Search results for: 10-year risk of fracture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6554

Search results for: 10-year risk of fracture

6554 Development of an Image-Based Biomechanical Model for Assessment of Hip Fracture Risk

Authors: Masoud Nasiri Sarvi, Yunhua Luo

Abstract:

Low-trauma hip fracture, usually caused by fall from standing height, has become a main source of morbidity and mortality for the elderly. Factors affecting hip fracture include sex, race, age, body weight, height, body mass distribution, etc., and thus, hip fracture risk in fall differs widely from subject to subject. It is therefore necessary to develop a subject-specific biomechanical model to predict hip fracture risk. The objective of this study is to develop a two-level, image-based, subject-specific biomechanical model consisting of a whole-body dynamics model and a proximal-femur finite element (FE) model for more accurately assessing the risk of hip fracture in lateral falls. Required information for constructing the model is extracted from a whole-body and a hip DXA (Dual Energy X-ray Absorptiometry) image of the subject. The proposed model considers all parameters subject-specifically, which will provide a fast, accurate, and non-expensive method for predicting hip fracture risk.

Keywords: bone mineral density, hip fracture risk, impact force, sideways falls

Procedia PDF Downloads 535
6553 The 10-year Risk of Major Osteoporotic and Hip Fractures Among Indonesian People Living with HIV

Authors: Iqbal Pramukti, Mamat Lukman, Hasniatisari Harun, Kusman Ibrahim

Abstract:

Introduction: People living with HIV had a higher risk of osteoporotic fracture than the general population. The purpose of this study was to predict the 10-year risk of fracture among people living with HIV (PLWH) using FRAX™ and to identify characteristics related to the fracture risk. Methodology: This study consisted of 75 subjects. The ten-year probability of major osteoporotic fractures (MOF) and hip fractures was assessed using the FRAX™ algorithm. A cross-tabulation was used to identify the participant’s characteristics related to fracture risk. Results: The overall mean 10-year probability of fracture was 2.4% (1.7) for MOF and 0.4% (0.3) for hip fractures. For MOF score, participants with parents’ hip fracture history, smoking behavior and glucocorticoid use showed a higher MOF score than those who were not (3.1 vs. 2.5; 4.6 vs 2.5; and 3.4 vs 2.5, respectively). For HF score, participants with parents’ hip fracture history, smoking behavior and glucocorticoid use also showed a higher HF score than those who were not (0.5 vs. 0.3; 0.8 vs. 0.3; and 0.5 vs. 0.3, respectively). Conclusions: The 10-year risk of fracture was higher among PLWH with several factors, including the parent’s hip. Fracture history, smoking behavior and glucocorticoid used. Further analysis on determining factors using multivariate regression analysis with a larger sample size is required to confirm the factors associated with the high fracture risk.

Keywords: HIV, PLWH, osteoporotic fractures, hip fractures, 10-year risk of fracture, FRAX

Procedia PDF Downloads 48
6552 Fracture Dislocation of Upper Sacrum in an Adolescent: Case Report and Review of Literature

Authors: S. Alireza Mirghasemi, Narges Rahimi Gabaran

Abstract:

Although sacral fractures in children are rare due to the fact that the occurrence of pelvic fracture is not common in childhood. Sacral fractures present a high risk of neurological damage. This kind of fracture is often missed because the routine pelvic X-rays imaging scarcely show this fracture. Also, the treatment is controversial, and it ranges from fine reduction to conservative treatments without any try to reduce the dislocation. In this article, a case of fracture dislocation of S1 and S2 along with a suggested diagnostic test and treatment based on similar cases are presented. The case investigates a 14-year-old boy who entered the hospital one week after a car accident that knocked him to the ground in crawling position and a rack fell down on his body. Pain and tenderness in the sacral region and a fracture in the left leg were notable--we detected incomplete bilateral palsy of L5, S1 and S2 roots. In radiographs of the spine fracture dislocation of S1, the sacral fracture was seen. The treatment included a skeletal traction with a halo over the patient’s head and two femoral pins. After one week, another surgery was performed in order to stabilize and reduce the fracture, and we employed a posterior approach with CD and a pedicular screw. After two years of follow-up, the fracture is completely cured without any loss of reduction.

