Search results for: search algorithms
829 Disability Policy and Leaders in México
Authors: Jennifer Isabelle Rios Rendón, Ursula Sanchez, Dana Lee Baker
Abstract:
Disability Policy in México has witnessed numerous changed throughout the years. Physical disabilities are more often recognized in Mexican culture. However, with an emerging focus on neurological disabilities or differences in individuals’ new policies are needed to serve better and understand the needs of these populations. The need to understand and communicate with local leaders is imperative, as the lens used to analyze autism has historically been from a Western school of thought. We are looking to comprehend the disability policy subsystem in México - specifically how autism is perceived, the language used to describe it, and how it ties to the cultural stigma of disabilities that exist in México. Therefore, to understand this, we seek to interview multiple policy leaders on their experience in autism and disability policy. The goal is to conduct qualitative research through interviews with local autism and disability leaders in México. This methodology aims to answer the questions of what language commonly and culturally is utilized in disability policy, the context of how autism is perceived in México, and in general, the lived experience of the disability policy leaders that take part in this effort in México. Local activists and policy leaders were initially found through an online search then collected using snowball sampling. The interviews were conducted through a series of pre-formulated questions that the policy leader answered via email or a phone conversation with the researchers. Acknowledging the importance of language and accessibility, the need for the content to be in both English and Spanish as well as auditory and visual is essential to take steps in the inclusion of a Neurodiverse group of leaders. This work is a demonstration of the framework of the investigation which hopes to create a more complete understanding of the policy and political culture around autism in México. Results of the project include new insight into the developing relationship between the President Andrés Manuel López Obrador’s administration, disability activists, and neurodiverse communities. The project contributes to denormalizing the legacy of white supremacy in autism related, historically rooted in the assumption that autism occurs predominantly in white communities.Keywords: autism, disability leaders, disability policy, México, Neurodiversity
Procedia PDF Downloads 137828 Associated Risks of Spontaneous Lung Collapse after Shoulder Surgery: A Literature Review
Authors: Fiona Bei Na Tan, Glen Wen Kiat Ho, Ee Leen Liow, Li Yin Tan, Sean Wei Loong Ho
Abstract:
Background: Shoulder arthroscopy is an increasingly common procedure. Pneumothorax post-shoulder arthroscopy is a rare complication. Objectives: Our aim is to highlight a case report of pneumothorax post shoulder arthroscopy and to conduct a literature review to evaluate the possible risk factors associated with developing a pneumothorax during or after shoulder arthroscopy. Case Report: We report the case of a 75-year-old male non-smoker who underwent left shoulder arthroscopy without regional anaesthesia and in the left lateral position. The general anaesthesia and surgery were uncomplicated. The patient was desaturated postoperatively and was found to have a pneumothorax on examination and chest X-ray. A chest tube drain was inserted promptly into the right chest. He had an uncomplicated postoperative course. Methods: PubMed Medline and Cochrane database search was carried out using the terms shoulder arthroplasty, pneumothorax, pneumomediastinum, and subcutaneous emphysema. We selected full-text articles written in English. Results: Thirty-two articles were identified and thoroughly reviewed. Based on our inclusion and exclusion criteria, 14 articles, which included 20 cases of pneumothorax during or after shoulder arthroscopy, were included. Eighty percent (16/20) of pneumothoraxes occurred postoperatively. In the articles that specify the side of pneumothorax, 91% (10/11) occur on the ipsilateral side of the arthroscopy. Eighty-eight percent (7/8) of pneumothoraxes occurred when subacromial decompression was performed. Fifty-six percent (9/16) occurred in patients placed in the lateral decubitus position. Only 30% (6/20) occurred in current or ex-smokers, and only 25% (5/20) had a pre-existing lung condition. Overall, of the articles that posit a mechanism, 75% (9/12) deem the pathogenesis to be multifactorial. Conclusion: The exact mechanism of pneumothorax is currently unknown. Awareness of this complication and timely recognition are important to prevent life-threatening sequelae. Surgeons should have a low threshold to obtain diagnostic plain radiographs in the event of clinical suspicion.Keywords: rotator cuff repair, decompression, pressure, complication
Procedia PDF Downloads 67827 A Contemporary Advertising Strategy on Social Networking Sites
Authors: M. S. Aparna, Pushparaj Shetty D.
Abstract:
Nowadays social networking sites have become so popular that the producers or the sellers look for these sites as one of the best options to target the right audience to market their products. There are several tools available to monitor or analyze the social networks. Our task is to identify the right community web pages and find out the behavior analysis of the members by using these tools and formulate an appropriate strategy to market the products or services to achieve the set goals. The advertising becomes more effective when the information of the product/ services come from a known source. The strategy explores great buying influence in the audience on referral marketing. Our methodology proceeds with critical budget analysis and promotes viral influence propagation. In this context, we encompass the vital bits of budget evaluation such as the number of optimal seed nodes or primary influential users activated onset, an estimate coverage spread of nodes and maximum influence propagating distance from an initial seed to an end node. Our proposal for Buyer Prediction mathematical model arises from the urge to perform complex analysis when the probability density estimates of reliable factors are not known or difficult to calculate. Order Statistics and Buyer Prediction mapping function guarantee the selection of optimal influential users at each level. We exercise an efficient tactics of practicing community pages and user behavior to determine the product enthusiasts on social networks. Our approach is promising and should be an elementary choice when there is little or no prior knowledge on the distribution of potential buyers on social networks. In this strategy, product news propagates to influential users on or surrounding networks. By applying the same technique, a user can search friends who are capable to advise better or give referrals, if a product interests him.Keywords: viral marketing, social network analysis, community web pages, buyer prediction, influence propagation, budget constraints
Procedia PDF Downloads 262826 Assessing Smallholder Rice and Vegetable Farmers’ Constraints and Needs to Adopt Small-Scale Irrigation in South Tongu District, Ghana
Authors: Tamekloe Michael Kossivi, Kenichi Matsui
Abstract:
