Search results for: real-coded genetic algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4771

Search results for: real-coded genetic algorithm

1831 Membrane-Localized Mutations as Predictors of Checkpoint Blockade Efficacy in Cancer

Authors: Zoe Goldberger, Priscilla S. Briquez, Jeffrey A. Hubbell

Abstract:

Tumor cells have mutations resulting from genetic instability that the immune system can actively recognize. Immune checkpoint immunotherapy (ICI) is commonly used in the clinic to re-activate immune reactions against mutated proteins, called neoantigens, resulting in tumor remission in cancer patients. However, only around 20% of patients show durable response to ICI. While tumor mutational burden (TMB) has been approved by the Food and Drug Administration (FDA) as a criterion for ICI therapy, the relevance of the subcellular localizations of the mutated proteins within the tumor cell has not been investigated. Here, we hypothesized that localization of mutations impacts the effect of immune responsiveness to ICI. We analyzed publicly available tumor mutation sequencing data of ICI treated patients from 3 independent datasets. We extracted the subcellular localization from the UniProtKB/Swiss-Prot database and quantified the proportion of membrane, cytoplasmic, nuclear, or secreted mutations per patient. We analyzed this information in relation to response to ICI treatment and overall survival of patients showing with 1722 ICI-treated patients that high mutational burden localized at the membrane (mTMB), correlate with ICI responsiveness, and improved overall survival in multiple cancer types. We anticipate that our results will ameliorate predictability of cancer patient response to ICI with potential implications in clinical guidelines to tailor ICI treatment. This would not only increase patient survival for those receiving ICI, but also patients’ quality of life by reducing the number of patients enduring non-effective ICI treatments.

Keywords: cancer, immunotherapy, membrane neoantigens, efficacy prediction, biomarkers

Procedia PDF Downloads 113
1830 Transforming Healthcare with Immersive Visualization: An Analysis of Virtual and Holographic Health Information Platforms

Authors: Hossein Miri, Zhou YongQi, Chan Bormei-Suy

Abstract:

The development of advanced technologies and innovative solutions has opened up exciting new possibilities for revolutionizing healthcare systems. One such emerging concept is the use of virtual and holographic health information platforms that aim to provide interactive and personalized medical information to users. This paper provides a review of notable virtual and holographic health information platforms. It begins by highlighting the need for information visualization and 3D representation in healthcare. It then proceeds to provide background knowledge on information visualization and historical developments in 3D visualization technology. Additional domain knowledge concerning holography, holographic computing, and mixed reality is then introduced, followed by highlighting some of their common applications and use cases. After setting the scene and defining the context, the need and importance of virtual and holographic visualization in medicine are discussed. Subsequently, some of the current research areas and applications of digital holography and holographic technology are explored, alongside the importance and role of virtual and holographic visualization in genetics and genomics. An analysis of the key principles and concepts underlying virtual and holographic health information systems is presented, as well as their potential implications for healthcare are pointed out. The paper concludes by examining the most notable existing mixed-reality applications and systems that help doctors visualize diagnostic and genetic data and assist in patient education and communication. This paper is intended to be a valuable resource for researchers, developers, and healthcare professionals who are interested in the use of virtual and holographic technologies to improve healthcare.

Keywords: virtual, holographic, health information platform, personalized interactive medical information

Procedia PDF Downloads 94
1829 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System

Authors: Afaneen Anwer, Samara M. Kamil

Abstract:

Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.

Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system

Procedia PDF Downloads 589
1828 Constrained RGBD SLAM with a Prior Knowledge of the Environment

Authors: Kathia Melbouci, Sylvie Naudet Collette, Vincent Gay-Bellile, Omar Ait-Aider, Michel Dhome

Abstract:

In this paper, we handle the problem of real time localization and mapping in indoor environment assisted by a partial prior 3D model, using an RGBD sensor. The proposed solution relies on a feature-based RGBD SLAM algorithm to localize the camera and update the 3D map of the scene. To improve the accuracy and the robustness of the localization, we propose to combine in a local bundle adjustment process, geometric information provided by a prior coarse 3D model of the scene (e.g. generated from the 2D floor plan of the building) along with RGBD data from a Kinect camera. The proposed approach is evaluated on a public benchmark dataset as well as on real scene acquired by a Kinect sensor.