Keywords: adolescent, fracture in adolescent, fracture dislocation, sacrum

Procedia PDF Downloads 292
6551 Telling the Truth to Patients Before Hip Fracture Surgery

Authors: Rawan Masarwa, Merav Ben Natan, Yaron Berkovich

Abstract:

Background: Hip fracture repair surgery carries a certain mortality risk, yet evidence suggests that orthopedic surgeons often refrain from discussing this issue with patients prior to surgery. Aim: This study aims to examine whether orthopedic surgeons address the issue of one-year post-surgery mortality before hip fracture repair surgery and to explore the factors influencing this decision. Method: The study uses a cross-sectional design, administering validated digital questionnaires to 150 orthopedic surgeons. Results: A minority of orthopedic surgeons reported consistently informing patients about the risk of mortality in the year following hip fracture surgery. The primary reasons for not discussing this risk were a desire to avoid frightening patients, time constraints, and concerns about undermining patient hope. Surgeons reported a medium-high level of perceived self-efficacy, with higher self-efficacy linked to a reduced likelihood of discussing one-year mortality risk. In contrast, older age and holding a specialist status in orthopedic surgery were associated with a higher likelihood of discussing this risk with patients. Conclusions: The findings suggest a need for interventions to address communication barriers and ensure consistent provision of essential information to patients undergoing hip fracture surgery. Additionally, they emphasize the importance of considering individual factors such as self-efficacy, age, and expertise in developing strategies to enhance patient-provider communication in orthopedic care settings.

Keywords: orthopedic surgeons, hip fracture surgery, mortality risk communication, patient information

Procedia PDF Downloads 25
6550 Risk of Fractures at Different Anatomic Sites in Patients with Irritable Bowel Syndrome: A Nationwide Population-Based Cohort Study

Authors: Herng-Sheng Lee, Chi-Yi Chen, Wan-Ting Huang, Li-Jen Chang, Solomon Chih-Cheng Chen, Hsin-Yi Yang

Abstract:

A variety of gastrointestinal disorders, such as Crohn’s disease, ulcerative colitis, and coeliac disease, are recognized as risk factors for osteoporosis and osteoporotic fractures. One recent study suggests that individuals with irritable bowel syndrome (IBS) might also be at increased risk of osteoporosis and osteoporotic fractures. Up to now, the association between IBS and the risk of fractures at different anatomic sites occurrences is not completely clear. We conducted a population-based cohort analysis to investigate the fracture risk of IBS in comparison with non-IBS group. We identified 29,505 adults aged ≥ 20 years with newly diagnosed IBS using the Taiwan National Health Insurance Research Database in 2000-2012. A comparison group was constructed of patients without IBS who were matched according to gender and age. The occurrence of fracture was monitored until the end of 2013. We analyzed the risk of fracture events to occur in IBS by using Cox proportional hazards regression models. Patients with IBS had a higher incidence of osteoporotic fractures compared with non-IBS group (12.34 versus 9.45 per 1,000 person-years) and an increased risk of osteoporotic fractures (adjusted hazard ratio [aHR] = 1.27, 95 % confidence interval [CI] = 1.20 – 1.35). Site specific analysis showed that the IBS group had a higher risk of fractures for spine, forearm, hip and hand than did the non-IBS group. With further stratification for gender and age, a higher aHR value for osteoporotic fractures in IBS group was seen across all age groups in males, but seen in elderly females. In addition, female, elderly, low income, hypertension, coronary artery disease, cerebrovascular disease, and depressive disorders as independent osteoporotic fracture risk factors in IBS patients. The IBS is considered as a risk factor for osteoporotic fractures, particularly in female individuals and fracture sites located at the spine, forearm, hip and hand.

Keywords: irritable bowel syndrome, fracture, gender difference, longitudinal health insurance database, public health

Procedia PDF Downloads 228
6549 An Unusual Fracture Pattern: Fracture of the Distal Radius (Colles') along with Fracture of the Ipsilateral Scaphoid & Capitate Bones

Authors: Srikanta Tagore Sarkar, Prasanta Kumar Mandal, Dibakar Roy

Abstract:

The association of a capitate fracture with a scaphoid fracture has been termed as the naviculocapitate syndrome. The existence of some nondisplaced fractures of scaphoid and capitate with or without the fracture of lunate or radius suggests that there is a spectrum of these injuries, and this confuses the terminology. With our case; we report an unusual variety of this naviculocapitate syndrome with distal radial Colles fracture in addition to the nondisplaced fractures of the scaphoid, capitate and the dorsal lip of radial fracture. When we looked at the literature there is no another Colles fracture reported together with undisplaced scapho-capitate syndrome. The coronal and sagittal images that obtained from the MDCT (Multidetector computed tomography) is useful and effective imaging modality to diagnose complex wrist fractures with more details that are not detected in X-rays.