Irrigation access is one of the essential rural development investment options that can significantly improve smallholder farmers’ agriculture productivity. Investment in irrigation infrastructural development to supply adequate water could improve food security, growth in income for farmers, poverty alleviation, and improve business and livelihood. This paper assesses smallholder farmers’ constraints and the needs to adopt small-scale irrigation for crops production in the South Tongu District of Ghana. The data collection involved database search, questionnaire survey, interview, and field work. The structured questionnaire survey was administered from September to November 2020 among 120 respondents in six purposively sampled irrigation communities in the District. The questions focused on small-scale irrigation development constraints and needs. As a result, we found that the respondents relied mainly on rainfall for agriculture production. They did not have adequate irrigation access. Even though the District is blessed with open arable lands and rich water sources for rice and vegetable production on a massive scale, water sources like the Lower Volta River, Tordzi River, and Avu Lagoon were not close enough to the respondents. The respondents faced inadequate credit support (100%), unreliable rainfall (76%), insufficient water supply (54%), and unreliable water delivery challenges on their farms (53%). Physical constraints for the respondents to adopt irrigation included flood (77%), drought (93%), inadequate irrigation technology (59%), and insufficient technical know-how (65%). Farmers were interested in investing in irrigation infrastructural development to enhance productivity on their farms only if they own the farmlands. External support from donors on irrigation systems did not allow smallholder farmers to control irrigation facilities.Keywords: constraints, food security, needs, smallholder farmers, small-scale irrigation
Procedia PDF Downloads 137825 Analyzing the Efficiency of Initiatives Taken against Disinformation during Election Campaigns: Case Study of Young Voters
Authors: Fatima-Zohra Ghedir
Abstract:
Social media platforms have been actively working on solutions and combined their efforts with media, policy makers, educators and researchers to protect citizens and prevent interferences in information, political discourses and elections. Facebook, for instance, deleted fake accounts, implemented fake accounts and fake content detection algorithms, partnered with news agencies to manually fact check content and changed its newsfeeds display. Twitter and Instagram regularly communicate on their efforts and notify their users of improvements and safety guidelines. More funds have been allocated to media literacy programs to empower citizens in prevision of the coming elections. This paper investigates the efficiency of these initiatives and analyzes the metrics to measure their success or failure. The objective is also to determine the segments of population more prone to fall in disinformation traps during the elections despite the measures taken over the last four years. This study will also examine the groups who were positively impacted by these measures. This paper relies on both desk and field methodologies. For this study, a survey was administered to French students aged between 17 and 29 years old. Semi-guided interviews were conducted on a similar audience. The analysis of the survey and of the interviews show that respondents were exposed to the initiatives described above and are aware of the existence of disinformation issues. However, they do not understand what disinformation really entails or means. For instance, for most of them, disinformation is synonymous of the opposite point of view without taking into account the truthfulness of the content. Besides, they still consume and believe the information shared by their friends and family, with little questioning about the ways their closed ones get informed.Keywords: democratic elections, disinformation, foreign interference, social media, success metrics
Procedia PDF Downloads 109824 Strengths and Challenges to Embrace Attention Deficit/Hyperactivity Disorder (ADHD) in Employment: A Systematic Review
Authors: Adèle Hotte-Meunier, Lisa Sarraf, Alan Bougeard, Félicia Bernier, Chloé Voyer, Jiaxuan Deng, Stéphanie El Asmar, Alina Stamate, Marc Corbière, Patrizia Villotti, Geneviève Sauvé
Abstract:
Background: Attention-Deficit/Hyperactivity Disorder (ADHD) is characterized by a persistent pattern of inattention and/or hyperactivity-impulsivity that interferes with psychosocial, educational and occupational functioning. Although often conceptualized as a developmental disorder of childhood, 65% of children with ADHD continue to meet full or partial diagnostic criteria for ADHD in adulthood and an estimated 4% of the workforce has a diagnosis of ADHD. Methods: A systematic review was conducted to understand the experiences of people living with ADHD in the workplace. Articles reporting employment outcomes for people living with were identified by a search in eight databases on four separate occasions from June 27, 2022, to June 21, 2023. A risk of bias assessment for each study was performed using the Mixed Methods Appraisal Tool (MMAT). Results: A total of 79 studies were included in this systematic review (nADHD: 68, 216). Results were synthesized into three broad overarching categories: challenges, strengths and adaptations at work. Further, nine themes were included: ADHD symptoms at work, workplace performance, job satisfaction, interpersonal relationships at work, maladaptive work thoughts and behaviors, personal strengths, embracing ADHD, person-environment fit and accommodations and support. Sex differences were highlighted as a tenth subtheme. ADHD confers both strengths and limitations related to employment. Discussion: Workers with ADHD can not only adapt but thrive in employment with the right person-environment fit, accommodations and support. Many challenges related to ADHD can be managed or remodeled as assets in a workplace environment that fosters acceptance, flexible working practices and openness to neurodiversity.Keywords: neurodivergence, occupation, workplace, person-environment fit
Procedia PDF Downloads 107823 Quality Analysis of Vegetables Through Image Processing
Authors: Abdul Khalique Baloch, Ali Okatan
Abstract:
The quality analysis of food and vegetable from image is hot topic now a day, where researchers make them better then pervious findings through different technique and methods. In this research we have review the literature, and find gape from them, and suggest better proposed approach, design the algorithm, developed a software to measure the quality from images, where accuracy of image show better results, and compare the results with Perouse work done so for. The Application we uses an open-source dataset and python language with tensor flow lite framework. In this research we focus to sort food and vegetable from image, in the images, the application can sorts and make them grading after process the images, it could create less errors them human base sorting errors by manual grading. Digital pictures datasets were created. The collected images arranged by classes. The classification accuracy of the system was about 94%. As fruits and vegetables play main role in day-to-day life, the quality of fruits and vegetables is necessary in evaluating agricultural produce, the customer always buy good quality fruits and vegetables. This document is about quality detection of fruit and vegetables using images. Most of customers suffering due to unhealthy foods and vegetables by suppliers, so there is no proper quality measurement level followed by hotel managements. it have developed software to measure the quality of the fruits and vegetables by using images, it will tell you how is your fruits and vegetables are fresh or rotten. Some algorithms reviewed in this thesis including digital images, ResNet, VGG16, CNN and Transfer Learning grading feature extraction. This application used an open source dataset of images and language used python, and designs a framework of system.Keywords: deep learning, computer vision, image processing, rotten fruit detection, fruits quality criteria, vegetables quality criteria