Keywords: SLAM, global localization, 3D sensor, bundle adjustment, 3D model

Procedia PDF Downloads 418
1827 Dissimilarity-Based Coloring for Symbolic and Multivariate Data Visualization

Authors: K. Umbleja, M. Ichino, H. Yaguchi

Abstract:

In this paper, we propose a coloring method for multivariate data visualization by using parallel coordinates based on dissimilarity and tree structure information gathered during hierarchical clustering. The proposed method is an extension for proximity-based coloring that suffers from a few undesired side effects if hierarchical tree structure is not balanced tree. We describe the algorithm by assigning colors based on dissimilarity information, show the application of proposed method on three commonly used datasets, and compare the results with proximity-based coloring. We found our proposed method to be especially beneficial for symbolic data visualization where many individual objects have already been aggregated into a single symbolic object.

Keywords: data visualization, dissimilarity-based coloring, proximity-based coloring, symbolic data

Procedia PDF Downloads 173
1826 Characteristic and Prevalence of Cleft Lip and Palate Patient in Bandung Cleft Lip and Palate Center: A Descriptive Study

Authors: Kusmayadi Ita Nursita, Sundoro Ali

Abstract:

Cleft lip and palate are one of the most common congenital abnormalities in the face. It could happen to anyone, but mostly affect Asian population including Indonesia. Factors that influence the occurrence of cleft lip and palate vary from genetic to environmental factors. Children with cleft lip and palate will often have various problems such as airway disorders, eating disorders, speech and language developmental disorders, hearing disorders and psycho-social disorders, one of which is caused by appearance disorders. During his life, the child will experience multidisciplinary surgery and non-surgical treatment and can be accompanied by a psychological and financial burden on himself and his family. In Indonesia, there are no detailed scientific data on the prevalence and characteristic of cleft lip and palate patients. It was mainly caused by the absence of a national level organization, differences in geographical location, and the absence of national guidelines. This study aimed to describe the characteristic and prevalence of cleft lip and palate patients in Bandung Cleft Lip and Palate Center from 1 January 2016 to 31 December 2017. A total of 560 patients were included in the study. The highest percentage of cases are left unilateral cleft lip and palate with higher number of female patient and labioplasty as the most often surgical procedure to be conducted in Bandung Cleft Lip and Palate Center. In order to improve quality of life in patients with cleft lip and palate, early recognition and early treatment based on actual comprehensive data should be conducted. The data from Bandung Cleft Lip and Palate Center as one of the largest center of cleft lip and palate in West Java Indonesia hopefully could provide a big step of further comprehensive data collection in Indonesia and for the better overall management of cleft lip and palate in the future.

Keywords: cleft lip, cleft palate, characteristic, prevalence

Procedia PDF Downloads 140
1825 A Digital Filter for Symmetrical Components Identification

Authors: Khaled M. El-Naggar

Abstract:

This paper presents a fast and efficient technique for monitoring and supervising power system disturbances generated due to dynamic performance of power systems or faults. Monitoring power system quantities involve monitoring fundamental voltage, current magnitudes, and their frequencies as well as their negative and zero sequence components under different operating conditions. The proposed technique is based on simulated annealing optimization technique (SA). The method uses digital set of measurements for the voltage or current waveforms at power system bus to perform the estimation process digitally. The algorithm is tested using different simulated data to monitor the symmetrical components of power system waveforms. Different study cases are considered in this work. Effects of number of samples, sampling frequency and the sample window size are studied. Results are reported and discussed.

Keywords: estimation, faults, measurement, symmetrical components

Procedia PDF Downloads 472
1824 Learning to Recommend with Negative Ratings Based on Factorization Machine

Authors: Caihong Sun, Xizi Zhang

Abstract:

Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.

