute F. Vitor, Ana M. Martin, Nahid Awad, Mohammad Al Sayah, Ghaleb A. Husseini

Abstract:

Liposomes are popular lipid bilayer nanoparticles that are highly efficient in encapsulating both hydrophilic and hydrophobic therapeutic drugs. Liposomes promote a low risk controlled release of the drug avoiding the side effects of the conventional chemotherapy. One of the great potentials of liposomes is the ability to attach a wide range of ligands to their surface producing ligand-mediated active targeting of cancer tumour with limited adverse off-target effects. Ultrasound can also aid in the controlled and specified release of the drug from the liposomes by breaking it apart and releasing the drug in the specific location where the ultrasound is applied. Our research focuses on the synthesis of PEGylated liposomes (contain poly-ethylene glycol) encapsulated with the model drug calcein and studying the effect of low frequency ultrasound applied at different power densities on calcein release. In addition, moieties are attached to the surface of the liposomes for specific targeting of the cancerous cells which over-express the receptors of these moieties, ultrasound is then applied and the release results are compared with the moiety free liposomes. The results showed that attaching these moieties to the surface of the PEGylated liposomes not only enhance their active targeting but also stimulate calcein release from these liposomes.

Keywords: active targeting, liposomes, moieties, ultrasound

Procedia PDF Downloads 564
3053 Nanocrystalline Cellulose from Oil Palm Fiber

Authors: Ridzuan Ramli, Zianor Azrina Zianon Abdin, Mohammad Dalour Beg, Rosli M. Yunus

Abstract:

Nanocrystalline cellulose (NCC) were produced by using the ultrasound assisted acid hydrolysis from oil palm empty fruit bunch (EFB) pulp with different hydrolysis time then were analyzed by using FESEM and TGA as in comparison with EFB fiber and EFB pulp. Based on the FESEM analysis, it was found that NCC has a rod like shaped under the acid hydrolysis with an assistant of ultrasound. According to thermal stability, the NCC obtained show remarkable sign of high thermal stability compared to EFB fiber and EFB pulp. However, as the hydrolysis time increase, the thermal stability of NCC was deceased. As in conclusion, the NCC can be prepared by using ultrasound assisted acid hydrolysis. The NCC obtained have good thermal stability and have a great potential as the reinforcement in composite materials.

Keywords: Nanocrystalline cellulose, ultrasound assisted acid hydrolysis, thermal stability, morphology, empty fruit bunch (EFB)

Procedia PDF Downloads 440
3052 A Method of the Semantic on Image Auto-Annotation

Authors: Lin Huo, Xianwei Liu, Jingxiong Zhou

Abstract:

Recently, due to the existence of semantic gap between image visual features and human concepts, the semantic of image auto-annotation has become an important topic. Firstly, by extract low-level visual features of the image, and the corresponding Hash method, mapping the feature into the corresponding Hash coding, eventually, transformed that into a group of binary string and store it, image auto-annotation by search is a popular method, we can use it to design and implement a method of image semantic auto-annotation. Finally, Through the test based on the Corel image set, and the results show that, this method is effective.

Keywords: image auto-annotation, color correlograms, Hash code, image retrieval

Procedia PDF Downloads 458
3051 Recovery of Essential Oil from Zingiber Officinale Var. Bentong Using Ultrasound Assisted-Supercritical Carbon Dioxide Extraction

Authors: Norhidayah Suleiman, Afza Zulfaka

Abstract:

Zingiber officinale var. Bentong has been identified as the source of high added value compound specifically gingerol-related compounds. The extraction of the high-value compound using conventional method resulted in low yield and time consumption. Hence, the motivation for this work is to investigate the effect of the extraction technique on the essential oil from Zingiber officinale var. Bentong rhizome for commercialization purpose in many industries namely, functional food, pharmaceutical, and cosmeceutical. The investigation begins with a pre-treatment using ultrasound assisted in order to enhance the recovery of essential oil. It was conducted at a fixed frequency (20 kHz) of ultrasound with various time (10, 20, 40 min). The extraction using supercritical carbon dioxide (scCO2) were carried out afterward at a specific condition of temperature (50 °C) and pressure (30 MPa). scCO2 extraction seems to be a promising sustainable green method for the extraction of essential oil due to the benefits that CO2 possesses. The expected results demonstrated the ultrasound-assisted-scCO2 produces a higher yield of essential oil compared to solely scCO2 extraction. This research will provide important features for its application in food supplements or phytochemical preparations.