Procedia PDF Downloads 70822 Developing a Green Strategic Management Model with regarding HSE-MS
Authors: Amin Padash, Gholam Reza Nabi Bid Hendi, Hassan Hoveidi
Abstract:
Purpose: The aim of this research is developing a model for green management based on Health, Safety and Environmental Management System. An HSE-MS can be a powerful tool for organizations to both improve their environmental, health and safety performance, and enhance their business efficiency to green management. Model: The model is developed in this study can be used for industries as guidelines for implementing green management issue by considering Health, Safety and Environmental Management System. Case Study: The Pars Special Economic / Energy Zone Organization on behalf of Iran’s Petroleum Ministry and National Iranian Oil Company (NIOC) manages and develops the South and North oil and gas fields in the region. Methodology: This research according to objective is applied and based on implementing is descriptive and also prescription. We used technique MCDM (Multiple Criteria Decision-Making) for determining the priorities of the factors. Based on process approach the model consists of the following steps and components: first factors involved in green issues are determined. Based on them a framework is considered. Then with using MCDM (Multiple Criteria Decision-Making) algorithms (TOPSIS) the priority of basic variables are determined. The authors believe that the proposed model and results of this research can aid industries managers to implement green subjects according to Health, Safety and Environmental Management System in a more efficient and effective manner. Finding and conclusion: Basic factors involved in green issues and their weights can be the main finding. Model and relation between factors are the other finding of this research. The case is considered Petrochemical Company for promoting the system of ecological industry thinking.Keywords: Fuzzy-AHP method , green management, health, safety and environmental management system, MCDM technique, TOPSIS
Procedia PDF Downloads 411821 Efficient Chiller Plant Control Using Modern Reinforcement Learning
Authors: Jingwei Du
Abstract:
The need of optimizing air conditioning systems for existing buildings calls for control methods designed with energy-efficiency as a primary goal. The majority of current control methods boil down to two categories: empirical and model-based. To be effective, the former heavily relies on engineering expertise and the latter requires extensive historical data. Reinforcement Learning (RL), on the other hand, is a model-free approach that explores the environment to obtain an optimal control strategy often referred to as “policy”. This research adopts Proximal Policy Optimization (PPO) to improve chiller plant control, and enable the RL agent to collaborate with experienced engineers. It exploits the fact that while the industry lacks historical data, abundant operational data is available and allows the agent to learn and evolve safely under human supervision. Thanks to the development of language models, renewed interest in RL has led to modern, online, policy-based RL algorithms such as the PPO. This research took inspiration from “alignment”, a process that utilizes human feedback to finetune the pretrained model in case of unsafe content. The methodology can be summarized into three steps. First, an initial policy model is generated based on minimal prior knowledge. Next, the prepared PPO agent is deployed so feedback from both critic model and human experts can be collected for future finetuning. Finally, the agent learns and adapts itself to the specific chiller plant, updates the policy model and is ready for the next iteration. Besides the proposed approach, this study also used traditional RL methods to optimize the same simulated chiller plants for comparison, and it turns out that the proposed method is safe and effective at the same time and needs less to no historical data to start up.Keywords: chiller plant, control methods, energy efficiency, proximal policy optimization, reinforcement learning
Procedia PDF Downloads 30820 Application of WHO's Guideline to Evaluating Apps for Smoking Cessation
Authors: Suin Seo, Sung-Il Cho
Abstract:
Background: The use of mobile apps for smoking cessation has grown exponentially in recent years. Yet, there were limited researches which evaluated the quality of smoking cessation apps to our knowledge. In most cases, a clinical practice guideline which is focused on clinical physician was used as an evaluation tool. Objective: The objective of this study was to develop a user-centered measure for quality of mobile smoking cessation apps. Methods: A literature search was conducted to identify articles containing explicit smoking cessation guideline for smoker published until January 2018. WHO’s guide for tobacco users to quit was adopted for evaluation tool which assesses smoker-oriented contents of smoking cessation apps. Compared to the clinical practice guideline, WHO guideline was designed for smokers (non-specialist). On the basis of existing criteria which was developed based on 2008 clinical practice guideline for Treating Tobacco Use and Dependence, evaluation tool was modified and developed by an expert panel. Results: There were five broad categories of criteria that were identified including five objective quality scales: enhancing motivation, assistance with a planning and making quit attempts, preparation for relapse, self-efficacy, connection to smoking. Enhancing motivation and assistance with planning and making quit attempts were similar to contents of clinical practice guideline, but preparation for relapse, self-efficacy and connection to smoking (environment or habit which reminds of smoking) only existed on WHO guideline. WHO guideline had more user-centered elements than clinical guideline. Especially, self-efficacy is the most important determinant of behavior change in accordance with many health behavior change models. With the WHO guideline, it is now possible to analyze the content of the app in the light of a health participant, not a provider. Conclusion: The WHO guideline evaluation tool is a simple, reliable and smoker-centered tool for assessing the quality of mobile smoking cessation apps. It can also be used to provide a checklist for the development of new high-quality smoking cessation apps.Keywords: smoking cessation, evaluation, mobile application, WHO, guideline
Procedia PDF Downloads 188819 Contributions of Women to the Development of Hausa Literature as an Effective Means of Public Enlightenment: The Case of a 19th Century Female Scholar Maryam Bint Uthman Ibn Foduye
Authors: Balbasatu Ibrahim
Abstract:
In the 19th century, Hausaland an Islamic revolution known as the Sokoto Jihad took place that led to the establishment of the Sokoto Caliphate in 1804 under the leadership of the famous Sheik Uthman Bn Fodiye. Before the Jihad movement in Hausaland (now Northern Nigeria), women were left in ignorance and were used and dumped like old kitchen utensils. The sheik and his followers did their best to actualising women’s right to education by using their female family members as role models who were highly educated and renowned scholars. After the Jihad with the establishment of an Islamic state, the women scholars initiated different strategies to teach the generality of the women. The most efficient strategy was the ‘Yantaru Movement founded by Nana Asma’u the daughter of Sheikh Uthman Bn Fodiye in collaboration with her sisters around 1840. The ‘Yantaru movement is a women’s educational movement aimed at enlightening women in rural and urban areas. The move helped in massively mobilizing women for education. In addition to town pupils, women from villages and throughout the nooks and crannies of metropolitan Sokoto participated in the movement in the search for knowledge. Thus, the birth of the ‘Yantaru system of women’s education. The ‘Yantaru operates the three-tier system at village, town and the metropolitan capital of Sokoto. ‘Yantaru functions include imparting knowledge to elderly women and young girls. Step down enlightenment program on returning home. The most effective medium of communication in the ‘Yantaru movement was through poetry where scholars composed educational poems which were memorized by the ‘Yantaru, who on return recite it to fellow women at home. Through this system, many women were educated. This paper translated and examines one of such educative poems written by the second leader of the ‘Yantaru Movement Maryam Bn Uthman Bn Fodiye in 1855.Keywords: English, Hausa language, public enlightenment, Maryam Bint Uthman Ibn Foduye