Keywords: scaphoid, capitate, Colles’ fracture, syndrome, MDCT, unusual

Procedia PDF Downloads 392
6548 Micro-CT Assessment of Fracture Healing in Androgen-Deficient Osteoporosis Model

Authors: Ahmad N. Shuid, Azri Jalil, Sabarul A. Mokhtar, Mohd F. Khamis, Norliza Muhammad

Abstract:

Micro-CT provides a 3-D image of fracture callus, which can be used to calculate quantitative parameters. In this study, micro-CT was used to assess the fracture healing of orchidectomised rats, an androgen-deficient osteoporosis model. The effect of testosterone (hormone replacement) on fracture healing was also assessed with micro-CT. The rats were grouped into orchidectomised-control (ORX), sham-operated (SHAM), and orchidectomised; and injected with testosterone intramuscularly once weekly (TEN). Treatment duration was six weeks. The fracture was induced and fixed with plates and screws in the right tibia of all the rats. An in vitro micro-CT was used to scan the fracture callus area which consisted of 100 axial slices above and below fracture line. The analysis has shown that micro-CT was able to detect a significant difference in the fracture healing rate of ORX and TEN groups. In conclusion, micro-CT can be used to assess fracture healing in androgen-deficient osteoporosis. This imaging tool can be used to test agents that influence fracture healing in the androgen-deficient model.

Keywords: androgen, fracture, orchidectomy, osteoporosis

Procedia PDF Downloads 543
6547 The Neutrophil-to-Lymphocyte Ratio after Surgery for Hip Fracture in a New, Simple, and Objective Score to Predict Postoperative Mortality

Authors: Philippe Dillien, Patrice Forget, Harald Engel, Olivier Cornu, Marc De Kock, Jean Cyr Yombi

Abstract:

Introduction: Hip fracture precedes commonly death in elderly people. Identification of high-risk patients may contribute to target patients in whom optimal management, resource allocation and trials efficiency is needed. The aim of this study is to construct a predictive score of mortality after hip fracture on the basis of the objective prognostic factors available: Neutrophil-to-lymphocyte ratio (NLR), age, and sex. C-Reactive Protein (CRP), is also considered as an alternative to the NLR. Patients and methods: After the IRB approval, we analyzed our prospective database including 286 consecutive patients with hip fracture. A score was constructed combining age (1 point per decade above 74 years), sex (1 point for males), and NLR at postoperative day+5 (1 point if >5). A receiver-operating curve (ROC) curve analysis was performed. Results: From the 286 patients included, 235 were analyzed (72 males and 163 females, 30.6%/69.4%), with a median age of 84 (range: 65 to 102) years, mean NLR values of 6.47+/-6.07. At one year, 82/280 patients died (29.3%). Graphical analysis and log-rank test confirm a highly statistically significant difference (P<0.001). Performance analysis shows an AUC of 0.72 [95%CI 0.65-0.79]. CRP shows no advantage on NLR. Conclusion: We have developed a score based on age, sex and the NLR to predict the risk of mortality at one year in elderly patients after surgery for a hip fracture. After external validation, it may be included in clinical practice as in clinical research to stratify the risk of postoperative mortality.

Keywords: neutrophil-to-lymphocyte ratio, hip fracture, postoperative mortality, medical and health sciences

Procedia PDF Downloads 411
6546 Insufficiency Fracture of Femoral Head in Patients Treated With Intramedullary Nailing for Proximal Femur Fracture

Authors: Jai Hyung Park, Eugene Kim, Jin Hun Park, Min Joon Oh

Abstract:

Introduction: Subchondral insufficiency fracture of the femoral head (SIF) is a rare complication; however, it has been recognized to cause femoral head collapse. Subchondral insufficiency fracture (SIF) is caused by normal or physiological stress without any trauma. It has been reported in osteoporotic patients after the fixation of the proximal femur with an Intramedullary nail. Case presentation: We reported 5 cases with SIF of the femoral head after proximal femur fracture fixation with Intra-medullary nail. All patients had osteoporosis as an underlying disease. Good reduction was achieved in all 5 patients. SIF was found from about 3 months to 4 years after the initial operation, and all the fractures were solidly united at the final diagnosis. We investigated retrospectively the feature of those cases and several factors that affected the occurrence of SIF. Discussion: There are a few discussions regarding the SIF of the femoral head. These discussions may include the predisposing risk factors, how to diagnose the SIF in osteoporotic patients, and the peri-operative factors to prevent SIF. Conclusion: Subchondral insufficiency fracture of the femoral head is a considerable complication after the internal fixation of the proximal femur. There are several factors that can be modified. If they could be controlled in the peri-operative period, SIF could be prevented or handled in advance. Other options related to arthroplasty can be considered in old osteoporotic patients.

Keywords: insufficiency fracture of femoral head, intra-medullary nail, osteoporosis, proximal femur fracture

Procedia PDF Downloads 127
6545 Failure Analysis of Fractured Dental Implants

Authors: Rajesh Bansal, Amit Raj Sharma, Vakil Singh

Abstract:

The success and predictability of titanium implants for long durations are well established and there has been a tremendous increase in the popularity of implants among patients as well as clinicians over the last four decades. However, sometimes complications arise, which lead to the loss of the implant as well as the prosthesis. Fracture of dental implants is rare; however, at times, implants or abutment screws fracture and lead to many problems for the clinician and the patient. Possible causes of implant fracture include improper design, overload, fatigue and corrosion. Six retrieved fractured dental implants, with varying diameters and designs, were collected from time to time to examine by scanning electron microscope (SEM) to characterize fracture behavior and assess the mechanism of fracture. In this investigation, it was observed that fracture of the five dental implants occurred due to fatigue crack initiation and propagation from the thread roots.