Keywords: essential oil, scCO2, ultrasound assisted, Zingiber officinale Var. Bentong

Procedia PDF Downloads 105
3050 Rheological Properties of Red Beet Root Juice Squeezed from Ultrasounicated Red Beet Root Slices

Authors: M. Çevik, S. Sabancı, D. Tezcan, C. Çelebi, F. İçier

Abstract:

Ultrasound technology is the one of the non-thermal food processing method in recent years which has been used widely in the food industry. Ultrasound application in the food industry is divided into two groups: low and high intensity ultrasound application. While low intensity ultrasound is used to obtain information about physicochemical properties of foods, high intensity ultrasound is used to extract bioactive components and to inactivate microorganisms and enzymes. In this study, the ultrasound pre-treatment at a constant power (1500 W) and fixed frequency (20 kHz) was applied to the red beetroot slices having the dimension of 25×25×50 mm at the constant temperature (25°C) for different application times (0, 5, 10, 15 and 20 min). The red beet root slices pretreated with ultrasonication was squeezed immediately. The changes on rheological properties of red beet root juice depending on ultrasonication duration applied to slices were investigated. Rheological measurements were conducted by using Brookfield viscometer (LVDV-II Pro, USA). Shear stress-shear rate data was obtained from experimental measurements for 0-200 rpm range by using spindle 18. Rheological properties of juice were determined by fitting this data to some rheological models (Newtonian, Bingham, Power Law, Herschel Bulkley). It was investigated that the best model was Power Law model for both untreated red beet root juice (R2=0.991, χ2=0.0007, RMSE=0.0247) and red beetroot juice produced from ultrasonicated slices (R2=0.993, χ2=0.0006, RMSE=0.0216 for 20 min pre-treatment). k (consistency coefficient) and n (flow behavior index) values of red beetroot juices were not affected from the duration of ultrasonication applied to the slices. Ultrasound treatment does not result in any changes on the rheological properties of red beetroot juice. This can be explained by lack of ability to homogenize of the intensity of applied ultrasound.

Keywords: ultrasonication, rheology, red beet root slice, juice

Procedia PDF Downloads 370
3049 Changes on Some Physical and Chemical Properties of Red Beetroot Juice during Ultrasound Pretreatment

Authors: Serdal Sabanci, Mutlu Çevik, Derya Tezcan, Cansu Çelebi, Filiz Içier

Abstract:

Ultrasound is defined as sound waves having frequencies higher than 20 kHz, which is greater than the limits of the human hearing range. In recent years, ultrasonic treatment is an emerging technology being used increasingly in the food industry. It is applied as an alternative technique for different purposes such as microbial and enzyme inactivation, extraction, drying, filtration, crystallization, degas, cutting etc. Red beetroot (Beta vulgaris L.) is a root vegetable which is rich in mineral components, folic acid, dietary fiber, anthocyanin pigments. In this study, the application of low frequency high intensity ultrasound to the red beetroot slices and red beetroot juice for different treatment times (0, 5, 10, 15, 20 min) was investigated. Ultrasonicated red beetroot slices were also squeezed immediately. Changes on colour, betanin, pH and titratable acidity properties of red beetroot juices (the ultrasonicated juice (UJ) and the juice from ultrasonicated slices (JUS)) were determined. Although there was no significant difference statistically in the changes of color value of JUS samples due to ultrasound application (p>0.05), the color properties of UJ samples ultrasonicated for low durations were statistically different from raw material (p<0.05). The difference between color values of UJ and raw material disappeared (p>0.05) as the ultrasonication duration increased. The application of ultrasound to red beet root slices adversely affected and decreased the betanin content of JUS samples. On the other hand, the betanin content of UJ samples increased as the ultrasonication duration increased. Ultrasound treatment did not affect pH and titratable acidity of red beetroot juices statistically (p>0.05). The results suggest that ultrasound technology is the simple and economical technique which may successfully be employed for the processing of red beetroot juice with improved color and betanin quality. However, further investigation is still needed to confirm this.