Keywords: factorization machines, feature engineering, negative ratings, recommendation systems

Procedia PDF Downloads 245
1823 Global-Scale Evaluation of Two Satellite-Based Passive Microwave Soil Moisture Data Sets (SMOS and AMSR-E) with Respect to Modelled Estimates

Authors: A. Alyaaria, b, J. P. Wignerona, A. Ducharneb, Y. Kerrc, P. de Rosnayd, R. de Jeue, A. Govinda, A. Al Bitarc, C. Albergeld, J. Sabaterd, C. Moisya, P. Richaumec, A. Mialonc

Abstract:

Global Level-3 surface soil moisture (SSM) maps from the passive microwave soil moisture and Ocean Salinity satellite (SMOSL3) have been released. To further improve the Level-3 retrieval algorithm, evaluation of the accuracy of the spatio-temporal variability of the SMOS Level 3 products (referred to here as SMOSL3) is necessary. In this study, a comparative analysis of SMOSL3 with a SSM product derived from the observations of the Advanced Microwave Scanning Radiometer (AMSR-E) computed by implementing the Land Parameter Retrieval Model (LPRM) algorithm, referred to here as AMSRM, is presented. The comparison of both products (SMSL3 and AMSRM) were made against SSM products produced by a numerical weather prediction system (SM-DAS-2) at ECMWF (European Centre for Medium-Range Weather Forecasts) for the 03/2010-09/2011 period at global scale. The latter product was considered here a 'reference' product for the inter-comparison of the SMOSL3 and AMSRM products. Three statistical criteria were used for the evaluation, the correlation coefficient (R), the root-mean-squared difference (RMSD), and the bias. Global maps of these criteria were computed, taking into account vegetation information in terms of biome types and Leaf Area Index (LAI). We found that both the SMOSL3 and AMSRM products captured well the spatio-temporal variability of the SM-DAS-2 SSM products in most of the biomes. In general, the AMSRM products overestimated (i.e., wet bias) while the SMOSL3 products underestimated (i.e., dry bias) SSM in comparison to the SM-DAS-2 SSM products. In term of correlation values, the SMOSL3 products were found to better capture the SSM temporal dynamics in highly vegetated biomes ('Tropical humid', 'Temperate Humid', etc.) while best results for AMSRM were obtained over arid and semi-arid biomes ('Desert temperate', 'Desert tropical', etc.). When removing the seasonal cycles in the SSM time variations to compute anomaly values, better correlation with the SM-DAS-2 SSM anomalies were obtained with SMOSL3 than with AMSRM, in most of the biomes with the exception of desert regions. Eventually, we showed that the accuracy of the remotely sensed SSM products is strongly related to LAI. Both the SMOSL3 and AMSRM (slightly better) SSM products correlate well with the SM-DAS2 products over regions with sparse vegetation for values of LAI < 1 (these regions represent almost 50% of the pixels considered in this global study). In regions where LAI>1, SMOSL3 outperformed AMSRM with respect to SM-DAS-2: SMOSL3 had almost consistent performances up to LAI = 6, whereas AMSRM performance deteriorated rapidly with increasing values of LAI.

Keywords: remote sensing, microwave, soil moisture, AMSR-E, SMOS

Procedia PDF Downloads 359
1822 Parametric Template-Based 3D Reconstruction of the Human Body

Authors: Jiahe Liu, Hongyang Yu, Feng Qian, Miao Luo, Linhang Zhu

Abstract:

This study proposed a 3D human body reconstruction method, which integrates multi-view joint information into a set of joints and processes it with a parametric human body template. Firstly, we obtained human body image information captured from multiple perspectives. The multi-view information can avoid self-occlusion and occlusion problems during the reconstruction process. Then, we used the MvP algorithm to integrate multi-view joint information into a set of joints. Next, we used the parametric human body template SMPL-X to obtain more accurate three-dimensional human body reconstruction results. Compared with the traditional single-view parametric human body template reconstruction, this method significantly improved the accuracy and stability of the reconstruction.

