Search results for: correction factors for axisymmetric models
13997 The Integration Process of Non-EU Citizens in Luxembourg: From an Empirical Approach Toward a Theoretical Model
Authors: Angela Odero, Chrysoula Karathanasi, Michèle Baumann
Abstract:
Integration of foreign communities has been a forefront issue in Luxembourg for some time now. The country’s continued progress depends largely on the successful integration of immigrants. The aim of our study was to analyze factors which intervene in the course of integration of Non-EU citizens through the discourse of Non-EU citizens residing in Luxembourg, who have signed the Welcome and Integration Contract (CAI). The two-year contract offers integration services to assist foreigners in getting settled in the country. Semi-structured focus group discussions with 50 volunteers were held in English, French, Spanish, Serbo-Croatian or Chinese. Participants were asked to talk about their integration experiences. Recorded then transcribed, the transcriptions were analyzed with the help of NVivo 10, a qualitative analysis software. A systematic and reiterative analysis of decomposing and reconstituting was realized through (1) the identification of predetermined categories (difficulties, challenges and integration needs) (2) initial coding – the grouping together of similar ideas (3) axial coding – the regrouping of items from the initial coding in new ways in order to create sub-categories and identify other core dimensions. Our results show that intervening factors include language acquisition, professional career and socio-cultural activities or events. Each of these factors constitutes different components whose weight shifts from person to person and from situation to situation. Connecting these three emergent factors are two elements essential to the success of the immigrant’s integration – the role of time and deliberate effort from the immigrants, the community, and the formal institutions charged with helping immigrants integrate. We propose a theoretical model where the factors described may be classified in terms of how they predispose, facilitate, and / or reinforce the process towards a successful integration. Measures currently in place propose one size fits all programs yet integrative measures which target the family unit and those customized to target groups based on their needs would work best.Keywords: integration, integration services, non-eu citizens, qualitative analysis, third country nationals
Procedia PDF Downloads 30513996 Colour Quick Response Code with High Damage Resistance Capability
Authors: Minh Nguyen
Abstract:
Today, QR or Quick Response Codes are prevalent, and mobile/smart devices can efficiently read and understand them. Therefore, we can see their appearance in many areas, such as storing web pages/websites, business phone numbers, redirecting to an app download, business location, social media. The popularity of the QR Code is mainly because of its many advantages, such as it can hold a good amount of information, is small, easy to scan and read by a general RGB camera, and it can still work with some damages on its surface. However, there are still some issues. For instance, some areas needed to be kept untouched for its successful decode (e.g., the “Finder Patterns,” the “Quiet Zone,” etc.), the capability of built-in auto-correction is not robust enough, and it is not flexible enough for many application such as Augment Reality (AR). We proposed a new Colour Quick Response Code that has several advantages over the original ones: (1) there is no untouchable area, (2) it allows up to 40% of the entire code area to be damaged, (3) it is more beneficial for Augmented Reality applications, and (4) it is back-compatible and readable by available QR Code scanners such as Pyzbar. From our experience, our Colour Quick Response Code is significantly more flexible on damage compared to the original QR Code. Our code is believed to be suitable in situations where standard 2D Barcodes fail to work, such as curved and shiny surfaces, for instance, medical blood test sample tubes and syringes.Keywords: QR code, computer vision, image processing, 2D barcode
Procedia PDF Downloads 11813995 Competency Model as a Key Tool for Managing People in Organizations: Presentation of a Model
Authors: Andrea ČopíKová
Abstract:
Competency Based Management is a new approach to management, which solves organization’s challenges with complexity and with the aim to find and solve organization’s problems and learn how to avoid these in future. They teach the organizations to create, apart from the state of stability – that is temporary, vital organization, which is permanently able to utilize and profit from internal and external opportunities. The aim of this paper is to propose a process of competency model design, based on which a competency model for a financial department manager in a production company will be created. Competency models are very useful tool in many personnel processes in any organization. They are used for acquiring and selection of employees, designing training and development activities, employees’ evaluation, and they can be used as a guide for a career planning and as a tool for succession planning especially for managerial positions. When creating a competency model the method AHP (Analytic Hierarchy Process) and quantitative pair-wise comparison (Saaty’s method) will be used; these methods belong among the most used methods for the determination of weights, and it is used in the AHP procedure. The introduction part of the paper consists of the research results pertaining to the use of competency model in practice and then the issue of competency and competency models is explained. The application part describes in detail proposed methodology for the creation of competency models, based on which the competency model for the position of financial department manager in a foreign manufacturing company, will be created. In the conclusion of the paper, the final competency model will be shown for above mentioned position. The competency model divides selected competencies into three groups that are managerial, interpersonal and functional. The model describes in detail individual levels of competencies, their target value (required level) and the level of importance.Keywords: analytic hierarchy process, competency, competency model, quantitative pairwise comparison
Procedia PDF Downloads 24413994 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System
Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu
Abstract:
In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission
Procedia PDF Downloads 14313993 Modelling Home Appliances for Energy Management System: Comparison of Simulation Results with Measurements
Authors: Aulon Shabani, Denis Panxhi, Orion Zavalani
Abstract:
