Search results for: carbon labeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3243

Search results for: carbon labeling

303 Prevalence of Rituximab Efficacy Over Immunosuppressants in Therapy of Systemic Sclerosis

Authors: Liudmila Garzanova, Lidia Ananyeva, Olga Koneva, Olga Ovsyannikova, Oxana Desinova, Mayya Starovoytova, Rushana Shayahmetova, Anna Khelkovskaya-Sergeeva

Abstract:

Abstract Objectives. Rituximab (RTX) shown a positive effect in the treatment of systemic sclerosis (SSc). But there is still not enough data on comparing the effectiveness of RTX with immunosuppressants (IS). The aim of our study was to compare changes of lung function and skin score in SSc between two groups of patients (pts) - on RXT therapy (prescribed after ineffectiveness of previous therapy with IS) and on therapy with IS only. Methods. This study included 103 pts received RTX as an addition to previous therapy (group 1) and 65 pts received therapy with IS and prednisolone (group 2). The mean follow-up period was 12.6±10.7months. In group 1 the mean age was 47±12.9 years, female – 88 pts (84%), the diffuse cutaneous subset of the disease had 55 pts (53%). The mean disease duration was 6.2±5.5 years. 82% pts had interstitial lung disease (ILD) and 92% were positive for ANA, 67% of them were positive for antitopoisomerase-1. All pts received prednisolone at a dose of 11.3±4.5 mg/day, IS at inclusion received 47% of them. The cumulative mean dose of RTX was 1.7±0.6 g. In group 2 the mean age was 50.8±13.8 years, female-53 pts (82%), the diffuse cutaneous subset of the disease had 44 pts (68%). The mean disease duration was 8.8±7.7 years. 81% pts had ILD and 88% were positive for ANA, 58% of them were positive for antitopoisomerase-1. All pts received prednisolone at a dose of 8.69±4.28 mg/day, IS received 57% of them. Cyclophosphamide (CP) received 45% of pts. The cumulative mean dose of CP was 10.2±15.1g. D-penicillamine received 30% of pts. Other pts was on mycophenolate mofetil or methotrexate therapy in single cases. The pts of the compared groups did not differ in the main demographic and clinical parameters. The results are presented as delta (Δ) - difference between the baseline parameter and follow up point. Results. In group 1 there was an improvement of all outcome parameters: increased of forced vital capacity, % predicted - ΔFVC=4% (p=0.0004); Diffusing capacity for carbon monoxide, % predicted remained stable (ΔDLCO=0.1%); improvement of the Rodnan skin score-ΔmRss=3.4 (p=0.001); decrease of Activity index (EScSG-AI) - ΔActivity index=1.7 (p=0.001). In group 2 the changes was insignificant: ΔFVC=-2.3%, ΔmRss=0.87, ΔActivity index=0.3. But there was a significant decrease of DLCO: ΔDLCO=-5.1% (p=0.001). Conclusion. The results of our study confirm the data on the positive effect of RTX in complex therapy in pts with SSc (decrease of skin induration, increase of FVC, stabilization of DLCO). Meantime, pts on IS and prednisolone therapy shown the worsening of lung function and insignificant changes of other clinical parameters. RTX could be considered as a more effective option in complex treatment of SSc in comparison with IS therapy

Keywords: immunosuppressants, interstitial lung disease, systemic sclerosis, rituximab

Procedia PDF Downloads 83
302 Research on Tight Sandstone Oil Accumulation Process of the Third Member of Shahejie Formation in Dongpu Depression, China

Authors: Hui Li, Xiongqi Pang

Abstract:

In recent years, tight oil has become a hot spot for unconventional oil and gas exploration and development in the world. Dongpu Depression is a typical hydrocarbon-rich basin in the southwest of Bohai Bay Basin, in which tight sandstone oil and gas have been discovered in deep reservoirs, most of which are buried more than 3500m. The distribution and development characteristics of deep tight sandstone reservoirs need to be studied. The main source rocks in study area are dark mudstone and shale of the middle and lower third sub-member of Shahejie Formation. Total Organic Carbon (TOC) content of source rock is between 0.08-11.54%, generally higher than 0.6% and the value of S1+S2 is between 0.04–72.93 mg/g, generally higher than 2 mg/g. It can be evaluated as middle to fine level overall. The kerogen type of organic matter is predominantly typeⅡ1 andⅡ2. Vitrinite reflectance (Ro) is mostly greater than 0.6% indicating that the source rock entered the hydrocarbon generation threshold. The physical property of reservoir was poor, the most reservoir has a porosity lower than 12% and a permeability of less than 1×10⁻³μm. The rocks in this area showed great heterogeneity, some areas developed desserts with high porosity and permeability. According to SEM, thin section image, inclusion test and so on, the reservoir was affected by compaction and cementation during early diagenesis stage (44-31Ma). The diagenesis caused the tight reservoir in Huzhuangji, Pucheng, Weicheng Area while the porosity in Machang, Qiaokou, Wenliu Area was still over 12%. In the process of middle diagenesis phase stage A (31-17Ma), the reservoir porosity in Machang, Pucheng, Huzhuangji Area increased due to dissolution; after that the oil generation window of source rock was achieved for the first phase hydrocarbon charging (31-23Ma), formed the conventional oil deposition in Machang, Qiaokou, Wenliu, Huzhuangji Area and unconventional tight reservoir in Pucheng, Weicheng Area. Then came to stage B of middle diagenesis phase (17-7Ma), in this stage, the porosity of reservoir continued to decrease after the dissolution and led to a situation that the reservoirs were generally compacted. And since then, the second hydrocarbon filling has been processing since 7Ma. Most of the pools charged and formed in this procedure are tight sandstone oil reservoir. In conclusion, tight sandstone oil was formed in two patterns in Dongpu Depression, which could be concluded as ‘density fist then accumulation’ pattern and ‘accumulation fist next density’ pattern.

Keywords: accumulation process, diagenesis, dongpu depression, tight sandstone oil

Procedia PDF Downloads 116
301 The Challenges of Well Integrity on Plug and Abandoned Wells for Offshore Co₂ Storage Site Containment

Authors: Siti Noor Syahirah Mohd Sabri

Abstract:

The oil and gas industry is committed to net zero carbon emissions because the consequences of climate change could be catastrophic unless responded to very soon. One way of reducing CO₂ emissions is to inject it into a depleted reservoir buried underground. This greenhouse gas reduction technique significantly reduces CO₂ released into the atmosphere. In general, depleted oil and gas reservoirs provide readily available sites for the storage of CO₂ in offshore areas. This is mainly due to the hydrocarbons have been optimally produced and the existence of voids for effective CO₂ storage. Hence, make it a good candidate for a CO₂ well injector location. Geological storage sites are often evaluated in terms of capacity, injectivity and containment. Leakage through the cap rock or existing well is the main concern in the depleted fields. In order to develop these fields as CO₂ storage sites, the long-term integrity of wells drilled in these oil & gas fields must be ascertained to ensure good CO₂ containment. Well, integrity is often defined as the ability to contain fluids without significant leakage through the project lifecycle. Most plugged and abandoned (P & A) wells in Peninsular Malaysia have drilled 20 – 30 years ago and were not designed to withstand downhole conditions having >50%vol CO₂ and CO₂/H₂O mixture. In addition, Corrosive-Resistant Alloy (CRA) tubular and CO₂-resistant cement was not used during good construction. The reservoir pressure and temperature conditions may have further degraded the material strength and elevated the corrosion rate. Understanding all the uncertainties that may have affected cement-casing bonds, such as the quality of cement behind the casing, subsidence effect, corrosion rate, etc., is the first step toward well integrity evaluation. Secondly, proper quantification of all the uncertainties involved needs to be done to ensure long-term underground storage objectives of CO₂ are achieved. This paper will discuss challenges associated with estimating the performance of well barrier elements in existing P&A wells. Risk ranking of the existing P&A wells is to be carried out in order to ensure the integrity of the storage site is maintained for long-term CO₂ storage. High-risk existing P&A wells are to be re-entered to restore good integrity and to reduce future leakage that may happen. In addition, the requirement to design a fit-for-purpose monitoring and mitigation technology package for potential CO₂ leakage/seepage in the marine environment will be discussed accordingly. The holistic approach will ensure that the integrity is maintained, and CO₂ is contained underground for years to come.