Keywords: parametric human body templates, reconstruction of the human body, multi-view, joint

Procedia PDF Downloads 83
1821 An Adaptive CFAR Algorithm Based on Automatic Censoring in Heterogeneous Environments

Authors: Naime Boudemagh

Abstract:

In this work, we aim to improve the detection performances of radar systems. To this end, we propose and analyze a novel censoring technique of undesirable samples, of priori unknown positions, that may be present in the environment under investigation. Therefore, we consider heterogeneous backgrounds characterized by the presence of some irregularities such that clutter edge transitions and/or interfering targets. The proposed detector, termed automatic censoring constant false alarm (AC-CFAR), operates exclusively in a Gaussian background. It is built to allow the segmentation of the environment to regions and switch automatically to the appropriate detector; namely, the cell averaging CFAR (CA-CFAR), the censored mean level CFAR (CMLD-CFAR) or the order statistic CFAR (OS-CFAR). Monte Carlo simulations show that the AC-CFAR detector performs like the CA-CFAR in a homogeneous background. Moreover, the proposed processor exhibits considerable robustness in a heterogeneous background.

Keywords: CFAR, automatic censoring, heterogeneous environments, radar systems

Procedia PDF Downloads 603
1820 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle

Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin

Abstract:

A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.

Keywords: balance control, synchronization control, two-wheel inverted pendulum, TWIP

Procedia PDF Downloads 399
1819 A New Framework for ECG Signal Modeling and Compression Based on Compressed Sensing Theory

Authors: Siavash Eftekharifar, Tohid Yousefi Rezaii, Mahdi Shamsi

Abstract:

The purpose of this paper is to exploit compressed sensing (CS) method in order to model and compress the electrocardiogram (ECG) signals at a high compression ratio. In order to obtain a sparse representation of the ECG signals, first a suitable basis matrix with Gaussian kernels, which are shown to nicely fit the ECG signals, is constructed. Then the sparse model is extracted by applying some optimization technique. Finally, the CS theory is utilized to obtain a compressed version of the sparse signal. Reconstruction of the ECG signal from the compressed version is also done to prove the reliability of the algorithm. At this stage, a greedy optimization technique is used to reconstruct the ECG signal and the Mean Square Error (MSE) is calculated to evaluate the precision of the proposed compression method.

Keywords: compressed sensing, ECG compression, Gaussian kernel, sparse representation

Procedia PDF Downloads 467
1818 Context-Aware Recommender System Using Collaborative Filtering, Content-Based Algorithm and Fuzzy Rules

Authors: Xochilt Ramirez-Garcia, Mario Garcia-Valdez

Abstract:

Contextual recommendations are implemented in Recommender Systems to improve user satisfaction, recommender system makes accurate and suitable recommendations for a particular situation reaching personalized recommendations. The context provides information relevant to the Recommender System and is used as a filter for selection of relevant items for the user. This paper presents a Context-aware Recommender System, which uses techniques based on Collaborative Filtering and Content-Based, as well as fuzzy rules, to recommend items inside the context. The dataset used to test the system is Trip Advisor. The accuracy in the recommendations was evaluated with the Mean Absolute Error.

Keywords: algorithms, collaborative filtering, intelligent systems, fuzzy logic, recommender systems

Procedia PDF Downloads 428
1817 Using Historical Data for Stock Prediction

Authors: Sofia Stoica

Abstract:

In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.

Keywords: finance, machine learning, opening price, stock market

Procedia PDF Downloads 203
1816 High Prevalence of Multi-drug Resistant Diarrheagenic Escherichia coli among Hospitalised Diarrheal Patients in Kolkata, India

Authors: Debjani Ghosh, Goutam Chowdhury, Prosenjit Samanta, Asish Kumar Mukhopadhyay

Abstract:

Acute diarrhoea caused by diarrheagenic Escherichia coli (DEC) is one of the major public health problem in developing countries, mainly in Asia and Africa. DEC consists of six pathogroups, but the majority of the cases were associated with the three pathogropus, enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), and enteropathogenic E. coli (EPEC). Hence, we studied the prevalence and antimicrobial resistance of these three major DEC pathogroups in hospitalized diarrheal patients in Kolkata, India, during 2012-2019 with a large sample size. 8,891 stool samples were processed, and 7.8% of them was identified as DEC infection screened by multiplex PCR, in which ETEC was most common (47.7%) followed by EAEC (38.4%) and EPEC (13.9%). Clinical patient history suggested that children <5 years of age were mostly affected with ETEC and EAEC, whereas people within >5-14 years of age were significantly associated with EPEC and ETEC infections. Antibiogram profile showed a high prevalence of multidrug resistant (MDR) isolates among DEC (56.9%), in which 9% were resistant to antibiotics of six different antimicrobial classes. Screening of the antibiotic resistance conferring genes in DEC showed the presence of blaCTX-M (30.2%) in highest number followed by blaTEM (27.5%), tetB (18%), sul2 (12.6%), strA (11.8%), aadA1 (9.8%), blaOXA-1 (9%), dfrA1 (1.6%) and blaSHV (1.2%) which indicates the existence of mobile genetic elements in those isolates. Therefore, the presence of MDR DEC strains in higher number alarms the public health authorities to take preventive measures before the upsurge of the DEC caused diarrhea cases in near future.

Keywords: diarrheagenic escherichia coli, ETEC, EAEC, EPEC

Procedia PDF Downloads 165
1815 Analysis of Saudi Breast Cancer Patients’ Primary Tumors using Array Comparative Genomic Hybridization

Authors: L. M. Al-Harbi, A. M. Shokry, J. S. M. Sabir, A. Chaudhary, J. Manikandan, K. S. Saini

Abstract:

Breast cancer is the second most common cause of cancer death worldwide and is the most common malignancy among Saudi females. During breast carcinogenesis, a wide-array of cytogenetic changes involving deletions, or amplification, or translocations, of part or whole of chromosome regions have been observed. Because of the limitations of various earlier technologies, newer tools are developed to scan for changes at the genomic level. Recently, Array Comparative Genomic Hybridization (aCGH) technique has been applied for detecting segmental genomic alterations at molecular level. In this study, aCGH was performed on twenty breast cancer tumors and their matching non-tumor (normal) counterparts using the Agilent 2x400K. Several regions were identified to be either amplified or deleted in a tumor-specific manner. Most frequent alterations were amplification of chromosome 1q, chromosome 8q, 20q, and deletions at 16q were also detected. The amplification of genetic events at 1q and 8q were further validated using FISH analysis using probes targeting 1q25 and 8q (MYC gene). The copy number changes at these loci can potentially cause a significant change in the tumor behavior, as deletions in the E-Cadherin (CDH1)-tumor suppressor gene as well as amplification of the oncogenes-Aurora Kinase A. (AURKA) and MYC could make these tumors highly metastatic. This study validates the use of aCGH in Saudi breast cancer patients and sets the foundations necessary for performing larger cohort studies searching for ethnicity-specific biomarkers and gene copy number variations.

Keywords: breast cancer, molecular biology, ecology, environment

Procedia PDF Downloads 379
1814 Proteome-Wide Convergent Evolution on Vocal Learning Birds Reveals Insight into cAMP-Based Learning Pathway

Authors: Chul Lee, Seoae Cho, Erich D. Jarvis, Heebal Kim

Abstract:

Vocal learning, the ability to imitate vocalizations based on auditory experience, is a homoplastic character state observed in different independent lineages of animals such as songbirds, parrots, hummingbirds and human. It has now become possible to perform genome-wide molecular analyses across vocal learners and vocal non-learners with the recent expansion of avian genome data. It was analyzed the whole genomes of human and 48 avian species including those belonging to the three avian vocal learning lineages, to determine if behavior and neural convergence are associated with molecular convergence in divergent species of vocal learners. Analyses of 8295 orthologous genes across bird species revealed 141 genes with amino acid substitutions specific to vocal learners. Out of these, 25 genes have vocal learner specific genetic homoplasies, and their functions were enriched for learning. Several sites in these genes are estimated under convergent evolution and positive selection. A potential role for a subset of these genes in vocal learning was supported by associations with gene expression profiles in vocal learning brain regions of songbirds and human disease that cause language dysfunctions. The key candidate gene with multiple independent lines of the evidences specific to vocal learners was DRD5. Our findings suggest cAMP-based learning pathway in avian vocal learners, indicating molecular homoplastic changes associated with a complex behavioral trait, vocal learning.