Keywords: titanium, dental, implant, fracture, failure

Procedia PDF Downloads 80
6544 Model of Elastic Fracture Toughness for Ductile Metal Pipes with External Longitudinal Cracks

Authors: Guoyang Fu, Wei Yang, Chun-Qing Li

Abstract:

The most common type of cracks that appear on metal pipes is longitudinal cracks. For ductile metal pipes, the existence of plasticity eases the stress intensity at the crack front and consequently increases the fracture resistance. It should be noted that linear elastic fracture mechanics (LEFM) has been widely accepted by engineers. In order to make the LEFM applicable to ductile metal materials, the increase of fracture toughness due to plasticity should be excluded from the total fracture toughness of the ductile metal. This paper aims to develop a model of elastic fracture toughness for ductile metal pipes with external longitudinal cracks. The derived elastic fracture toughness is a function of crack geometry and material properties of the cracked pipe. The significance of the derived model is that the well-established LEFM can be used for ductile metal material in predicting the fracture failure.

Keywords: Ductile metal pipes, elastic fracture toughness, longitudinal crack, plasticity

Procedia PDF Downloads 244
6543 Socio-Economic Problems in Treatment of Non-Union Both Bones Fracture of the Leg: A Retrospective Study

Authors: Rajendra Kumar Kanojia

Abstract:

Treatment of fracture both bones of leg following trauma is done intially at nearby primary health care center.primary management for shock,pain,control of bleeding,plaster application. These are treated for primay fixation of fracture, debridment of wound. Then, they were refered to tertiary care where they were again and planned for further treatment. This leads to loss of lot of time, money, job, etc.

Keywords: fracture both bones leg, non-union, ilizarov, cost

Procedia PDF Downloads 568
6542 Estimation of Reservoirs Fracture Network Properties Using an Artificial Intelligence Technique

Authors: Reda Abdel Azim, Tariq Shehab

Abstract:

The main objective of this study is to develop a subsurface fracture map of naturally fractured reservoirs by overcoming the limitations associated with different data sources in characterising fracture properties. Some of these limitations are overcome by employing a nested neuro-stochastic technique to establish inter-relationship between different data, as conventional well logs, borehole images (FMI), core description, seismic attributes, and etc. and then characterise fracture properties in terms of fracture density and fractal dimension for each data source. Fracture density is an important property of a system of fracture network as it is a measure of the cumulative area of all the fractures in a unit volume of a fracture network system and Fractal dimension is also used to characterize self-similar objects such as fractures. At the wellbore locations, fracture density and fractal dimension can only be estimated for limited sections where FMI data are available. Therefore, artificial intelligence technique is applied to approximate the quantities at locations along the wellbore, where the hard data is not available. It should be noted that Artificial intelligence techniques have proven their effectiveness in this domain of applications.

Keywords: naturally fractured reservoirs, artificial intelligence, fracture intensity, fractal dimension

Procedia PDF Downloads 252
6541 Fracture Energy Corresponding to the Puncture/Cutting of Nitrile Rubber by Pointed Blades

Authors: Ennouri Triki, Toan Vu-Khanh

Abstract:

Resistance to combined puncture/cutting by pointed blades is an important property of gloves materials. The purpose of this study is to propose an approach derived from the fracture mechanics theory to calculate the fracture energy associated to the puncture/cutting of nitrile rubber. The proposed approach is also based on the application of a sample pre-strained during the puncture/cutting test in order to remove the contribution of friction. It was validated with two different pointed blade angles of 22.5° and 35°. Results show that the applied total fracture energy corresponding to puncture/cutting is controlled by three energies, one is the fracture energy or the intrinsic strength of the material, the other reflects the friction energy between a pointed blade and the material. For an applied pre-strain energy (or tearing energy) of high value, the friction energy is completely removed. Without friction, the total fracture energy is constant. In that case, the fracture contribution of the tearing energy is marginal. Growth of the crack is thus completely caused by the puncture/cutting by a pointed blade. Finally, results suggest that the value of the fracture energy corresponding to puncture/cutting by pointed blades is obtained at a frictional contribution of zero.