This paper presents the modelling and development of a simulator for residential electrical appliances. The simulator is developed on MATLAB providing the possibility to analyze and simulate energy consumption of frequently used home appliances in Albania. Modelling of devices considers the impact of different factors, mentioning occupant behavior and climacteric conditions. Most devices are modeled as an electric circuit, and the electric energy consumption is estimated by the solutions of the guiding differential equations. The provided models refer to devices like a dishwasher, oven, water heater, air conditioners, light bulbs, television, refrigerator water, and pump. The proposed model allows us to simulate beforehand the energetic behavior of the largest consumption home devices to estimate peak consumption and improving its reduction. Simulated home prototype results are compared to real measurement of a considered typical home. Obtained results from simulator framework compared to monitored typical household using EmonTxV3 show the effectiveness of the proposed simulation. This conclusion will help for future simulation of a large group of typical household for a better understanding of peak consumption.Keywords: electrical appliances, energy management, modelling, peak estimation, simulation, smart home
Procedia PDF Downloads 16413992 Prevalence and Associated Factors of Periodontal Disease among Diabetes Patients in Addis Ababa, Ethiopia, 2018
Authors: Addisu Tadesse Sahile, Tennyson Mgutshini
Abstract:
Background: Periodontal disease is a common, complex, inflammatory disease characterized by the destruction of tooth-supporting soft and hard tissues of the periodontium and a major public health problem across developed and developing countries. Objectives: The study was aimed at assessing the prevalence of periodontal disease and associated factors among diabetes patients in Addis Ababa, Ethiopia, 2018. Methods: Institutional based cross-sectional study was conducted on 388 diabetes patients selected by systematic random sampling method from March to May 2018. The study was conducted at two conveniently selected public hospitals in Addis Ababa. Data were collected with pre-tested, structured and translated questionnaire then entered to SPSS version 23 software for analysis. Descriptive statistics as a summary, in line with chi-square and binary logistics regression to identify factors associated with periodontal disease, were applied. A 95% CI with a p-value less than 5% was used as a level of significance. Results: Ninety-one percent (n=353) of participants had periodontal disease while oral examination was done in six regions. While only 9% (n=35) of participants were free of periodontal disease. The number of tooth brushings per day, correct techniques of brushing, malocclusion, and fillings that are defective were associated with periodontal disease at p < 0.05. Conclusion and recommendation: A higher prevalence of periodontal disease among diabetes patient was observed. The frequency of tooth brushing, correct techniques of brushing, malocclusion and defective fillings were associated with periodontal disease. Emphasis has to be given to oral health of diabetes patients by every concerned body so as to control the current higher burden of periodontal disease in diabetes.Keywords: periodontal disease, risk factors, diabetes mellitus, Addis Ababa
Procedia PDF Downloads 12813991 Logistics Model for Improving Quality in Railway Transport
Authors: Eva Nedeliakova, Juraj Camaj, Jaroslav Masek
Abstract:
This contribution is focused on the methodology for identifying levels of quality and improving quality through new logistics model in railway transport. It is oriented on the application of dynamic quality models, which represent an innovative method of evaluation quality services. Through this conception, time factor, expected, and perceived quality in each moment of the transportation process within logistics chain can be taken into account. Various models describe the improvement of the quality which emphases the time factor throughout the whole transportation logistics chain. Quality of services in railway transport can be determined by the existing level of service quality, by detecting the causes of dissatisfaction employees but also customers, to uncover strengths and weaknesses. This new logistics model is able to recognize critical processes in logistic chain. It includes service quality rating that must respect its specific properties, which are unrepeatability, impalpability, their use right at the time they are provided and particularly changeability, which is significant factor in the conditions of rail transport as well. These peculiarities influence the quality of service regarding the constantly increasing requirements and that result in new ways of finding progressive attitudes towards the service quality rating.Keywords: logistics model, quality, railway transport
Procedia PDF Downloads 57013990 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models
Authors: Chad Goldsworthy, B. Rajeswari Matam
Abstract:
The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.Keywords: convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation
Procedia PDF Downloads 19113989 Resource Allocation Modeling and Simulation in Border Security Application
Authors: Kai Jin, Hua Li, Qing Song
Abstract:
Homeland security and border safety is an issue for any country. This paper takes the border security of US as an example to discuss the usage and efficiency of simulation tools in the homeland security application. In this study, available resources and different illegal infiltration parameters are defined, including their individual behavior and objective, in order to develop a model that describes border patrol system. A simulation model is created in Arena. This simulation model is used to study the dynamic activities in the border security. Possible factors that may affect the effectiveness of the border patrol system are proposed. Individual and factorial analysis of these factors is conducted and some suggestions are made.Keywords: resource optimization, simulation, modeling, border security
Procedia PDF Downloads 51713988 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane
Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo
Abstract:
Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining
Procedia PDF Downloads 8613987 The Successful Implementation of Management Accounting Innovations (MAIs) within Jordanian Industrial Sector Using Cross-Case Analysis
Authors: Mahmoud Nassar
Abstract:
This paper was designed for interviews with companies that had implemented Management Accounting Innovations (MAIs) within Jordanian Industrial Sector in full. Each company in this paper was examined as an entity to obtain an understanding of the process of MAIs adoption and implementation as well as the respondents’ opinions and perspectives of each individual company as to what are considered to be the important factors in the company. By firstly using within-case analysis has the potential to aid in-depth views of the issues and their impact on each particular company. Then, cross-case analysis was used to analyse the similarities and differences of the six companies. The study concludes that, the six companies interviewed gradually moved to using MAIs over the last ten years. The length of time required to implement the MAIs varied across the companies. Interviewees revealed several factors from both the demand and supply side that influence implementation of MAIs within the Jordanian industrial companies. Respondents mentioned and emphasised the important effect of the following factors: top management support, education about ABC concept and benefits, training programmes, shortcoming of existing cost system, competition, size of company, professional accounting bodies, management accounting journals, management accounting research and PhD degrees, and cooperation between universities and companies.Keywords: industrial sector, innovations, Jordan, management accounting
Procedia PDF Downloads 37013986 A Conceptual Model of the Factors Affecting Saudi Citizens' Use of Social Media to Communicate with the Government
Authors: Reemiah Alotaibi, Muthu Ramachandran, Ah-Lian Kor, Amin Hosseinian-Far
Abstract:
In the past decade, developers of Web 2.0 technologies have shown increasing interest in the topic of e-government. There has been a rapid growth in social media technology because of its significant role in backing up some essential social needs. Its importance and power is derived from its capacity to support two-way communication. Governments are curious to get engaged in these websites, hoping to benefit from the new forms of communication and interaction offered by such technology. Greater participation by the public can be viewed as a chief indicator of effective government communication. Yet, the level of public participation in government 2.0 is not quite satisfactory. In general, it is still at the early stage in most developing countries, including Saudi Arabia. Although it is a fact that Saudi people are among the most active in using social media, the number of people who use social media to communicate with the public institutions is not high. Furthermore, most of the governmental organisations are not using social media tools to communicate with the public. They use these platforms to disseminate information. Our study focuses on the factors affecting citizens’ adoption of social media in Saudi Arabia. Our research question is: what are the factors affecting Saudi citizens’ use of social media to communicate with the government? To answer this research question, the research aims to validate the UTAUT model for examining social media tools from the citizen perspective. An amendment will be proposed to fit the adoption of social media platforms as a communication channel in government by using a developed conceptual model which integrates constructs from the UTAUT model and others external variables based on the literature review. The set of potential factors that affect these citizens' decisions to adopt social media to communicate with their government has been identified as perceived encouragement, trust and cultural influence. The connection between the above-mentioned constructs from the basis for the research hypothesis will be examined in the light of a quantitative methodology. Data collection will be performed through a survey targeting a number of Saudi citizens who are social media users. The data collected from the primary survey will later be analysed by using statistical methods. The outcomes of this research project are argued to have potential contributions to the fields of social media and e-Government adoption, both on the theoretical and practical levels. It is believed that this research project is the first of its type that attempts to identify the factors that affect citizens’ adoption of social media to communicate with the government. The importance of identifying these factors stems from the potential use of them to enhance the government’s implementation of social media and help in making more accurate decisions and strategies based on comprehending the most important factors that affect citizens’ decisions.Keywords: social media, adoption, citizen, UTAUT model
Procedia PDF Downloads 41813985 Sustainable Development, China’s Emerging Role via One Belt, One Road
Authors: Saeid Rabiei Majd, Motahareh Alvandi, Mehrad Rabiei
Abstract:
The rapid economic and technological development of any country depends on access to cheap sources of energy. Competition for access to petroleum resources is always accompanied by numerous environmental risks. These factors have caused more attention to environmental issues and sustainable development in petroleum contracts and activities. Nowadays, a sign of developed countries is adhering to the principles and rules of international environmental law and sustainable development of commercial contracts. China has entered into play through the massive project plan, One Belt, One Road. China is becoming a new emerging power in the world. China's bilateral investment treaties have an impact on environmental rights and sustainable development through regional and international foreign direct investment. The aim of this research is to examine China's key position to promote and improve environmental principles and international law and sustainable development in the energy sector in the world through the initiative, One Belt, One Road. Based on this hypothesis, it seems that in the near future, China's investment bilateral investment treaties will become popular investment model used in global trade, especially in the field of energy and sustainable development. They will replace the European and American models. The research method is including literature review, analytical and descriptive methods.Keywords: principles of sustainable development, oil and gas law, Chinas BITs, One Belt One Road, environmental rights
Procedia PDF Downloads 30613984 Dengue Virus Infection Rate in Mosquitoes Collected in Thailand Related to Environmental Factors
Authors: Chanya Jetsukontorn
Abstract:
Dengue hemorrhagic fever is the most important Mosquito-borne disease and the major public health problem in Thailand. The most important vector is Aedes aegypti. Environmental factors such as temperature, relative humidity, and biting rate affect dengue virus infection. The most effective measure for prevention is controlling of vector mosquitoes. In addition, surveillance of field-caught mosquitoes is imperative for determining the natural vector and can provide an early warning sign at risk of transmission in an area. In this study, Aedes aegypti mosquitoes were collected in Amphur Muang, Phetchabun Province, Thailand. The mosquitoes were collected in the rainy season and the dry season both indoor and outdoor. During mosquito’s collection, the data of environmental factors such as temperature, humidity and breeding sites were observed and recorded. After identified to species, mosquitoes were pooled according to genus/species, and sampling location. Pools consisted of a maximum of 10 Aedes mosquitoes. 70 pools of 675 Aedes aegypti were screened with RT-PCR for flaviviruses. To confirm individual infection for determining True infection rate, individual mosquitoes which gave positive results of flavivirus detection were tested for dengue virus by RT-PCR. The infection rate was 5.93% (4 positive individuals from 675 mosquitoes). The probability to detect dengue virus in mosquitoes at the neighbour’s houses was 1.25 times, especially where distances between neighboring houses and patient’s houses were less than 50 meters. The relative humidity in dengue-infected villages with dengue-infected mosquitoes was significantly higher than villages that free from dengue-infected mosquitoes. Indoor biting rate of Aedes aegypti was 14.87 times higher than outdoor, and biting times of 09.00-10.00, 10.00-11.00, 11.00-12.00 yielded 1.77, 1.46, 0.68mosquitoes/man-hour, respectively. These findings confirm environmental factors were related to Dengue infection in Thailand. Data obtained from this study will be useful for the prevention and control of the diseases.Keywords: Aedes aegypti, Dengue virus, environmental factors, one health, PCR
Procedia PDF Downloads 14513983 Tracing the Evolution of English and Urdu Languages: A Linguistic and Cultural Analysis
Authors: Aamna Zafar
Abstract:
Through linguistic and cultural analysis, this study seeks to trace the development of the English and Urdu languages. Along with examining how the vocabulary and syntax of English and Urdu have evolved over time and the linguistic trends that may be seen in these changes, this study will also look at the historical and cultural influences that have shaped the languages throughout time. The study will also look at how English and Urdu have changed over time, both in terms of language use and communication inside each other's cultures and globally. We'll research how these changes affect social relations and cultural identity, as well as how they might affect the future of these languages.Keywords: linguistic and cultural analysis, historical factors, cultural factors, vocabulary, syntax, significance
Procedia PDF Downloads 7513982 Prime Mover Sizing for Base-Loaded Combined Heating and Power Systems
Authors: Djalal Boualili
Abstract:
This article considers the problem of sizing prime movers for combined heating and power (CHP) systems operating at full load to satisfy a fraction of a facility's electric load, i.e. a base load. Prime mover sizing is examined using three criteria: operational cost, carbon dioxide emissions (CDE), and primary energy consumption (PEC). The sizing process leads to consider ratios of conversion factors applied to imported electricity to conversion factors applied to fuel consumed. These ratios are labelled RCost, R CDE, R PEC depending on whether the conversion factors are associated with operational cost, CDE, or PEC, respectively. Analytical results show that in order to achieve savings in operational cost, CDE, or PEC, the ratios must be larger than a unique constant R Min that only depends on the CHP components efficiencies. Savings in operational cost, CDE, or PEC due to CHP operation are explicitly formulated using simple equations. This facilitates the process of comparing the tradeoffs of optimizing the savings of one criterion over the other two – a task that has traditionally been accomplished through computer simulations. A hospital building, located in Chlef, Algeria, was used as an example to apply the methodology presented in this article.Keywords: sizing, heating and power, ratios, energy consumption, carbon dioxide emissions
Procedia PDF Downloads 23113981 Transportation Accidents Mortality Modeling in Thailand
Authors: W. Sriwattanapongse, S. Prasitwattanaseree, S. Wongtrangan
Abstract:
The transportation accidents mortality is a major problem that leads to loss of human lives, and economic. The objective was to identify patterns of statistical modeling for estimating mortality rates due to transportation accidents in Thailand by using data from 2000 to 2009. The data was taken from the death certificate, vital registration database. The number of deaths and mortality rates were computed classifying by gender, age, year and region. There were 114,790 cases of transportation accidents deaths. The highest average age-specific transport accident mortality rate is 3.11 per 100,000 per year in males, Southern region and the lowest average age-specific transport accident mortality rate is 1.79 per 100,000 per year in females, North-East region. Linear, poisson and negative binomial models were chosen for fitting statistical model. Among the models fitted, the best was chosen based on the analysis of deviance and AIC. The negative binomial model was clearly appropriate fitted.Keywords: transportation accidents, mortality, modeling, analysis of deviance
Procedia PDF Downloads 24413980 Numerical Simulation of Axially Loaded to Failure Large Diameter Bored Pile
Authors: M. Ezzat, Y. Zaghloul, T. Sorour, A. Hefny, M. Eid
Abstract:
Ultimate capacity of large diameter bored piles is usually determined from pile loading tests as recommended by several international codes and foundation design standards. However, loading of this type of piles till achieving apparent failure is practically seldom. In this paper, numerical analyses are carried out to simulate load test of a large diameter bored pile performed at the location of Alzey highway bridge project (Germany). Test results of pile load settlement relationship till failure as well as results of the base and shaft resistances are available. Apparent failure was indicated in this test by the significant increase of the induced settlement during the last load increment applied on the pile head. Measurements of this pile load test are used to assess the quality of the numerical models investigated. Three different material soil models are implemented in the analyses: Mohr coulomb (MC), Soft soil (SS), and Modified Mohr coulomb (MMC). Very good agreement is obtained between the field measured settlement and the calculated settlement using the MMC model. Results of analysis showed also that the MMC constitutive model is superior to MC, and SS models in predicting the ultimate base and shaft resistances of the large diameter bored pile. After calibrating the numerical model, behavior of large diameter bored piles under axial loads is discussed and the formation of the plastic zone around the pile is explored. Results obtained showed that the plastic zone below the base of the pile at failure extended laterally to about four times the pile diameter and vertically to about three times the pile diameter.Keywords: ultimate capacity, large diameter bored piles, plastic zone, failure, pile load test