Keywords: amino acid substitutions, convergent evolution, positive selection, vocal learning

Procedia PDF Downloads 345
1813 Technological Innovation and Efficiency of Production of the Greek Aquaculture Industry

Authors: C. Nathanailides, S. Anastasiou, A. Dimitroglou, P. Logothetis, G. Kanlis

Abstract:

In the present work we reviewed historical data of the Greek Marine aquaculture industry including adoption of new methods and technological innovation. The results indicate that the industry exhibited a rapid rise in production efficiency, employment and adoption of new technologies which reduced outbreaks of diseases, reduced production risk and the price of the farmed fish. The improvements of total quality practices and technological input on the Greek Aquaculture industry include improved survival, growth and body shape of farmed fish, which resulted from development of new aquaculture feeds and the genetic selection of the bloodstock. Also improvements in the quality of the final product were achieved via technological input in the methods and technology applied during harvesting, packaging, and transportation-preservation of farmed fish ensuring high quality of the product from the fish farm to the plate of the consumers. These parameters (health management, nutrition, genetics, harvesting and post-harvesting methods and technology) changed significantly over the last twenty years and the results of these improvements are reflected in the production efficiency of the Aquaculture industry and the quality of the final product. It is concluded that the Greek aquaculture industry exhibited a rapid growth, adoption of technologies and supply was stabilized after the global financial crisis, nevertheless, the development of the Greek aquaculture industry is currently limited by international trade sanctions, credit crunch, and increased taxation and not by limited technology or resources.

Keywords: innovation, aquaculture, total quality, management

Procedia PDF Downloads 375
1812 A Simple Recursive Framework to Generate Gray Codes for Weak Orders in Constant Amortized Time

Authors: Marsden Jacques, Dennis Wong

Abstract:

A weak order is a way to rank n objects where ties are allowed. In this talk, we present a recursive framework to generate Gray codes for weak orders. We then describe a simple algorithm based on the framework that generates 2-Gray codes for weak orders in constant amortized time per string. This framework can easily be modified to generate other Gray codes for weak orders. We provide an example on using the framework to generate the first Shift Gray code for weak orders, also in constant amortized time, where consecutive strings differ by a shift or a symbol change.

Keywords: weak order, Cayley permutation, Gray code, shift Gray code

Procedia PDF Downloads 183
1811 Using Cooperation Approaches at Different Levels of Artificial Bee Colony Method

Authors: Vahid Zeighami, Mohsen Ghsemi, Reza Akbari

Abstract:

In this work, a Multi-Level Artificial Bee Colony (called MLABC) is presented. In MLABC two species are used. The first species employs n colonies in which each of the them optimizes the complete solution vector. The cooperation between these colonies is carried out by exchanging information through a leader colony, which contains a set of elite bees. The second species uses a cooperative approach in which the complete solution vector is divided to k sub-vectors, and each of these sub-vectors is optimized by a a colony. The cooperation between these colonies is carried out by compiling sub-vectors into the complete solution vector. Finally, the cooperation between two species is obtained by exchanging information between them. The proposed algorithm is tested on a set of well known test functions. The results show that MLABC algorithms provide efficiency and robustness to solve numerical functions.

Keywords: artificial bee colony, cooperative, multilevel cooperation, vector

Procedia PDF Downloads 450
1810 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques

Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo

Abstract:

Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.

Keywords: air pollution, air quality modelling, data mining, particulate matter

Procedia PDF Downloads 261
1809 Study on Network-Based Technology for Detecting Potentially Malicious Websites

Authors: Byung-Ik Kim, Hong-Koo Kang, Tae-Jin Lee, Hae-Ryong Park

Abstract:

Cyber terrors against specific enterprises or countries have been increasing recently. Such attacks against specific targets are called advanced persistent threat (APT), and they are giving rise to serious social problems. The malicious behaviors of APT attacks mostly affect websites and penetrate enterprise networks to perform malevolent acts. Although many enterprises invest heavily in security to defend against such APT threats, they recognize the APT attacks only after the latter are already in action. This paper discusses the characteristics of APT attacks at each step as well as the strengths and weaknesses of existing malicious code detection technologies to check their suitability for detecting APT attacks. It then proposes a network-based malicious behavior detection algorithm to protect the enterprise or national networks.