Keywords: elastomer, energy, fracture, friction, pointed blades

Procedia PDF Downloads 303
6540 Actual Fracture Length Determination Using a Technique for Shale Fracturing Data Analysis in Real Time

Authors: M. Wigwe, M. Y Soloman, E. Pirayesh, R. Eghorieta, N. Stegent

Abstract:

The moving reference point (MRP) technique has been used in the analyses of the first three stages of two fracturing jobs. The results obtained verify the proposition that a hydraulic fracture in shale grows in spurts rather than in a continuous pattern as originally interpreted by Nolte-Smith technique. Rather than a continuous Mode I fracture that is followed by Mode II, III or IV fractures, these fracture modes could alternate throughout the pumping period. It is also shown that the Nolte-Smith time parameter plot can be very helpful in identifying the presence of natural fractures that have been intersected by the hydraulic fracture. In addition, with the aid of a fracture length-time plot generated from any fracture simulation that matches the data, the distance from the wellbore to the natural fractures, which also translates to the actual fracture length for the stage, can be determined. An algorithm for this technique is developed. This procedure was used for the first 9 minutes of the simulated frac job data. It was observed that after 7mins, the actual fracture length is about 150ft, instead of 250ft predicted by the simulator output. This difference gets larger as the analysis proceeds.

Keywords: shale, fracturing, reservoir, simulation, frac-length, moving-reference-point

Procedia PDF Downloads 752
6539 Micro-CT Assessment of Fracture Healing with Targeted Delivery of Tocotrienol in Osteoporosis Model

Authors: Ahmad Nazrun Shuid, Isa Naina Mohamed, Nurul Izzah Ibrahim, Norazlina Mohamed

Abstract:

Studies have shown that oral tocotrienol, a potent vitamin E, promoted fracture healing of osteoporotic bone. In this study, tocotrienol was combined with a polymer carrier (PLGA), and injected to the fracture site. The slow and constant release of tocotrienol particles would promote fracture healing of post-menopausal osteoporosis rat model. Fracture healing was assessed using micro-CT. Twenty-four Sprague-Dawley rats were ovariectomised or sham-operated and the left tibiae were fractured and fixed with plate and screws. The fractures were created at the upper third of the left tibiae. The rats were divided into 3 groups: sham-operated (SO), ovariectomised-control (OVxC) and PLGA-incorporated tocotrienol treatment (OVx + TT) groups. After 4 weeks, the OVx + TT group showed significantly better callus fracture healing than the OVxC group. In conclusion, tocotrienol-incorporated PLGA was able to promote fracture healing of osteoporotic bone.

Keywords: osteoporosis, micro-CT, tocotrienol, PLGA, fracture

Procedia PDF Downloads 665
6538 Failure Criterion for Mixed Mode Fracture of Cracked Wood Specimens

Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi

Abstract:

Investigation of fracture of wood components can prevent from catastrophic failures. Created fracture process zone (FPZ) in crack tip vicinity has important effect on failure of cracked composite materials. In this paper, a failure criterion for fracture investigation of cracked wood specimens under mixed mode I/II loading is presented. This criterion is based on maximum strain energy release rate and material nonlinearity in the vicinity of crack tip due to presence of microcracks. Verification of results with available experimental data proves the coincidence of the proposed criterion with the nature of fracture of wood. To simplify the estimation of nonlinear properties of FPZ, a damage factor is also introduced for engineering and application purposes.

Keywords: fracture criterion, mixed mode loading, damage zone, micro cracks

Procedia PDF Downloads 296
6537 Research on the Feasibility of Evaluating Low-Temperature Cracking Performance of Asphalt Mixture Using Fracture Energy

Authors: Tao Yang, Yongli Zhao

Abstract:

Low-temperature cracking is one of the major challenges for asphalt pavement in the cold region. Fracture energy could determine from various test methods, which is a commonly used parameter to evaluate the low-temperature cracking resistance of asphalt mixture. However, the feasibility of evaluating the low-temperature cracking performance of asphalt mixture using fracture energy is not investigated comprehensively. This paper aims to verify whether fracture energy is an appropriate parameter to evaluate the low-temperature cracking performance. To achieve this goal, this paper compared the test results of thermal stress restrained specimen test (TSRST) and semi-circular bending test (SCB) of asphalt mixture with different types of aggregate, TSRST and indirect tensile test (IDT) of asphalt mixture with different additives, and single-edge notched beam test (SENB) and TSRST of asphalt mixture with different asphalt. Finally, the correlation between in-suit cracking performance and fracture energy was surveyed. The experimental results showed the evaluation result of critical cracking temperature and fracture energy are not always consistent; the in-suit cracking performance is also not correlated well with fracture energy. These results indicated that it is not feasible to evaluate low-temperature performance by fracture energy. Then, the composition of fracture energy of TSRST, SCB, disk-shaped compact tension test (DCT), three-point bending test (3PB) and IDT was analyzed. The result showed: the area of thermal stress versus temperature curve is the multiple of fracture energy and could be used to represent fracture energy of TSRST, as the multiple is nearly equal among different asphalt mixtures for a specific specimen; the fracture energy, determined from TSRST, SCB, DCT, 3PB, SENB and IDT, is mainly the surface energy that forms the fracture face; fracture energy is inappropriate to evaluate the low-temperature cracking performance of asphalt mixture, as the relaxation/viscous performance is not considered; if the fracture energy was used, it is recommended to combine this parameter with an index characterizing the relaxation or creep performance of asphalt mixture.