Keywords: red beetroot, ultrasound, color, betanin

Procedia PDF Downloads 371
3048 Evaluation of 18F Fluorodeoxyglucose Positron Emission Tomography, MRI, and Ultrasound in the Assessment of Axillary Lymph Node Metastases in Patients with Early Stage Breast Cancer

Authors: Wooseok Byon, Eunyoung Kim, Junseong Kwon, Byung Joo Song, Chan Heun Park

Abstract:

Purpose: 18F Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) is a noninvasive imaging modality that can identify nodal metastases in women with primary breast cancer. The aim of this study was to compare the accuracy of FDG-PET with MRI and sonography scanning to determine axillary lymph node status in patients with breast cancer undergoing sentinel lymph node biopsy or axillary lymph node dissection. Patients and Methods: Between January and December 2012, ninety-nine patients with breast cancer and clinically negative axillary nodes were evaluated. All patients underwent FDG-PET, MRI, ultrasound followed by sentinel lymph node biopsy (SLNB) or axillary lymph node dissection (ALND). Results: Using axillary lymph node assessment as the gold standard, the sensitivity and specificity of FDG-PET were 51.4% (95% CI, 41.3% to 65.6%) and 92.2% (95% CI, 82.7% to 97.4%) respectively. The sensitivity and specificity of MRI and ultrasound were 57.1% (95% CI, 39.4% to 73.7%), 67.2% (95% CI, 54.3% to 78.4%) and 42.86% (95% CI, 26.3% to 60.7%), 92.2% (95% CI, 82.7% to 97.4%). Stratification according to hormone receptor status showed an increase in specificity when negative (FDG-PET: 42.3% to 77.8%, MRI 50% to 77.8%, ultrasound 34.6% to 66.7%). Also, positive HER2 status was associated with an increase in specificity (FDG-PET: 42.9% to 85.7%, MRI 50% to 85.7%, ultrasound 35.7% to 71.4%). Conclusions: The sensitivity and specificity of FDG-PET compared with MRI and ultrasound was high. However, FDG-PET is not sufficiently accurate to appropriately identify lymph node metastases. This study suggests that FDG-PET scanning cannot replace histologic staging in early-stage breast cancer, but might have a role in evaluating axillary lymph node status in hormone receptor negative or HER-2 overexpressing subtypes.

Keywords: axillary lymph node metastasis, FDG-PET, MRI, ultrasound

Procedia PDF Downloads 340
3047 Clinical and Structural Differences in Knee Osteoarthritis with/without Synovial Hypertrophy

Authors: Gi-Young Park, Dong Rak Kwon, Sung Cheol Cho

Abstract:

Objective: The synovium is known to be involved in many pathological characteristic processes. Also, synovitis is common in advanced osteoarthritis. We aimed to evaluate the clinical, radiographic, and ultrasound findings in patients with knee osteoarthritis and to compare the clinical and imaging findings between knee osteoarthritis with and without synovial hypertrophy confirmed by ultrasound. Methods: One hundred knees (54 left, 46 right) in 95 patients (64 women, 31 men; mean age, 65.9 years; range, 43-85 years) with knee osteoarthritis were recruited. The Visual Analogue Scale (VAS) was used to assess the intensity of knee pain. The severity of knee osteoarthritis was classified according to Kellgren and Lawrence's (K-L) grade on a radiograph. Ultrasound examination was performed by a physiatrist who had 24 years of experience in musculoskeletal ultrasound. Ultrasound findings, including the thickness of joint effusion in the suprapatellar pouch, synovial hypertrophy, infrapatellar tendinosis, meniscal tear or extrusion, and Baker cyst, were measured and detected. The thickness of knee joint effusion was measured at the maximal anterior-posterior diameter of fluid collection in the suprapatellar pouch. Synovial hypertrophy was identified as the soft tissue of variable echogenicity, which is poorly compressible and nondisplaceable by compression of an ultrasound transducer. The knees were divided into two groups according to the presence of synovial hypertrophy. The differences in clinical and imaging findings between the two groups were evaluated by independent t-test and chi-square test. Results: Synovial hypertrophy was detected in 48 knees of 100 knees on ultrasound. There were no significant differences in demographic parameters and VAS score except in sex between the two groups (P<0.05). Medial meniscal extrusion and tear were significantly more frequent in knees with synovial hypertrophy than those in knees without synovial hypertrophy. K-L grade and joint effusion thickness were greater in patients with synovial hypertrophy than those in patients without synovial hypertrophy (P<0.05). Conclusion: Synovial hypertrophy in knee osteoarthritis was associated with greater suprapatellar joint effusion and higher K-L grade and maybe a characteristic ultrasound feature of late knee osteoarthritis. These results suggest that synovial hypertrophy on ultrasound can be regarded as a predictor of rapid progression in patients with knee osteoarthritis.