Keywords: Advanced Persistent Threat (APT), malware, network security, network packet, exploit kits

Procedia PDF Downloads 374
1808 Study on the Efficient Routing Algorithms in Delay-Tolerant Networks

Authors: Si-Gwan Kim

Abstract:

In Delay Tolerant Networks (DTN), there may not exist an end-to-end path between source and destination at the time of message transmission. Employing ‘Store Carry and Forward’ delivery mechanism for message transmission in such networks usually incurs long message delays. In this paper, we present the modified Binary Spray and Wait (BSW) routing protocol that enhances the performance of the original one. Our proposed algorithm adjusts the number of forward messages depending on the number of neighbor nodes. By using beacon messages periodically, the number of neighbor nodes can be managed. The simulation using ONE simulator results shows that our modified version gives higher delivery ratio and less latency as compared to BSW.

Keywords: delay tolerant networks, store carry and forward, one simulator, binary spray and wait

Procedia PDF Downloads 127
1807 Real Time Detection, Prediction and Reconstitution of Rain Drops

Authors: R. Burahee, B. Chassinat, T. de Laclos, A. Dépée, A. Sastim

Abstract:

The purpose of this paper is to propose a solution to detect, predict and reconstitute rain drops in real time – during the night – using an embedded material with an infrared camera. To prevent the system from needing too high hardware resources, simple models are considered in a powerful image treatment algorithm reducing considerably calculation time in OpenCV software. Using a smart model – drops will be matched thanks to a process running through two consecutive pictures for implementing a sophisticated tracking system. With this system drops computed trajectory gives information for predicting their future location. Thanks to this technique, treatment part can be reduced. The hardware system composed by a Raspberry Pi is optimized to host efficiently this code for real time execution.

Keywords: reconstitution, prediction, detection, rain drop, real time, raspberry, infrared

Procedia PDF Downloads 422
1806 The Influence of α-Defensin and Cytokine IL-1β, Molecular Factors of Innate Immune System, on Regulation of Inflammatory Periodontal Diseases in Orthodontic Patients

Authors: G. R. Khaliullina, S. L. Blashkova, I. G. Mustafin

Abstract:

The article presents the results of a study involving 97 patients with different types of orthodontic pathology. Immunological examination of patients included determination of the level of α-defensin and cytokine IL-1β in mixed saliva. The study showed that the level of α-defensin serves as a diagnostic marker for determining the therapeutic measures in the treatment of inflammatory processes in periodontal tissues. Α-defensins exhibit immunomodulating and antimicrobial activity during inflammatory processes and play an important role in the regulation of the pathology of periodontal disease. The obtained data allowed the development of an algorithm for diagnosis and the implementation of immunomodulating therapy in the treatment of periodontal diseases in orthodontic patients.

Keywords: α-difensin, cytokine, orthodontic treatment, periodontal disease, periodontal pathogens

Procedia PDF Downloads 184
1805 Improvement Perturb and Observe for a Fast Response MPPT Applied to Photovoltaic Panel

Authors: Labar Hocine, Kelaiaia Mounia Samira, Mesbah Tarek, Kelaiaia Samia

Abstract:

Maximum power point tracking (MPPT) techniques are used in photovoltaic (PV) systems to maximize the PV array output power by tracking continuously the maximum power point(MPP) which depends on panels temperature and on irradiance conditions. The main drawback of P&O is that, the operating point oscillates around the MPP giving rise to the waste of some amount of available energy; moreover, it is well known that the P&O algorithm can be confused during those time intervals characterized by rapidly changing atmospheric conditions. In this paper, it is shown that in order to limit the negative effects associated to the above drawbacks, the P&O MPPT parameters must be customized to the dynamic behavior of the specific converter adopted. A theoretical analysis allowing the optimal choice of such initial set parameters is also carried out. The fast convergence of the proposal is proven.