Keywords: asphalt pavement, cold region, critical cracking temperature, fracture energy, low-temperature cracking

Procedia PDF Downloads 186
6536 Effect of Institution Volume on Mortality and Outcomes in Osteoporotic Hip Fracture Care

Authors: J. Milton, C. Uzoigwe, O. Ayeko, B. Offorha, K. Anderson, R. G. Middleton

Abstract:

Background: We used the UK National Hip Fracture database to determine the effect of institution hip fracture case volume on hip fracture healthcare outcomes in 2019. Using logistic regression for each healthcare outcome, we compared the best performing 50 units with the poorest performing 50 units in order to determine if the unit volume was associated with performance for each particular outcome. Method: We analysed 175 institutions treating a total of 67,673 patients over the course of a year. Results: The number of hip fractures seen per unit ranged between 86 and 952. Larger units tendered to perform health assessments more consistently and mobilise patients more expeditiously post-operatively. Patients treated at large institutions had shorter lengths of stay. With regard to most other outcomes, there was no association between unit case volume and performance, notably compliance with the Best Practice Tariff, time to surgery, proportion of eligible patients undergoing total hip arthroplasty, length of stay, delirium risk, and pressure sore risk assessments. Conclusion: There is no relationship between unit volume and the majority of health care outcomes. It would seem that larger institutions tend to perform better at parameters that are dependent upon personnel numbers. However, where the outcome is contingent, even partially, on physical infrastructure capacity, there was no difference between larger and smaller units.

Keywords: institution volume, mortality, neck of femur fractures, osteoporosis

Procedia PDF Downloads 94
6535 Prediction and Reduction of Cracking Issue in Precision Forging of Engine Valves Using Finite Element Method

Authors: Xi Yang, Bulent Chavdar, Alan Vonseggern, Taylan Altan

Abstract:

Fracture in hot precision forging of engine valves was investigated in this paper. The entire valve forging procedure was described and the possible cause of the fracture was proposed. Finite Element simulation was conducted for the forging process, with commercial Finite Element code DEFORMTM. The effects of material properties, the effect of strain rate and temperature were considered in the FE simulation. Two fracture criteria were discussed and compared, based on the accuracy and reliability of the FE simulation results. The selected criterion predicted the fracture location and shows the trend of damage increasing with good accuracy, which matches the experimental observation. Additional modification of the punch shapes was proposed to further reduce the tendency of fracture in forging. Finite Element comparison shows a great potential of such application in the mass production.

Keywords: hotforging, engine valve, fracture, tooling

Procedia PDF Downloads 277
6534 Numerical Investigation for Ductile Fracture of an Aluminium Alloy 6061 T-6: Assessment of Critical J-Integral

Authors: R. Bensaada, M. Almansba, M. Ould Ouali, R. Ferhoum, N. E. Hannachi

Abstract:

The aim of this work is to simulate the ductile fracture of SEN specimens in aluminium alloy. The assessment of fracture toughness is performed with the calculation of Jc (the critical value of J-Integral) through the resistance curves. The study is done using finite element code calculation ABAQUSTM including an elastic plastic with damage model of material’s behaviour. The procedure involves specimens of four different thicknesses and four ligament sizes for every thickness. The material of study is an aluminium alloy 6061-T6 for which the necessary parameters to complete the study are given. We found the same results for the same specimen’s thickness and for different ligament sizes when the fracture criterion is evaluated.

Keywords: j-integral, critical-j, damage, fracture toughness

Procedia PDF Downloads 358
6533 Extended Strain Energy Density Criterion for Fracture Investigation of Orthotropic Materials

Authors: Mahdi Fakoor, Hannaneh Manafi Farid

Abstract:

In order to predict the fracture behavior of cracked orthotropic materials under mixed-mode loading, well-known minimum strain energy density (SED) criterion is extended. The crack is subjected along the fibers at plane strain conditions. Despite the complicities to solve the nonlinear equations which are requirements of SED criterion, SED criterion for anisotropic materials is derived. In the present research, fracture limit curve of SED criterion is depicted by a numerical solution, hence the direction of crack growth is figured out by derived criterion, MSED. The validated MSED demonstrates the improvement in prediction of fracture behavior of the materials. Also, damaged factor that plays a crucial role in the fracture behavior of quasi-brittle materials is derived from this criterion and proved its dependency on mechanical properties and direction of crack growth.