Procedia PDF Downloads 14313979 Quantitative Structure-Activity Relationship Modeling of Detoxication Properties of Some 1,2-Dithiole-3-Thione Derivatives
Authors: Nadjib Melkemi, Salah Belaidi
Abstract:
Quantitative Structure-Activity Relationship (QSAR) studies have been performed on nineteen molecules of 1,2-dithiole-3-thione analogues. The compounds used are the potent inducers of enzymes involved in the maintenance of reduced glutathione pools as well as phase-2 enzymes important to electrophile detoxication. A multiple linear regression (MLR) procedure was used to design the relationships between molecular descriptor and detoxication properties of the 1,2-dithiole-3-thione derivatives. The predictivity of the model was estimated by cross-validation with the leave-one-out method. Our results suggest a QSAR model based of the following descriptors: qS2, qC3, qC5, qS6, DM, Pol, log P, MV, SAG, HE and EHOMO for the specific activity of quinone reductase; qS1, qS2, qC3, qC4, qC5, qS6, DM, Pol, logP, MV, SAG, HE and EHOMO for the production of growth hormone. To confirm the predictive power of the models, an external set of molecules was used. High correlation between experimental and predicted activity values was observed, indicating the validation and the good quality of the derived QSAR models.Keywords: QSAR, quinone reductase activity, production of growth hormone, MLR
Procedia PDF Downloads 35013978 Consumer Welfare in the Platform Economy
Authors: Prama Mukhopadhyay
Abstract:
Starting from transport to food, today’s world platform economy and digital markets have taken over almost every sphere of consumers’ lives. Sellers and buyers are getting connected through platforms, which is acting as an intermediary. It has made consumer’s life easier in terms of time, price, choice and other factors. Having said that, there are several concerns regarding platforms. There are competition law concerns like unfair pricing, deep discounting by the platforms which affect the consumer welfare. Apart from that, the biggest problem is lack of transparency with respect to the business models, how it operates, price calculation, etc. In most of the cases, consumers are unaware of how their personal data are being used. In most of the cases, they are unaware of how algorithm uses their personal data to determine the price of the product or even to show the relevant products using their previous searches. Using personal or non-personal data without consumer’s consent is a huge legal concern. In addition to this, another major issue lies with the question of liability. If a dispute arises, who will be responsible? The seller or the platform? For example, if someone ordered food through a food delivery app and the food was bad, in this situation who will be liable: the restaurant or the food delivery platform? In this paper, the researcher tries to examine the legal concern related to platform economy from the consumer protection and consumer welfare perspectives. The paper analyses the cases from different jurisdictions and approach taken by the judiciaries. The author compares the existing legislation of EU, US and other Asian Countries and tries to highlight the best practices.Keywords: competition, consumer, data, platform
Procedia PDF Downloads 14413977 Attribution of Strategic Motive, Business Efficiencies, Firm Economies, and Market Factors as Motivations of Restaurant Industry Vertical Integration Adoption: A Structural Equation Model
Authors: Sy, Melecio Jr
Abstract:
The decision to adopt vertical integration (VI) is firm-specific, but there is a common practice among businesses in an industry to maximize the massive potential benefits of VI. This study aims to determine VI adoption in the restaurant industry in Davao City. Using a two-step sampling process, the study used a validated survey questionnaire among 264 restaurant owners and managers randomly selected and geographically classified. It is a quantitative study where the data were subjected to a structural equation model (SEM). The results revealed that VI is present but limited to procurement, production, restaurant services, and online marketing. Raw materials were outsourced while delivery to customers through third-party delivery services. VI slowly increased over ten years except for online marketing, which has grown significantly in a few years. The endogenous and exogenous variables were correlated and established the linear regression model. The SEM's best fit model revealed that strategic motives (SMOT) and market factors (MFAC) influenced VI adoption while MFAC is the best predictor. Favorable market factors may lead restaurants to adopt VI. It is, thus, recommended for restaurants to institutionalize strategic management, quantify the impact of double marginalization in future studies as a reason for VI and conduct this study during the new normal to see the influence of business efficiencies and firm economies on VI adoption.Keywords: business efficiencies, business management, davao city, firm economies, market factors, philippines, strategic motives, structural equation model, supply chain, vertical integration adoption
Procedia PDF Downloads 7013976 Named Entity Recognition System for Tigrinya Language
Authors: Sham Kidane, Fitsum Gaim, Ibrahim Abdella, Sirak Asmerom, Yoel Ghebrihiwot, Simon Mulugeta, Natnael Ambassager
Abstract:
The lack of annotated datasets is a bottleneck to the progress of NLP in low-resourced languages. The work presented here consists of large-scale annotated datasets and models for the named entity recognition (NER) system for the Tigrinya language. Our manually constructed corpus comprises over 340K words tagged for NER, with over 118K of the tokens also having parts-of-speech (POS) tags, annotated with 12 distinct classes of entities, represented using several types of tagging schemes. We conducted extensive experiments covering convolutional neural networks and transformer models; the highest performance achieved is 88.8% weighted F1-score. These results are especially noteworthy given the unique challenges posed by Tigrinya’s distinct grammatical structure and complex word morphologies. The system can be an essential building block for the advancement of NLP systems in Tigrinya and other related low-resourced languages and serve as a bridge for cross-referencing against higher-resourced languages.Keywords: Tigrinya NER corpus, TiBERT, TiRoBERTa, BiLSTM-CRF
Procedia PDF Downloads 13113975 Associated Factors of Hypertension, Hypercholesterolemia and Double Burden Hypertension-Hypercholesterolemia in Patients With Congestive Heart Failure: Hospital Based Study
Authors: Pierre Mintom, William Djeukeu Asongni, Michelle Moni, William Dakam, Christine Fernande Nyangono Biyegue.