Keywords: P&O, Taylor’s series, MPPT, photovoltaic panel

Procedia PDF Downloads 590
1804 Improved Imaging and Tracking Algorithm for Maneuvering Extended UAVs Using High-Resolution ISAR Radar System

Authors: Mohamed Barbary, Mohamed H. Abd El-Azeem

Abstract:

Maneuvering extended object tracking (M-EOT) using high-resolution inverse synthetic aperture radar (ISAR) observations has been gaining momentum recently. This work presents a new robust implementation of the multiple models (MM) multi-Bernoulli (MB) filter for M-EOT, where the M-EOT’s ISAR observations are characterized using a skewed (SK) non-symmetrically normal distribution. To cope with the possible abrupt change of kinematic state, extension, and observation distribution over an extended object when a target maneuvers, a multiple model technique is represented based on MB-track-before-detect (TBD) filter supported by SK-sub-random matrix model (RMM) or sub-ellipses framework. Simulation results demonstrate this remarkable impact.

Keywords: maneuvering extended objects, ISAR, skewed normal distribution, sub-RMM, MM-MB-TBD filter

Procedia PDF Downloads 81
1803 Towards a Resources Provisioning for Dynamic Workflows in the Cloud

Authors: Fairouz Fakhfakh, Hatem Hadj Kacem, Ahmed Hadj Kacem

Abstract:

Cloud computing offers a new model of service provisioning for workflow applications, thanks to its elasticity and its paying model. However, it presents various challenges that need to be addressed in order to be efficiently utilized. The resources provisioning problem for workflow applications has been widely studied. Nevertheless, the existing works did not consider the change in workflow instances while they are being executed. This functionality has become a major requirement to deal with unusual situations and evolution. This paper presents a first step towards the resources provisioning for a dynamic workflow. In fact, we propose a provisioning algorithm which minimizes the overall workflow execution cost, while meeting a deadline constraint. Then, we extend it to support the dynamic adding of tasks. Experimental results show that our proposed heuristic demonstrates a significant reduction in resources cost by using a consolidation process.

Keywords: cloud computing, resources provisioning, dynamic workflow, workflow applications

Procedia PDF Downloads 299
1802 Temperature Contour Detection of Salt Ice Using Color Thermal Image Segmentation Method

Authors: Azam Fazelpour, Saeed Reza Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

The study uses a novel image analysis based on thermal imaging to detect temperature contours created on salt ice surface during transient phenomena. Thermal cameras detect objects by using their emissivities and IR radiance. The ice surface temperature is not uniform during transient processes. The temperature starts to increase from the boundary of ice towards the center of that. Thermal cameras are able to report temperature changes on the ice surface at every individual moment. Various contours, which show different temperature areas, appear on the ice surface picture captured by a thermal camera. Identifying the exact boundary of these contours is valuable to facilitate ice surface temperature analysis. Image processing techniques are used to extract each contour area precisely. In this study, several pictures are recorded while the temperature is increasing throughout the ice surface. Some pictures are selected to be processed by a specific time interval. An image segmentation method is applied to images to determine the contour areas. Color thermal images are used to exploit the main information. Red, green and blue elements of color images are investigated to find the best contour boundaries. The algorithms of image enhancement and noise removal are applied to images to obtain a high contrast and clear image. A novel edge detection algorithm based on differences in the color of the pixels is established to determine contour boundaries. In this method, the edges of the contours are obtained according to properties of red, blue and green image elements. The color image elements are assessed considering their information. Useful elements proceed to process and useless elements are removed from the process to reduce the consuming time. Neighbor pixels with close intensities are assigned in one contour and differences in intensities determine boundaries. The results are then verified by conducting experimental tests. An experimental setup is performed using ice samples and a thermal camera. To observe the created ice contour by the thermal camera, the samples, which are initially at -20° C, are contacted with a warmer surface. Pictures are captured for 20 seconds. The method is applied to five images ,which are captured at the time intervals of 5 seconds. The study shows the green image element carries no useful information; therefore, the boundary detection method is applied on red and blue image elements. In this case study, the results indicate that proposed algorithm shows the boundaries more effective than other edges detection methods such as Sobel and Canny. Comparison between the contour detection in this method and temperature analysis, which states real boundaries, shows a good agreement. This color image edge detection method is applicable to other similar cases according to their image properties.

Keywords: color image processing, edge detection, ice contour boundary, salt ice, thermal image

Procedia PDF Downloads 317