Procedia PDF Downloads 366818 A Review on Investigating the Relations between Water Harvesting and Water Conflicts
Authors: B. Laurita
Abstract:
The importance of Water Harvesting (WH) as an effective mean to deal with water scarcity is universally recognized. The collection and storage of rainwater, floodwater or quick runoff and their conversion to productive uses can ensure water availability for domestic and agricultural use, enabling a lower exploitation of the aquifer, preventing erosion events and providing significant ecosystem services. At the same time, it has been proven that it can reduce the insurgence of water conflicts if supported by a cooperative process of planning and management. On the other hand, the construction of water harvesting structures changes the hydrological regime, affecting upstream-downstream dynamics and changing water allocation, often causing contentions. Furthermore, dynamics existing between water harvesting and water conflict are not properly investigated yet. Thus, objective of this study is to analyze the relations between water harvesting and the insurgence of water conflicts, providing a solid theoretical basis and foundations for future studies. Two search engines were selected in order to perform the study: Google Scholar and Scopus. Separate researches were conducted on the mutual influences between water conflicts and the four main water harvesting techniques: rooftop harvesting, surface harvesting, underground harvesting, runoff harvesting. Some of the aforementioned water harvesting techniques have been developed and implemented on scales ranging from the small, household-sided ones, to gargantuan dam systems. Instead of focusing on the collisions related to large-scale systems, this review is aimed to look for and collect examples of the effects that the implementation of small water harvesting systems has had on the access to the water resource and on water governance. The present research allowed to highlight that in the studies that have been conducted up to now, water harvesting, and in particular those structures that allow the collection and storage of water for domestic use, is usually recognized as a positive, palliative element during contentions. On the other hand, water harvesting can worsen and, in some cases, even generate conflicts for water management. This shows the necessity of studies that consider both benefits and negative influences of water harvesting, analyzing its role respectively as triggering or as mitigating factor of conflicting situations.Keywords: arid areas, governance, water conflicts, water harvesting
Procedia PDF Downloads 203817 Barriers to Access among Indigenous Women Seeking Prenatal Care: A Literature Review
Authors: Zarish Jawad, Nikita Chugh, Karina Dadar
Abstract:
Introduction: This paper aims to identify barriers indigenous women face in accessing prenatal care in Canada. It explores the differences in prenatal care received between indigenous and non-indigenous women. The objective is to look at changes or programs in Canada's healthcare system to reduce barriers to accessing safe prenatal care for indigenous women. Methods: A literature search of 12 papers was conducted using the following databases: PubMed, Medline, OVID, Google Scholar, and ScienceDirect. The studies included were written in English only, including indigenous females between the age of 19-35, and review articles were excluded. Participants in the studies examined did not have any severe underlying medical conditions for the duration of the study, and study designs included in the review are prospective cohort, cross-sectional, case report, and case-control studies. Results: Among all the barriers Indigenous women face in accessing prenatal care, the three most significant barriers Indigenous women face include a lack of culturally safe prenatal care, lack of services in the Indigenous community, proximity of prenatal facilities to Indigenous communities and costs of transportation. Discussion: The study found three significant barriers indigenous women face in accessing prenatal care in Canada; the geographical distribution of healthcare facilities, distrust between patients and healthcare professionals, and cultural sensitivity. Some of the suggested solutions include building more birthing and prenatal care facilities in rural areas for indigenous women, educating healthcare professionals on culturally sensitive healthcare, and involving indigenous people in the decision-making process to reduce distrust and power imbalances. Conclusion: The involvement of indigenous women and community leaders is important in making decisions regarding the implementation of effective healthcare and prenatal programs for indigenous women. However, further research is required to understand the effectiveness of the solutions and the barriers that make prenatal care less accessible for indigenous women in Canada.Keywords: indigenous, maternal health, prenatal care, barriers
Procedia PDF Downloads 152816 The Use of Coronary Calcium Scanning for Cholesterol Assessment and Management
Authors: Eva Kirzner
Abstract:
Based on outcome studies published over the past two decades, in 2018, the ACC/AHA published new guidelines for the management of hypercholesterolemia that incorporate the use of coronary artery calcium (CAC) scanning as a decision tool for ascertaining which patients may benefit from statin therapy. This use is based on the recognition that the absence of calcium on CAC scanning (i.e., a CAC score of zero) usually signifies the absence of significant atherosclerotic deposits in the coronary arteries. Specifically, in patients with a high risk for atherosclerotic cardiovascular disease (ASCVD), initiation of statin therapy is generally recommended to decrease ASCVD risk. However, among patients with intermediate ASCVD risk, the need for statin therapy is less certain. However, there is a need for new outcome studies that provide evidence that the management of hypercholesterolemia based on these new ACC/AHA recommendations is safe for patients. Based on a Pub-Med and Google Scholar literature search, four relevant population-based or patient-based cohort studies that studied the relationship between CAC scanning, risk assessment or mortality, and statin therapy that were published between 2017 and 2021 were identified (see references). In each of these studies, patients were assessed for their baseline risk for atherosclerotic cardiovascular disease (ASCVD) using the Pooled Cohorts Equation (PCE), an ACC/AHA calculator for determining patient risk based on assessment of patient age, gender, ethnicity, and coronary artery disease risk factors. The combined findings of these four studies provided concordant evidence that a zero CAC score defines patients who remain at low clinical risk despite the non-use of statin therapy. Thus, these new studies confirm the use of CAC scanning as a safe tool for reducing the potential overuse of statin therapy among patients with zero CAC scores. Incorporating these new data suggest the following best practice: (1) ascertain ASCVD risk according to the PCE in all patients; (2) following an initial attempt trial to lower ASCVD risk with optimal diet among patients with elevated ASCVD risk, initiate statin therapy for patients who have a high ASCVD risk score; (3) if the ASCVD score is intermediate, refer patients for CAC scanning; and (4) and if the CAC score is zero among the intermediate risk ASCVD patients, statin therapy can be safely withheld despite the presence of an elevated serum cholesterol level.Keywords: cholesterol, cardiovascular disease, statin therapy, coronary calcium