Abstract:
Background: In order to prevent congestive heart failure, control of hypertension and hypercholesterolemia is necessary because those risk factors frequently occur in combination. Objective: The aim of the study is to determine the prevalence and risk factors of hypertension, hypercholesterolemia and double burden HTA-Hypercholesterolemia in patients with congestive heart failure. Methodology: A database of 98 patients suffering from congestive heart failure was used. The latter were recruited from August 15, 2017, to March 5, 2018, in the Cardiology department of Deido District Hospital of Douala. This database provides information on sociodemographic parameters, biochemical examinations, characteristics of heart failure and food consumption. ESC/ESH and NCEP-ATPIII definitions were used to define Hypercholesterolemia (total cholesterol ≥200mg/dl), Hypertension (SBP≥140mmHg and/or DBP≥90mmHg). Double burden hypertension-hypercholesterolemia was defined as follows: total cholesterol (CT)≥200mg/dl, SBP≥140mmHg and DBP≥90mmHg. Results: The prevalence of hypertension (HTA), hypercholesterolemia (hyperchol) and double burden HTA-Hyperchol were 61.2%, 66.3% and 45.9%, respectively. No sociodemographic factor was associated with hypertension, hypercholesterolemia and double burden, but Male gender was significantly associated (p<0.05) with hypercholesterolemia. HypoHDLemia significantly increased hypercholesterolemia and the double burden by 19.664 times (p=0.001) and 14.968 times (p=0.021), respectively. Regarding dietary habits, the consumption of rice, peanuts and derivatives and cottonseed oil respectively significantly (p<0.05) exposed to the occurrence of hypertension. The consumption of tomatoes, green bananas, corn and derivatives, peanuts and derivatives and cottonseed oil significantly exposed (p<0.05) to the occurrence of hypercholesterolemia. The consumption of palm oil and cottonseed oil exposed the occurrence of the double burden of hypertension-hypercholesterolemia. Consumption of eggs protects against hypercholesterolemia, and consumption of peanuts and tomatoes protects against the double burden. Conclusion: hypercholesterolemia associated with hypertension appears as a complicating factor of congestive heart failure. Key risk factors are mainly diet-based, suggesting the importance of nutritional education for patients. New management protocols emphasizing diet should be considered.Keywords: risk factors, hypertension, hypercholesterolemia, congestive heart failure
Procedia PDF Downloads 6813974 Regression for Doubly Inflated Multivariate Poisson Distributions
Authors: Ishapathik Das, Sumen Sen, N. Rao Chaganty, Pooja Sengupta
Abstract:
Dependent multivariate count data occur in several research studies. These data can be modeled by a multivariate Poisson or Negative binomial distribution constructed using copulas. However, when some of the counts are inflated, that is, the number of observations in some cells are much larger than other cells, then the copula based multivariate Poisson (or Negative binomial) distribution may not fit well and it is not an appropriate statistical model for the data. There is a need to modify or adjust the multivariate distribution to account for the inflated frequencies. In this article, we consider the situation where the frequencies of two cells are higher compared to the other cells, and develop a doubly inflated multivariate Poisson distribution function using multivariate Gaussian copula. We also discuss procedures for regression on covariates for the doubly inflated multivariate count data. For illustrating the proposed methodologies, we present a real data containing bivariate count observations with inflations in two cells. Several models and linear predictors with log link functions are considered, and we discuss maximum likelihood estimation to estimate unknown parameters of the models.Keywords: copula, Gaussian copula, multivariate distributions, inflated distributios
Procedia PDF Downloads 15613973 Exploring Fertility Dynamics in the MENA Region: Distribution, Determinants, and Temporal Trends
Authors: Dena Alhaloul
Abstract:
The Middle East and North Africa (MENA) region is characterized by diverse cultures, economies, and social structures. Fertility rates in MENA have seen significant changes over time, with variations among countries and subregions. Understanding fertility patterns in this region is essential due to its impact on demographic dynamics, healthcare, labor markets, and social policies. Rising or declining fertility rates have far-reaching consequences for the region's socioeconomic development. The main thrust of this study is to comprehensively examine fertility rates in the Middle East and North Africa (MENA) region. It aims to understand the distribution, determinants, and temporal trends of fertility rates in MENA countries. The study seeks to provide insights into the factors influencing fertility decisions, assess how fertility rates have evolved over time, and potentially develop statistical models to characterize these trends. As for the methodology of the study, the study uses descriptive statistics to summarize and visualize fertility rate data. It also uses regression analyses to identify determinants of fertility rates as well as statistical modeling to characterize temporal trends in fertility rates. The conclusion of this study The research will contribute to a deeper understanding of fertility dynamics in the MENA region, shedding light on the distribution of fertility rates, their determinants, and historical trends.Keywords: fertility, distribution, modeling, regression