Keywords: knee osteoarthritis, synovial hypertrophy, ultrasound, K-L grade

Procedia PDF Downloads 43
3046 Effect of Ultrasound and Enzyme on the Extraction of Eurycoma longifolia (Tongkat Ali)

Authors: He Yuhai, Ahmad Ziad Bin Sulaiman

Abstract:

Tongkat Ali, or Eurycoma longifolia, is a traditional Malay and Orang Asli herb used as aphrodisiac, general tonic, anti-Malaria, and anti-Pyretic. It has been recognized as a cashcrop by Malaysia due to its high value for the pharmaceutical use. In Tongkat Ali, eurycomanone, a quassinoid is usually chosen as a marker phytochemical as it is the most abundant phytochemical. In this research, ultrasound and enzyme were used to enhance the extraction of Eurycomanone from Tongkat Ali. Ultrasonic assisted extraction (USE) enhances extraction by facilitating the swelling and hydration of the plant material, enlarging the plant pores, breaking the plant cell, reducing the plant particle size and creating cavitation bubbles that enhance mass transfer in both the washing and diffusion phase of extraction. Enzyme hydrolyses the cell wall of the plant, loosening the structure of the cell wall, releasing more phytochemicals from the plant cell, enhancing the productivity of the extraction. Possible effects of ultrasound on the activity of the enzyme during the hydrolysis of the cell wall is under the investigation by this research. The extracts was analysed by high performance liquid chromatography for the yields of Eurycomanone. In this whole process, the conventional water extraction was used as a control of comparing the performance of the ultrasound and enzyme assisted extraction.

Keywords: ultrasound, enzymatic, extraction, Eurycoma longifolia

Procedia PDF Downloads 391
3045 Investigating Clarity Ultrasound Transperineal Ultrasound Imaging as a Method of Localising the Prostate, Compared to Cone Beam Computed Tomography with Fiducials

Authors: Harley Stephens

Abstract:

Although fiducial marker insertion is regarded as the ‘gold standard’ in terms of image guided radiotherapy (IGRT), its application must be considered carefully as the procedure can be invasive, time-consuming, and reliant on consultant expertise. Precision of the fiducials is dependent on these markers remaining in the same location and on the prostate not changing shape during the course treatment. To facilitate the acquirement of non-ionising IGRT and intra-fractional prostate tracking, Clarity TPUS was developed as an alternative imaging system. The main benefits of Clarity TPUS are that it is non-invasive, non-ionising and cost-effective. Other studies have compared fiducials to transabdominal ultrasound, which has since been proven to not be as accurate as trans-perineal imaging, as included in this study. CBCT fiducial translations and Clarity TPUS translations for 120 images as part of the PACE-C prostate SABR trial were retrospectively evaluated by three imaging specialists. Differences were analysed using correlation and Bland-Altman plots. Inter-observer matches agreed within 3mm 88.3 % of the time in left/right direction, 86.7 % of the time in in superior/inferior direction, and 91.7% of the time in ant/post direction. They agreed within 5mm more than 98.3 % of the time in all directions. The intra-class correlation co-efficient was calculated for each direction to show agreement between imaging specialist for inter-observer variability. Each was 0.95 or above, with 1 indicating perfect reliability. Agreement between observers was slightly higher for CBCT and fiducials at 98.7% agreement within 5 mm, compared to clarity TPUS where 96.7% agreement was seen within 5mm. Clarity TPUS has the benefit of no additional dose and intra-fractional monitoring, and results show a good correlation between the different modalities. Inter-observer variability is to be considered, and further research with a larger population would be of benefit.

Keywords: oncology, prostate radiotherapy, image guided radiotherapy, IGRT

Procedia PDF Downloads 79
3044 Deployment of Matrix Transpose in Digital Image Encryption

Authors: Okike Benjamin, Garba E J. D.

Abstract:

Encryption is used to conceal information from prying eyes. Presently, information and data encryption are common due to the volume of data and information in transit across the globe on daily basis. Image encryption is yet to receive the attention of the researchers as deserved. In other words, video and multimedia documents are exposed to unauthorized accessors. The authors propose image encryption using matrix transpose. An algorithm that would allow image encryption is developed. In this proposed image encryption technique, the image to be encrypted is split into parts based on the image size. Each part is encrypted separately using matrix transpose. The actual encryption is on the picture elements (pixel) that make up the image. After encrypting each part of the image, the positions of the encrypted images are swapped before transmission of the image can take place. Swapping the positions of the images is carried out to make the encrypted image more robust for any cryptanalyst to decrypt.