Procedia PDF Downloads 115815 Modelling Insider Attacks in Public Cloud
Authors: Roman Kulikov, Svetlana Kolesnikova
Abstract:
Last decade Cloud Computing technologies have been rapidly becoming ubiquitous. Each year more and more organizations, corporations, internet services and social networks trust their business sensitive information to Public Cloud. The data storage in Public Cloud is protected by security mechanisms such as firewalls, cryptography algorithms, backups, etc.. In this way, however, only outsider attacks can be prevented, whereas virtualization tools can be easily compromised by insider. The protection of Public Cloud’s critical elements from internal intruder remains extremely challenging. A hypervisor, also called a virtual machine manager, is a program that allows multiple operating systems (OS) to share a single hardware processor in Cloud Computing. One of the hypervisor's functions is to enforce access control policies. Furthermore, it prevents guest OS from disrupting each other and from accessing each other's memory or disk space. Hypervisor is the one of the most critical and vulnerable elements in Cloud Computing infrastructure. Nevertheless, it has been poorly protected from being compromised by insider. By exploiting certain vulnerabilities, privilege escalation can be easily achieved in insider attacks on hypervisor. In this way, an internal intruder, who has compromised one process, is able to gain control of the entire virtual machine. Thereafter, the consequences of insider attacks in Public Cloud might be more catastrophic and significant to virtual tools and sensitive data than of outsider attacks. So far, almost no preventive security countermeasures have been developed. There has been little attention paid for developing models to assist risks mitigation strategies. In this paper formal model of insider attacks on hypervisor is designed. Our analysis identifies critical hypervisor`s vulnerabilities that can be easily compromised by internal intruder. Consequently, possible conditions for successful attacks implementation are uncovered. Hence, development of preventive security countermeasures can be improved on the basis of the proposed model.Keywords: insider attack, public cloud, cloud computing, hypervisor
Procedia PDF Downloads 361814 Computer-Aided Ship Design Approach for Non-Uniform Rational Basis Spline Based Ship Hull Surface Geometry
Authors: Anu S. Nair, V. Anantha Subramanian
Abstract:
This paper presents a surface development and fairing technique combining the features of a modern computer-aided design tool namely the Non-Uniform Rational Basis Spline (NURBS) with an algorithm to obtain a rapidly faired hull form. Some of the older series based designs give sectional area distribution such as in the Wageningen-Lap Series. Others such as the FORMDATA give more comprehensive offset data points. Nevertheless, this basic data still requires fairing to obtain an acceptable faired hull form. This method uses the input of sectional area distribution as an example and arrives at the faired form. Characteristic section shapes define any general ship hull form in the entrance, parallel mid-body and run regions. The method defines a minimum of control points at each section and using the Golden search method or the bisection method; the section shape converges to the one with the prescribed sectional area with a minimized error in the area fit. The section shapes combine into evolving the faired surface by NURBS and typically takes 20 iterations. The advantage of the method is that it is fast, robust and evolves the faired hull form through minimal iterations. The curvature criterion check for the hull lines shows the evolution of the smooth faired surface. The method is applicable to hull form from any parent series and the evolved form can be evaluated for hydrodynamic performance as is done in more modern design practice. The method can handle complex shape such as that of the bulbous bow. Surface patches developed fit together at their common boundaries with curvature continuity and fairness check. The development is coded in MATLAB and the example illustrates the development of the method. The most important advantage is quick time, the rapid iterative fairing of the hull form.Keywords: computer-aided design, methodical series, NURBS, ship design
Procedia PDF Downloads 169813 Predicting Match Outcomes in Team Sport via Machine Learning: Evidence from National Basketball Association
Authors: Jacky Liu
Abstract:
This paper develops a team sports outcome prediction system with potential for wide-ranging applications across various disciplines. Despite significant advancements in predictive analytics, existing studies in sports outcome predictions possess considerable limitations, including insufficient feature engineering and underutilization of advanced machine learning techniques, among others. To address these issues, we extend the Sports Cross Industry Standard Process for Data Mining (SRP-CRISP-DM) framework and propose a unique, comprehensive predictive system, using National Basketball Association (NBA) data as an example to test this extended framework. Our approach follows a holistic methodology in feature engineering, employing both Time Series and Non-Time Series Data, as well as conducting Explanatory Data Analysis and Feature Selection. Furthermore, we contribute to the discourse on target variable choice in team sports outcome prediction, asserting that point spread prediction yields higher profits as opposed to game-winner predictions. Using machine learning algorithms, particularly XGBoost, results in a significant improvement in predictive accuracy of team sports outcomes. Applied to point spread betting strategies, it offers an astounding annual return of approximately 900% on an initial investment of $100. Our findings not only contribute to academic literature, but have critical practical implications for sports betting. Our study advances the understanding of team sports outcome prediction a burgeoning are in complex system predictions and pave the way for potential profitability and more informed decision making in sports betting markets.Keywords: machine learning, team sports, game outcome prediction, sports betting, profits simulation
Procedia PDF Downloads 102812 A Multi-Modal Virtual Walkthrough of the Virtual Past and Present Based on Panoramic View, Crowd Simulation and Acoustic Heritage on Mobile Platform
Authors: Lim Chen Kim, Tan Kian Lam, Chan Yi Chee
Abstract:
This research presents a multi-modal simulation in the reconstruction of the past and the construction of present in digital cultural heritage on mobile platform. In bringing the present life, the virtual environment is generated through a presented scheme for rapid and efficient construction of 360° panoramic view. Then, acoustical heritage model and crowd model are presented and improvised into the 360° panoramic view. For the reconstruction of past life, the crowd is simulated and rendered in an old trading port. However, the keystone of this research is in a virtual walkthrough that shows the virtual present life in 2D and virtual past life in 3D, both in an environment of virtual heritage sites in George Town through mobile device. Firstly, the 2D crowd is modelled and simulated using OpenGL ES 1.1 on mobile platform. The 2D crowd is used to portray the present life in 360° panoramic view of a virtual heritage environment based on the extension of Newtonian Laws. Secondly, the 2D crowd is animated and rendered into 3D with improved variety and incorporated into the virtual past life using Unity3D Game Engine. The behaviours of the 3D models are then simulated based on the enhancement of the classical model of Boid algorithm. Finally, a demonstration system is developed and integrated with the models, techniques and algorithms of this research. The virtual walkthrough is demonstrated to a group of respondents and is evaluated through the user-centred evaluation by navigating around the demonstration system. The results of the evaluation based on the questionnaires have shown that the presented virtual walkthrough has been successfully deployed through a multi-modal simulation and such a virtual walkthrough would be particularly useful in a virtual tour and virtual museum applications.Keywords: Boid Algorithm, Crowd Simulation, Mobile Platform, Newtonian Laws, Virtual Heritage
Procedia PDF Downloads 277811 Translanguaging and Cross-languages Analyses in Writing and Oral Production with Multilinguals: a Systematic Review
Authors: Maryvone Cunha de Morais, Lilian Cristine Hübner
Abstract:
Based on a translanguaging theoretical approach, which considers language not as separate entities but as an entire repertoire available to bilingual individuals, this systematic review aimed at analyzing the methods (aims, samples investigated, type of stimuli, and analyses) adopted by studies on translanguaging practices associated with written and oral tasks (separately or integrated) in bilingual education. The PRISMA criteria for systematic reviews were adopted, with the descriptors "translanguaging", "bilingual education" and/or “written and oral tasks" to search in Pubmed/Medline, Lilacs, Eric, Scopus, PsycINFO, and Web of Science databases for articles published between 2017 and 2021. 280 registers were found, and after following the inclusion/exclusion criteria, 24 articles were considered for this analysis. The results showed that translanguaging practices were investigated on four studies focused on written production analyses, ten focused on oral production analysis, whereas ten studies focused on both written and oral production analyses. The majority of the studies followed a qualitative approach, while five studies have attempted to study translanguaging with quantitative statistical measures. Several types of methods were used to investigate translanguaging practices in written and oral production, with different approaches and tools indicating that the methods are still in development. Moreover, the findings showed that students’ interactions have received significant attention, and studies have been developed not just in language classes in bilingual education, but also including diverse educational and theoretical contexts such as Content and Language Integrated Learning, task repetition, Science classes, collaborative writing, storytelling, peer feedback, Speech Act theory and collective thinking, language ideologies, conversational analysis, and discourse analyses. The studies, whether focused either on writing or oral tasks or in both, have portrayed significant research and pedagogical implications, grounded on the view of integrated languages in bi-and multilinguals.Keywords: bilingual education, oral production, translanguaging, written production
Procedia PDF Downloads 126810 Gender Bias in Natural Language Processing: Machines Reflect Misogyny in Society
Authors: Irene Yi
Abstract:
Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.Keywords: gendered grammar, misogynistic language, natural language processing, neural networks
Procedia PDF Downloads 120809 Readability of Trauma-Related Patient Education Materials from the AAOS and OTA Websites
Authors: Diane Ghanem, Oscar Covarrubias, Ridge Maxson, Samir Sabharwal, Babar Shafiq
Abstract:
Introduction: Web-based resources serve as a fundamental educational platform for orthopaedic trauma patients; however, they are notoriously written at a high grade reading level and are often too complicated for patients to benefit from them. The aim of this study is to perform an updated assessment of the readability of the AAOS trauma-related educational articles and compare their readability with that of injury-specific patient education materials developed by the OTA. Methods: All forty-six trauma-related articles on the AAOS patient education website were analyzed for readability. Two independent reviewers used the (1) Flesch-Kincaid Grade Level (FKGL) and the (2) Flesch Reading Ease (FRE) algorithms to calculate the readability level. Mean readability scores were compared across body part categories. One-sample t-test was done to compare mean FKGL with the recommended 6th-grade readability level and the average American adult reading level. Two-sample t-test was used to compare the readability scores of the AAOS trauma-related articles to those of the OTA. Results: The average FKGL and FRE for the AAOS articles were 8.9±0.74 and 57.2±5.8, respectively. All articles were written above the 6th-grade reading level. The average readability of the AAOS articles was significantly greater than the recommended 6th-grade and average American adult reading level. The average FKGL (8.9±0.74 vs 8.1±1.14) and FRE (57.2±5.8 vs 65.6±6.6) for all AAOS articles was significantly greater compared to that of OTA articles. Excellent agreement was observed between raters for the FKGL 0.956 (95%CI 0.922 - 0.975) and FRE 0.993 (95%CI 0.987 – 0.996). Discussion: Our findings suggest that, after almost a decade, the readability of the AAOS trauma-related articles remains unchanged. The AAOS and OTA trauma patient education materials have high readability levels and may be too difficult for patient comprehension. A need remains to improve the readability of these commonly used trauma education materials.Keywords: american ocademy of orthopaedic surgeons, FKGL, FRE, orthopaedic trauma association, patient education, readability
Procedia PDF Downloads 61808 Towards a Robust Patch Based Multi-View Stereo Technique for Textureless and Occluded 3D Reconstruction
Authors: Ben Haines, Li Bai
Abstract:
Patch based reconstruction methods have been and still are one of the top performing approaches to 3D reconstruction to date. Their local approach to refining the position and orientation of a patch, free of global minimisation and independent of surface smoothness, make patch based methods extremely powerful in recovering fine grained detail of an objects surface. However, patch based approaches still fail to faithfully reconstruct textureless or highly occluded surface regions thus though performing well under lab conditions, deteriorate in industrial or real world situations. They are also computationally expensive. Current patch based methods generate point clouds with holes in texturesless or occluded regions that require expensive energy minimisation techniques to fill and interpolate a high fidelity reconstruction. Such shortcomings hinder the adaptation of the methods for industrial applications where object surfaces are often highly textureless and the speed of reconstruction is an important factor. This paper presents on-going work towards a multi-resolution approach to address the problems, utilizing particle swarm optimisation to reconstruct high fidelity geometry, and increasing robustness to textureless features through an adapted approach to the normalised cross correlation. The work also aims to speed up the reconstruction using advances in GPU technologies and remove the need for costly initialization and expansion. Through the combination of these enhancements, it is the intention of this work to create denser patch clouds even in textureless regions within a reasonable time. Initial results show the potential of such an approach to construct denser point clouds with a comparable accuracy to that of the current top-performing algorithms.Keywords: 3D reconstruction, multiview stereo, particle swarm optimisation, photo consistency