Keywords: mixed-mode fracture, minimum strain energy density criterion, orthotropic materials, fracture limit curve, mode II critical stress intensity factor

Procedia PDF Downloads 165
6532 Study on Effect of Reverse Cyclic Loading on Fracture Resistance Curve of Equivalent Stress Gradient (ESG) Specimen

Authors: Jaegu Choi, Jae-Mean Koo, Chang-Sung Seok, Byungwoo Moon

Abstract:

Since massive earthquakes in the world have been reported recently, the safety of nuclear power plants for seismic loading has become a significant issue. Seismic loading is the reverse cyclic loading, consisting of repeated tensile and compression by longitudinal and transverse wave. Up to this time, the study on characteristics of fracture toughness under reverse cyclic loading has been unsatisfactory. Therefore, it is necessary to obtain the fracture toughness under reverse cyclic load for the integrity estimation of nuclear power plants under seismic load. Fracture resistance (J-R) curves, which are used for determination of fracture toughness or integrity estimation in terms of elastic-plastic fracture mechanics, can be derived by the fracture resistance test using single specimen technique. The objective of this paper is to study the effects of reverse cyclic loading on a fracture resistance curve of ESG specimen, having a similar stress gradient compared to the crack surface of the real pipe. For this, we carried out the fracture toughness test under the reverse cyclic loading, while changing incremental plastic displacement. Test results showed that the J-R curves were decreased with a decrease of the incremental plastic displacement.

Keywords: reverse cyclic loading, j-r curve, ESG specimen, incremental plastic displacement

Procedia PDF Downloads 387
6531 The Study on Mechanical Properties of Graphene Using Molecular Mechanics

Authors: I-Ling Chang, Jer-An Chen

Abstract:

The elastic properties and fracture of two-dimensional graphene were calculated purely from the atomic bonding (stretching and bending) based on molecular mechanics method. Considering the representative unit cell of graphene under various loading conditions, the deformations of carbon bonds and the variations of the interlayer distance could be realized numerically under the geometry constraints and minimum energy assumption. In elastic region, it was found that graphene was in-plane isotropic. Meanwhile, the in-plane deformation of the representative unit cell is not uniform along armchair direction due to the discrete and non-uniform distributions of the atoms. The fracture of graphene could be predicted using fracture criteria based on the critical bond length, over which the bond would break. It was noticed that the fracture behavior were directional dependent, which was consistent with molecular dynamics simulation results.

Keywords: energy minimization, fracture, graphene, molecular mechanics

Procedia PDF Downloads 401
6530 Fracture Strength of Carbon Nanotube Reinforced Plasma Sprayed Aluminum Oxide Coating

Authors: Anup Kumar Keshri, Arvind Agarwal

Abstract:

Carbon nanotube (CNT) reinforced aluminum oxide (Al2O3) composite coating was synthesized on the steel substrate using plasma spraying technique. Three different compositions of coating such as Al2O3, Al2O¬3-4 wt. % CNT and Al2O3-8 wt. % CNT were synthesized and the fracture strength was determined using the four point bend test. Uniform dispersion of CNTs over Al2O3 powder particle was successfully achieved. With increasing CNT content, porosity in the coating showed decreasing trend and hence contributed towards enhanced mechanical properties such as hardness (~12% increased) and elastic modulus (~34 % increased). Fracture strength of the coating was found to be increasing with the CNT additions. By reinforcement of 8 wt. % of CNT, fracture strength increased by ~2.5 times. The improvement in fracture strength of Al2O3-CNT coating was attributed to three competitive phenomena viz. (i) lower porosity (ii) higher hardness and elastic modulus (iii) CNT bridging between splats.

Keywords: aluminum oxide, carbon nanotube, fracture strength, plasma spraying

Procedia PDF Downloads 393
6529 Phenomenological Ductile Fracture Criteria Applied to the Cutting Process

Authors: František Šebek, Petr Kubík, Jindřich Petruška, Jiří Hůlka

Abstract:

Present study is aimed on the cutting process of circular cross-section rods where the fracture is used to separate one rod into two pieces. Incorporating the phenomenological ductile fracture model into the explicit formulation of finite element method, the process can be analyzed without the necessity of realizing too many real experiments which could be expensive in case of repetitive testing in different conditions. In the present paper, the steel AISI 1045 was examined and the tensile tests of smooth and notched cylindrical bars were conducted together with biaxial testing of the notched tube specimens to calibrate material constants of selected phenomenological ductile fracture models. These were implemented into the Abaqus/Explicit through user subroutine VUMAT and used for cutting process simulation. As the calibration process is based on variables which cannot be obtained directly from experiments, numerical simulations of fracture tests are inevitable part of the calibration. Finally, experiments regarding the cutting process were carried out and predictive capability of selected fracture models is discussed. Concluding remarks then make the summary of gained experience both with the calibration and application of particular ductile fracture criteria.