Procedia PDF Downloads 8213972 Building Information Modelling for Construction Delay Management
Authors: Essa Alenazi, Zulfikar Adamu
Abstract:
The Kingdom of Saudi Arabia (KSA) is not an exception in relying on the growth of its construction industry to support rapid population growth. However, its need for infrastructure development is constrained by low productivity levels and cost overruns caused by factors such as delays to project completion. Delays in delivering a construction project are a global issue and while theories such as Optimism Bias have been used to explain such delays, in KSA, client-related causes of delays are also significant. The objective of this paper is to develop a framework-based approach to explore how the country’s construction industry can manage and reduce delays in construction projects through building information modelling (BIM) in order to mitigate the cost consequences of such delays. It comprehensively and systematically reviewed the global literature on the subject and identified gaps, critical delay factors and the specific benefits that BIM can deliver for the delay management. A case study comprising of nine hospital projects that have experienced delay and cost overruns was also carried out. Five critical delay factors related to the clients were identified as candidates that can be mitigated through BIM’s benefits. These factors are: Ineffective planning and scheduling of the project; changes during construction by the client; delay in progress payment; slowness in decision making by the client; and poor communication between clients and other stakeholders. In addition, data from the case study projects strongly suggest that optimism bias is present in many of the hospital projects. Further validation via key stakeholder interviews and documentations are planned.Keywords: building information modelling (BIM), clients perspective, delay management, optimism bias, public sector projects
Procedia PDF Downloads 32413971 National Directorate of Employment Training and Agricultural-Small and Medium Enterprises Performance in Nigeria
Authors: Festus M. Epetimehin
Abstract:
This study was conducted to identify the effect of National Directorate of Employment (NDE) training on the profit of Agricultural-Small and Medium Enterprises (SMEs) and to evaluate the factors that influenced farmers' participation in NDE training, as well as the type and frequency of training farmers and other agro-allied entrepreneurs in Nigeria. Using a multi-stage sampling procedure, a total of 384 respondents were sampled, including 192 beneficiaries and 192 non-beneficiaries in Oyo and Lagos States, respectively. Data were analysed using Binary Logit regression and Propensity Score Matching techniques. According to the binary logit analysis, respondents’ gender, availability to extension services, and the location of respondent’s operation were determinant factors influencing NDE training enrolment. All identified factors are related to the probability of respondents’ involvement in a positive way. Propensity score matching revealed that Agricultural-SMEs who participated in the NDE program boosted their profit by N341,072.18. The positive outcome of the effect implies that NDE training enhances Agri-SME performance in Nigeria. The study concluded that greater funding should be provided for the NDE for performance-enhancing training of the Agri-SMEs.Keywords: PSM, binary logit model, Agri-SME
Procedia PDF Downloads 9713970 Modelling the Effect of Biomass Appropriation for Human Use on Global Biodiversity
Authors: Karina Reiter, Stefan Dullinger, Christoph Plutzar, Dietmar Moser
Abstract:
Due to population growth and changing patterns of production and consumption, the demand for natural resources and, as a result, the pressure on Earth’s ecosystems are growing. Biodiversity mapping can be a useful tool for assessing species endangerment or detecting hotspots of extinction risks. This paper explores the benefits of using the change in trophic energy flows as a consequence of the human alteration of the biosphere in biodiversity mapping. To this end, multiple linear regression models were developed to explain species richness in areas where there is no human influence (i.e. wilderness) for three taxonomic groups (birds, mammals, amphibians). The models were then applied to predict (I) potential global species richness using potential natural vegetation (NPPpot) and (II) global ‘actual’ species richness after biomass appropriation using NPP remaining in ecosystems after harvest (NPPeco). By calculating the difference between predicted potential and predicted actual species numbers, maps of estimated species richness loss were generated. Results show that biomass appropriation for human use can indeed be linked to biodiversity loss. Areas for which the models predicted high species loss coincide with areas where species endangerment and extinctions are recorded to be particularly high by the International Union for Conservation of Nature and Natural Resources (IUCN). Furthermore, the analysis revealed that while the species distribution maps of the IUCN Red List of Threatened Species used for this research can determine hotspots of biodiversity loss in large parts of the world, the classification system for threatened and extinct species needs to be revised to better reflect local risks of extinction.Keywords: biodiversity loss, biomass harvest, human appropriation of net primary production, species richness