Keywords: CCUS, well integrity, co₂ storage, offshore

Procedia PDF Downloads 90
300 Comparative Study of Urban Structure between an Island-Type and a General-Type City

Authors: Tomoya Oshiro, Hiroko Ono

Abstract:

Japan's aging population is increasing due to the decrease in birthrate. It causes various problems like the decrease in the gross domestic product of the country. The reason is why the local government of Japan has been on the way to a sustainable city recently. Then it is essential to get control of an urban structure to make the compact city successful. There are many kinds of paper about the compact city; however, the paper about a compact city of the island-type city is less. The purpose of this study is to clarify difference of urban structure between an island-type and a general city type. The method which has conducted in this research has two steps. First of all, by using evaluation indexes in the handbook, we evaluated the urban structures among each same -population-class cities from 50,000 to 100,000 people. Next, to clear the difference about the urban structure and feature between island-type and general-type cities compare the radar chart which is composed with each evaluation indexes of urban structure. Moreover, in order to clarify the relationship between evaluation indexes and the place of residence by using GIS software to show up population density on the map. As a result of this research, the management of local government and the local economy in evaluation indexes are indicated to be negative point in comparison of island-type cities with general cities. However, evaluation indexes of safety/security and low-carbon/energy are proved to be positive point. The research to find the difference features of the island-type of urban structure proves that the management of local government or the local economy is negative point in these island-type cities. In addition, the public transportation coverage in Miyako Island, Sado Island, and Amakusa Island show low value compare with other islands and average value. Relationship between evaluation indexes of an urban structure and the place of residence prove that the place of residence is related to public transportation coverage. If the place of residence is spread out, the public transportation coverage will be decreased. The results of this research reveal that the finances in island-type cities are negative point compare to general cities. This problem is caused by declining population. In addition, the place of residence is related to the public transportation coverage. Even though, it needs a much money to increase the public transportation coverage. It is possibly to cause other problems furthermore the aspect of finance is influenced by that as well. The conclusion in this research suggests that it is important for creating the compact city in island-type cities that we first need to address solving the problems about the management of local government and the local economy.

Keywords: sustainable city, comparative analysis, geographic information system, urban structure

Procedia PDF Downloads 150
299 The Characterization and Optimization of Bio-Graphene Derived From Oil Palm Shell Through Slow Pyrolysis Environment and Its Electrical Conductivity and Capacitance Performance as Electrodes Materials in Fast Charging Supercapacitor Application

Authors: Nurhafizah Md. Disa, Nurhayati Binti Abdullah, Muhammad Rabie Bin Omar

Abstract:

This research intends to identify the existing knowledge gap because of the lack of substantial studies to fabricate and characterize bio-graphene created from Oil Palm Shell (OPS) through the means of pre-treatment and slow pyrolysis. By fabricating bio-graphene through OPS, a novel material can be found to procure and used for graphene-based research. The characterization of produced bio-graphene is intended to possess a unique hexagonal graphene pattern and graphene properties in comparison to other previously fabricated graphene. The OPS will be fabricated by pre-treatment of zinc chloride (ZnCl₂) and iron (III) chloride (FeCl3), which then induced the bio-graphene thermally by slow pyrolysis. The pyrolizer's final temperature and resident time will be set at 550 °C, 5/min, and 1 hour respectively. Finally, the charred product will be washed with hydrochloric acid (HCL) to remove metal residue. The obtained bio-graphene will undergo different analyses to investigate the physicochemical properties of the two-dimensional layer of carbon atoms with sp2 hybridization hexagonal lattice structure. The analysis that will be taking place is Raman Spectroscopy (RAMAN), UV-visible spectroscopy (UV-VIS), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). In retrospect, RAMAN is used to analyze three key peaks found in graphene, namely D, G, and 2D peaks, which will evaluate the quality of the bio-graphene structure and the number of layers generated. To compare and strengthen graphene layer resolves, UV-VIS may be used to establish similar results of graphene layer from last layer analysis and also characterize the types of graphene procured. A clear physical image of graphene can be obtained by analyzation of TEM in order to study structural quality and layers condition and SEM in order to study the surface quality and repeating porosity pattern. Lastly, establishing the crystallinity of the produced bio-graphene, simultaneously as an oxygen contamination factor and thus pristineness of the graphene can be done by XRD. In the conclusion of this paper, this study is able to obtain bio-graphene through OPS as a novel material in pre-treatment by chloride ZnCl₂ and FeCl3 and slow pyrolization to provide a characterization analysis related to bio-graphene that will be beneficial for future graphene-related applications. The characterization should yield similar findings to previous papers as to confirm graphene quality.