Keywords: ductile fracture, phenomenological criteria, cutting process, explicit formulation, AISI 1045 steel

Procedia PDF Downloads 456
6528 Improval of Fracture Healing of Osteoporotic Bone by Lovastatin-Incorporated Poly-(DL-Lactide)

Authors: Nurul Izzah Ibrahim, Isa Naina Mohamed, Norazlina Mohamed, Ahmad Nazrun Shuid

Abstract:

Osteoporosis disease delays fracture healing. Statins have shown potential for osteoporosis and to promote fracture healing. The effects of statin can be further potentiated by combining it with a carrier known as poly-(DL-lactide), which would provide persistent release of statin to the fracture site. This study was designed to investigate the effects of direct injection of poly-(DL-lactide)-incorporated lovastatin on fracture healing of postmenopausal osteoporosis rat model. Twenty-four Sprague-Dawley female rats were divided into 3 groups: sham-operated (SO), ovariectomized-control rats (OVxC) and poly-(DL-lactide)-incorporated lovastatin (OVx+Lov) groups. The OVx+Lov group was given a single injection of 750 µg/kg lovastatin particles incorporated with poly-(DL-lactide). After 4 weeks, the fractured tibiae were dissected out for biomechanical assessments of the callus. The OVx+Lov group showed significantly better callus strength than the OVxC group (p<0.05). In conclusion, a single injection of lovastatin-incorporated poly-(DL-lactide) was able to promote better fracture healing of osteoporotic bone.

Keywords: statins, fracture healing, osteoporosis, poly-(DL-lactide)

Procedia PDF Downloads 505
6527 Determining the Mode II Intra Ply Energy Release Rate of Composites Made of Prepreg

Authors: Philip Rose, Markus Linke, David Busquets

Abstract:

The distinction between interlaminar and intralaminar fracture toughness has already been investigated by several authors. For loading mode I, the double cantilever beam specimens were often used for the interlaminar fracture toughness and the compact tension specimen for the intralaminar fracture toughness. In order to minimize the influence of the different specimen geometries, a method was developed which allows the determination of both the interlaminar and the intralaminar fracture toughness on an almost identical specimen geometry. However, as this method is not applicable to prepreg semi-finished products, a further modification was developed, which is also suitable for prepreg laminates. After the successful application for the investigation of mode I with this method, the application of the method for loading mode II is presented in this paper. In addition to manufacturing differences, due to an additional fiber ply in which the controlled crack growth takes place, the adapted test procedure is also explained. By comparing the test results of standardized end-notched flexure (ENF) specimens with those of the modified ENF specimen, the difference between the interlaminar and intralaminar fracture toughness of the material Hexply 8552/IM7 is shown.

Keywords: ENF, fracture toughness, interlaminar, mode II

Procedia PDF Downloads 135
6526 Influence of Multi-Walled Carbon Nanotube on Interface Fracture of Sandwich Composite

Authors: Alak Kumar Patra, Nilanjan Mitra

Abstract:

Interface fracture toughness of glass-epoxy (G/E) PVC core sandwich composite with and without MWCNT has been investigated through experimental methods. Results demonstrate an improvement in interface fracture toughness values (GC) of samples with a certain percentages of MWCNT. In addition, dispersion of MWCNT in epoxy resin through sonication followed by mixing of hardener and vacuum assisted resin transfer method (VARTM) used in this study is an easy and cost effective methodology in comparison to previously adopted other methods limited to laminated composites. The study also identifies the optimum weight percentage of MWCNT addition in the resin system for maximum performance gain in interfacial fracture toughness. The results are supported by high resolution transmission electron microscope (HRTEM) analysis and fracture micrograph of field emission scanning electron microscope (FESEM) investigation.

Keywords: carbon nanotube, foam, glass-epoxy, interfacial fracture, sandwich composite

Procedia PDF Downloads 430
6525 Limiting Fracture Stress of Composite Ceramics with Symmetric Triangle Eutectic

Authors: Jian Zheng, Jinfeng Yu, Xinhua Ni

Abstract:

The limiting fracture stress predicting model of composite ceramics with symmetric triangle eutectic was established based on its special microscopic structure. The symmetric triangle eutectic is consisted of matrix, the strong constraint inter-phase and reinforced fiber inclusions which are 120 degrees uniform symmetrical distribution. Considering the conditions of the rupture of the cohesive bond between matrix and fibers in eutectic and the stress concentration effect at the fiber end, the intrinsic fracture stress of eutectic was obtained. Based on the biggest micro-damage strain in eutectic, defining the load function, the macro-damage fracture stress of symmetric triangle eutectic was determined by boundary conditions. Introducing the conception of critical zone, the theoretical limiting fracture stress forecasting model of composite ceramics was got, and the stress was related to the fiber size and fiber volume fraction in eutectic. The calculated results agreed with the experimental results in the literature.

Keywords: symmetric triangle eutectic, composite ceramics, limiting stress, intrinsic fracture stress

Procedia PDF Downloads 257