Procedia PDF Downloads 13013969 Exploring Knowledge, Attitudes, and Practices toward the Preventive Aspect of the COVID-19 among University Nursing Students at the University of Sunderland 2021, in the United Kingdom: A Cross-Sectional Study
Authors: Sasalanka Chamara Karunanayaka Pathirannehelage, Sarah Connelly
Abstract:
Background: Knowledge, attitudes, and practices (KAP) toward the preventive aspect of COVID-19 are crucial for effective control and prevention of the disease. Sociodemographic factors can associate with KAP. This study aims to investigate KAP towards the preventive aspect of COVID-19 and associate sociodemographic factors among university nursing students at the University of Sunderland, 2021, United Kingdom. Methods: A cross-sectional online survey was conducted among 63 university nursing students between the 1st of July and the 13th of August 2021. A previously used, validated, self-administered questionnaire was applied to assess nursing students' KAP levels. Cross tabulation and chi-square were used to identify the associated sociodemographic factors with KAP. Results: Good knowledge was shown by 98.4% of respondents. 84.1 % of respondents reported positive attitudes, while 90.5% of respondents reported good practices toward the preventive aspect of COVID-19. The knowledge score of the students was significantly associated (p = 0.03) with the ethnicity of the respondents. Students' attitudes were significantly associated (p<0.05) with students' sex, student status (home student, international student), and course type (undergraduate student, postgraduate student). Student's age, student status, and course type were significantly associated (p < 0.05) with practices toward the preventive aspect of COVID-19. Conclusion: The finding of the study suggested that the university nursing student at the University of Sunderland demonstrate good knowledge, positive attitude, and good practice level towards the preventive aspect of COVID-19. Associated factors like age, sex, student status, and course type should be considered for effective strategies against COVID-19 as well as for future outbreaks.Keywords: knowledge, attitudes, practices, nursing students
Procedia PDF Downloads 8913968 Determination of the Informativeness of Instrumental Research Methods in Assessing Risk Factors for the Development of Renal Dysfunction in Elderly Patients with Chronic Ischemic Heart Disease
Authors: Aksana N. Popel, Volha A. Sujayeva, Olga V. Kоshlataja, Irеna S. Karpava
Abstract:
Introduction: It is a known fact that cardiovascular pathology and its complications cause a more severe course and worse prognosis in patients with comorbid kidney pathology. Chronic kidney disease (CKD) is associated with inflammation, endothelial dysfunction, and increased activity of the sympathoadrenal system. This circumstance increases the risk of cardiovascular diseases and the progression of kidney pathology. The above determines the need to identify cardiorenal changes at early stages to reduce the risks of cardiovascular complications and the progression of CKD. Objective: To identify risk factors (RF) for the development of CKD in elderly patients with chronic ischemic heart disease (CIHD). Methods: The study included 64 patients (40 women and 24 men) with a mean age of 74.4±4.5 years with coronary heart disease, without a history of structural kidney pathology and CKD. All patients underwent transthoracic echocardiography (TTE) and kidney ultrasound (KU) using GE Vivid 9 equipment (GE HealthCare, USA), and cardiac computed tomography (CCT) using Siemens Somatom Force equipment (Siemens Healthineers AG, Germany) in 3 months and in 1 year. Data obtained were analyzed using multiple regression analysis and nonparametric Mann-Whitney test. Statistical analysis was performed using the STATISTICA 12.0 program (StatSoft Inc.). Results: Initially, CKD was not diagnosed in all patients. In 3 months, CKD was diagnosed: stage C1 had 11 people (18%), stage C2 had 4 people (6%), stage C3A had 11 people (18%), stage C3B had 2 people (3%). After 1 year, CKD was diagnosed: stage C1 had 22 people (35%), stage C2 had 5 people (8%), stage C3A had 17 people (27%), stage C3B had 10 people (15%). In 3 months, statistically significant (p<0.05) risk factors were: 1) according to TTE: mitral peak E-wave velocity (U=678, p=0.039), mitral E-velocity DT (U=514, p=0.0168), mitral peak A-wave velocity (U=682, p=0.013). In 1 year, statistically significant (p<0.05) risk factors were: according to TTE: left ventricular (LV) end-systolic volume in B-mode (U=134, p=0.006), LV end-diastolic volume in B-mode (U=177, p=0.04), LV ejection fraction in B-mode (U=135, p=0.006), left atrial volume (U=178, p=0.021), LV hypertrophy (U=294, p=0.04), mitral valve (MV) fibrosis (U=328, p=0.01); according CCT: epicardial fat thickness (EFT) on the right ventricle (U=8, p=0.015); according to KU: interlobar renal artery resistance index (RI) (U=224, p=0.02), segmental renal artery RI (U=409, p=0.016). Conclusions: Both TTE and KU are very informative methods to determine the additional risk factors of CKD development and progression. The most informative risk factors were LV global systolic and diastolic functions, LV and LA volumes. LV hypertrophy, MV fibrosis, interlobar renal artery and segmental renal artery RIs, EFT.Keywords: chronic kidney disease, ischemic heart disease, prognosis, risk factors
Procedia PDF Downloads 26