Procedia PDF Downloads 203807 Evaluation of Cultural Landscape Perception in Waterfront Historic Districts Based on Multi-source Data - Taking Venice and Suzhou as Examples
Authors: Shuyu Zhang
Abstract:
The waterfront historical district, as a type of historical districts on the verge of waters such as the sea, lake, and river, have a relatively special urban form. In the past preservation and renewal of traditional historic districts, there have been many discussions on the land range, and the waterfront and marginal spaces are easily overlooked. However, the waterfront space of the historic districts, as a cultural landscape heritage combining historical buildings and landscape elements, has strong ecological and sustainable values. At the same time, Suzhou and Venice, as sister water cities in history, have more waterfront spaces that can be compared in urban form and other levels. Therefore, this paper focuses on the waterfront historic districts in Venice and Suzhou, establishes quantitative evaluation indicators for environmental perception, makes analogies, and promotes the renewal and activation of the entire historical district by improving the spatial quality and vitality of the waterfront area. First, this paper uses multi-source data for analysis, such as Baidu Maps and Google Maps API to crawl the street view of the waterfront historic districts, uses machine learning algorithms to analyze the proportion of cultural landscape elements such as green viewing rate in the street view pictures, and uses space syntax software to make quantitative selectivity analysis, so as to establish environmental perception evaluation indicators for the waterfront historic districts. Finally, by comparing and summarizing the waterfront historic districts in Venice and Suzhou, it reveals their similarities and differences, characteristics and conclusions, and hopes to provide a reference for the heritage preservation and renewal of other waterfront historic districts.Keywords: waterfront historical district, cultural landscape, perception, multi-source Data
Procedia PDF Downloads 197806 Clathrate Hydrate Measurements and Thermodynamic Modelling for Refrigerants with Electrolytes Solution in the Presence of Cyclopentane
Authors: Peterson Thokozani Ngema, Paramespri Naidoo, Amir H. Mohammadi, Deresh Ramjugernath
Abstract:
Phase equilibrium data (dissociation data) for clathrate hydrate (gas hydrate) were undertaken for systems involving fluorinated refrigerants with a single and mixed electrolytes (NaCl, CaCl₂, MgCl₂, and Na₂SO₄) aqueous solution at various salt concentrations in the absence and presence of cyclopentane (CP). The ternary systems for (R410a or R507) with the water system in the presence of CP were performed in the temperature and pressures ranges of (279.8 to 294.4) K and (0.158 to 1.385) MPa, respectively. Measurements for R410a with single electrolyte {NaCl or CaCl₂} solution in the presence of CP were undertaken at salt concentrations of (0.10, 0.15 and 0.20) mass fractions in the temperature and pressure ranges of (278.4 to 293.7) K and (0.214 to1.179) MPa, respectively. The temperature and pressure conditions for R410a with Na₂SO₄ aqueous solution system were investigated at a salt concentration of 0.10 mass fraction in the range of (283.3 to 291.6) K and (0.483 to 1.373) MPa respectively. Measurements for {R410a or R507} with mixed electrolytes {NaCl, CaCl₂, MgCl₂} aqueous solution was undertaken at various salt concentrations of (0.002 to 0.15) mass fractions in the temperature and pressure ranges of (274.5 to 292.9) K and (0.149 to1.119) MPa in the absence and presence of CP, in which there is no published data related to mixed salt and a promoter. The phase equilibrium measurements were performed using a non-visual isochoric equilibrium cell that co-operates the pressure-search technique. This study is focused on obtaining equilibrium data that can be utilized to design and optimize industrial wastewater, desalination process and the development of Hydrate Electrolyte–Cubic Plus Association (HE–CPA) Equation of State. The results show an impressive improvement in the presence of promoter (CP) on hydrate formation because it increases the dissociation temperatures near ambient conditions. The results obtained were modeled using a developed HE–CPA equation of state. The model results strongly agree with the measured hydrate dissociation data.Keywords: association, desalination, electrolytes, promoter
Procedia PDF Downloads 245805 Harmonizing Cities: Integrating Land Use Diversity and Multimodal Transit for Social Equity
Authors: Zi-Yan Chao
Abstract:
With the rapid development of urbanization and increasing demand for efficient transportation systems, the interaction between land use diversity and transportation resource allocation has become a critical issue in urban planning. Achieving a balance of land use types, such as residential, commercial, and industrial areas, is crucial role in ensuring social equity and sustainable urban development. Simultaneously, optimizing multimodal transportation networks, including bus, subway, and car routes, is essential for minimizing total travel time and costs, while ensuring fairness for all social groups, particularly in meeting the transportation needs of low-income populations. This study develops a bilevel programming model to address these challenges, with land use diversity as the foundation for measuring equity. The upper-level model maximizes land use diversity for balanced land distribution across regions. The lower-level model optimizes multimodal transportation networks to minimize travel time and costs while maintaining user equilibrium. The model also incorporates constraints to ensure fair resource allocation, such as balancing transportation accessibility and cost differences across various social groups. A solution approach is developed to solve the bilevel optimization problem, ensuring efficient exploration of the solution space for land use and transportation resource allocation. This study maximizes social equity by maximizing land use diversity and achieving user equilibrium with optimal transportation resource distribution. The proposed method provides a robust framework for addressing urban planning challenges, contributing to sustainable and equitable urban development.Keywords: bilevel programming model, genetic algorithms, land use diversity, multimodal transportation optimization, social equity
Procedia PDF Downloads 23804 Heliport Remote Safeguard System Based on Real-Time Stereovision 3D Reconstruction Algorithm
Authors: Ł. Morawiński, C. Jasiński, M. Jurkiewicz, S. Bou Habib, M. Bondyra
Abstract:
With the development of optics, electronics, and computers, vision systems are increasingly used in various areas of life, science, and industry. Vision systems have a huge number of applications. They can be used in quality control, object detection, data reading, e.g., QR-code, etc. A large part of them is used for measurement purposes. Some of them make it possible to obtain a 3D reconstruction of the tested objects or measurement areas. 3D reconstruction algorithms are mostly based on creating depth maps from data that can be acquired from active or passive methods. Due to the specific appliance in airfield technology, only passive methods are applicable because of other existing systems working on the site, which can be blinded on most spectral levels. Furthermore, reconstruction is required to work long distances ranging from hundreds of meters to tens of kilometers with low loss of accuracy even with harsh conditions such as fog, rain, or snow. In response to those requirements, HRESS (Heliport REmote Safeguard System) was developed; which main part is a rotational head with a two-camera stereovision rig gathering images around the head in 360 degrees along with stereovision 3D reconstruction and point cloud combination. The sub-pixel analysis introduced in the HRESS system makes it possible to obtain an increased distance measurement resolution and accuracy of about 3% for distances over one kilometer. Ultimately, this leads to more accurate and reliable measurement data in the form of a point cloud. Moreover, the program algorithm introduces operations enabling the filtering of erroneously collected data in the point cloud. All activities from the programming, mechanical and optical side are aimed at obtaining the most accurate 3D reconstruction of the environment in the measurement area.Keywords: airfield monitoring, artificial intelligence, stereovision, 3D reconstruction
Procedia PDF Downloads 125803 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 316802 Visualization Tool for EEG Signal Segmentation
Authors: Sweeti, Anoop Kant Godiyal, Neha Singh, Sneh Anand, B. K. Panigrahi, Jayasree Santhosh
Abstract:
This work is about developing a tool for visualization and segmentation of Electroencephalograph (EEG) signals based on frequency domain features. Change in the frequency domain characteristics are correlated with change in mental state of the subject under study. Proposed algorithm provides a way to represent the change in the mental states using the different frequency band powers in form of segmented EEG signal. Many segmentation algorithms have been suggested in literature having application in brain computer interface, epilepsy and cognition studies that have been used for data classification. But the proposed method focusses mainly on the better presentation of signal and that’s why it could be a good utilization tool for clinician. Algorithm performs the basic filtering using band pass and notch filters in the range of 0.1-45 Hz. Advanced filtering is then performed by principal component analysis and wavelet transform based de-noising method. Frequency domain features are used for segmentation; considering the fact that the spectrum power of different frequency bands describes the mental state of the subject. Two sliding windows are further used for segmentation; one provides the time scale and other assigns the segmentation rule. The segmented data is displayed second by second successively with different color codes. Segment’s length can be selected as per need of the objective. Proposed algorithm has been tested on the EEG data set obtained from University of California in San Diego’s online data repository. Proposed tool gives a better visualization of the signal in form of segmented epochs of desired length representing the power spectrum variation in data. The algorithm is designed in such a way that it takes the data points with respect to the sampling frequency for each time frame and so it can be improved to use in real time visualization with desired epoch length.Keywords: de-noising, multi-channel data, PCA, power spectra, segmentation
Procedia PDF Downloads 397801 A Statistical Approach to Predict and Classify the Commercial Hatchability of Chickens Using Extrinsic Parameters of Breeders and Eggs
Authors: M. S. Wickramarachchi, L. S. Nawarathna, C. M. B. Dematawewa
Abstract:
Hatchery performance is critical for the profitability of poultry breeder operations. Some extrinsic parameters of eggs and breeders cause to increase or decrease the hatchability. This study aims to identify the affecting extrinsic parameters on the commercial hatchability of local chicken's eggs and determine the most efficient classification model with a hatchability rate greater than 90%. In this study, seven extrinsic parameters were considered: egg weight, moisture loss, breeders age, number of fertilised eggs, shell width, shell length, and shell thickness. Multiple linear regression was performed to determine the most influencing variable on hatchability. First, the correlation between each parameter and hatchability were checked. Then a multiple regression model was developed, and the accuracy of the fitted model was evaluated. Linear Discriminant Analysis (LDA), Classification and Regression Trees (CART), k-Nearest Neighbors (kNN), Support Vector Machines (SVM) with a linear kernel, and Random Forest (RF) algorithms were applied to classify the hatchability. This grouping process was conducted using binary classification techniques. Hatchability was negatively correlated with egg weight, breeders' age, shell width, shell length, and positive correlations were identified with moisture loss, number of fertilised eggs, and shell thickness. Multiple linear regression models were more accurate than single linear models regarding the highest coefficient of determination (R²) with 94% and minimum AIC and BIC values. According to the classification results, RF, CART, and kNN had performed the highest accuracy values 0.99, 0.975, and 0.972, respectively, for the commercial hatchery process. Therefore, the RF is the most appropriate machine learning algorithm for classifying the breeder outcomes, which are economically profitable or not, in a commercial hatchery.Keywords: classification models, egg weight, fertilised eggs, multiple linear regression
Procedia PDF Downloads 87800 Local Directional Encoded Derivative Binary Pattern Based Coral Image Classification Using Weighted Distance Gray Wolf Optimization Algorithm
Authors: Annalakshmi G., Sakthivel Murugan S.
Abstract:
This paper presents a local directional encoded derivative binary pattern (LDEDBP) feature extraction method that can be applied for the classification of submarine coral reef images. The classification of coral reef images using texture features is difficult due to the dissimilarities in class samples. In coral reef image classification, texture features are extracted using the proposed method called local directional encoded derivative binary pattern (LDEDBP). The proposed approach extracts the complete structural arrangement of the local region using local binary batten (LBP) and also extracts the edge information using local directional pattern (LDP) from the edge response available in a particular region, thereby achieving extra discriminative feature value. Typically the LDP extracts the edge details in all eight directions. The process of integrating edge responses along with the local binary pattern achieves a more robust texture descriptor than the other descriptors used in texture feature extraction methods. Finally, the proposed technique is applied to an extreme learning machine (ELM) method with a meta-heuristic algorithm known as weighted distance grey wolf optimizer (GWO) to optimize the input weight and biases of single-hidden-layer feed-forward neural networks (SLFN). In the empirical results, ELM-WDGWO demonstrated their better performance in terms of accuracy on all coral datasets, namely RSMAS, EILAT, EILAT2, and MLC, compared with other state-of-the-art algorithms. The proposed method achieves the highest overall classification accuracy of 94% compared to the other state of art methods.Keywords: feature extraction, local directional pattern, ELM classifier, GWO optimization
Procedia PDF Downloads 163