Keywords: image encryption, matrices, pixel, matrix transpose

Procedia PDF Downloads 383
3043 Robust Segmentation of Salient Features in Automatic Breast Ultrasound (ABUS) Images

Authors: Lamees Nasser, Yago Diez, Robert Martí, Joan Martí, Ibrahim Sadek

Abstract:

Automated 3D breast ultrasound (ABUS) screening is a novel modality in medical imaging because of its common characteristics shared with other ultrasound modalities in addition to the three orthogonal planes (i.e., axial, sagittal, and coronal) that are useful in analysis of tumors. In the literature, few automatic approaches exist for typical tasks such as segmentation or registration. In this work, we deal with two problems concerning ABUS images: nipple and rib detection. Nipple and ribs are the most visible and salient features in ABUS images. Determining the nipple position plays a key role in some applications for example evaluation of registration results or lesion follow-up. We present a nipple detection algorithm based on color and shape of the nipple, besides an automatic approach to detect the ribs. In point of fact, rib detection is considered as one of the main stages in chest wall segmentation. This approach consists of four steps. First, images are normalized in order to minimize the intensity variability for a given set of regions within the same image or a set of images. Second, the normalized images are smoothed by using anisotropic diffusion filter. Next, the ribs are detected in each slice by analyzing the eigenvalues of the 3D Hessian matrix. Finally, a breast mask and a probability map of regions detected as ribs are used to remove false positives (FP). Qualitative and quantitative evaluation obtained from a total of 22 cases is performed. For all cases, the average and standard deviation of the root mean square error (RMSE) between manually annotated points placed on the rib surface and detected points on rib borders are 15.1188 mm and 14.7184 mm respectively.

Keywords: Automated 3D Breast Ultrasound, Eigenvalues of Hessian matrix, Nipple detection, Rib detection

Procedia PDF Downloads 298
3042 Free Radical Dosimetry for Ultrasound in Terephthalic Acid Solutions Containing Gold Nanoparticles

Authors: Ahmad Shanei, Mohammad Mahdi Shanei

Abstract:

When a liquid is irradiated with high intensities (> 1 W) and low frequencies (≤ 1 MHz) ultrasound, acoustic cavitation occurs. Acoustic cavitation generates free radicals from the breakdown of water and other molecules. The existence of particles in liquid provide nucleation sites for cavitation bubbles and lead to decrease the ultrasonic intensity threshold needed for cavitation onset. The study was designed to measure hydroxyl radicals in terephthalic acid solutions containing 30 nm gold nanoparticles in a near field of a 1 MHz sonotherapy probe. The effect of ultrasound irradiation parameters containing mode of sonication and ultrasound intensity in hydroxyl radicals production have been investigated by the spectrofluorometry method. Recorded fluorescence signal in terephthalic acid solution containing gold nanoparticles was higher than the terephthalic acid solution without gold nanoparticles. Also, the results showed that any increase in intensity of the sonication would be associated with an increase in the fluorescence intensity. Acoustic cavitation in the presence of gold nanoparticles has been introduced as a way for improving therapeutic effects on the tumors. Also, the terephthalic acid dosimetry is suitable for detecting and quantifying free hydroxyl radicals as a criterion of cavitation production over a range of condition in medical ultrasound fields.

Keywords: acoustic cavitation, gold nanoparticle, chemical dosimetry, terephthalic acid

Procedia PDF Downloads 437
3041 Combining an Optimized Closed Principal Curve-Based Method and Evolutionary Neural Network for Ultrasound Prostate Segmentation

Authors: Tao Peng, Jing Zhao, Yanqing Xu, Jing Cai

Abstract:

Due to missing/ambiguous boundaries between the prostate and neighboring structures, the presence of shadow artifacts, as well as the large variability in prostate shapes, ultrasound prostate segmentation is challenging. To handle these issues, this paper develops a hybrid method for ultrasound prostate segmentation by combining an optimized closed principal curve-based method and the evolutionary neural network; the former can fit curves with great curvature and generate a contour composed of line segments connected by sorted vertices, and the latter is used to express an appropriate map function (represented by parameters of evolutionary neural network) for generating the smooth prostate contour to match the ground truth contour. Both qualitative and quantitative experimental results showed that our proposed method obtains accurate and robust performances.

Keywords: ultrasound prostate segmentation, optimized closed polygonal segment method, evolutionary neural network, smooth mathematical model, principal curve

Procedia PDF Downloads 166