Keywords: oil palm shell, bio-graphene, pre-treatment, slow pyrolysis

Procedia PDF Downloads 84
298 Coulomb-Explosion Driven Proton Focusing in an Arched CH Target

Authors: W. Q. Wang, Y. Yin, D. B. Zou, T. P. Yu, J. M. Ouyang, F. Q. Shao

Abstract:

High-energy-density state, i.e., matter and radiation at energy densities in excess of 10^11 J/m^3, is related to material, nuclear physics, astrophysics, and geophysics. Laser-driven particle beams are better suited to heat the matter as a trigger due to their unique properties of ultrashort duration and low emittance. Compared to X-ray and electron sources, it is easier to generate uniformly heated large-volume material for the proton and ion beams because of highly localized energy deposition. With the construction of state-of-art high power laser facilities, creating of extremely conditions of high-temperature and high-density in laboratories becomes possible. It has been demonstrated that on a picosecond time scale the solid density material can be isochorically heated to over 20 eV by the ultrafast proton beam generated from spherically shaped targets. For the above-mentioned technique, the proton energy density plays a crucial role in the formation of warm dense matter states. Recently, several methods have devoted to realize the focusing of the accelerated protons, involving externally exerted static-fields or specially designed targets interacting with a single or multi-pile laser pulses. In previous works, two co-propagating or opposite direction laser pulses are employed to strike a submicron plasma-shell. However, ultra-high pulse intensities, accurately temporal synchronization and undesirable transverse instabilities for a long time are still intractable for currently experimental implementations. A mechanism of the focusing of laser-driven proton beams from two-ion-species arched targets is investigated by multi-dimensional particle-in-cell simulations. When an intense linearly-polarized laser pulse impinges on the thin arched target, all electrons are completely evacuated, leading to a Coulomb-explosive electric-field mostly originated from the heavier carbon ions. The lighter protons in the moving reference frame by the ionic sound speed will be accelerated and effectively focused because of this radially isotropic field. At a 2.42×10^21 W/cm^2 laser intensity, a ballistic proton bunch with its energy-density as high as 2.15×10^17 J/m^3 is produced, and the highest proton energy and the focusing position agree well with that from the theory.

Keywords: Coulomb explosion, focusing, high-energy-density, ion acceleration

Procedia PDF Downloads 344
297 CO2 Capture in Porous Silica Assisted by Lithium

Authors: Lucero Gonzalez, Salvador Alfaro

Abstract:

Carbon dioxide (CO2) and methane (CH4) are considered as the compounds with higher abundance among the greenhouse gases (CO2, NOx, SOx, CxHx, etc.), due to its higher concentration, this two gases have a greater impact in the environment pollution and provokes global warming. So, recovery, disposal and subsequent reuse, are of great interest, especially from the ecological and health perspective. By one hand, porous inorganic materials are good candidates to capture gases, because these type of materials are higher stability from the point view of thermal, chemical and mechanical under adsorption gas processes. By another hand, during the design and the synthetic preparation of the porous materials is possible add other intrinsic properties (physicochemical and structural) by adding chemical compounds as dopants or using structured directed agents or surfactants to improve the porous structure, the above features allow to have alternative materials for separation, capture and storage of greenhouse gases. In this work, ordered mesoporous materials base silica were prepared using Surfynol as surfactant. The surfactant micelles are commonly used as self-assembly templates for the development of new structure porous silica’s, adding a variety of textures and structures. By another hand, the Surfynol is a commercial surfactant, is non-ionic, for that is necessary determine its critical micelles concentration (cmc) by the pyrene I1/I3 ratio method, before to prepare silica particles. One time known the CMC, a precursor gel was prepared via sol-gel process at room temperature using TEOS as silica precursor, NH4OH as catalyst, Surfynol as template and H2O as solvent. Then, the gel precursor was treatment hydrothermally in a Teflon-lined stainless steel autoclave with a volume of 100 mL and kept at 100 ºC for 24 h under static conditions in a convection oven. After that, the porous silica particles obtained were impregnated with lithium to improve the CO2 adsorption capacity. Then the silica particles were characterized physicochemical, morphology and structurally, by XRD, FTIR, BET and SEM techniques. The thermal stability and the CO2 adsorption capacity was evaluated by thermogravimetric analysis (TGA). According the results, we found that the Surfynol is a good candidate to prepare silica particles with an ordered structure. Also the TGA analysis shown that the particles has a good thermal stability in the range of 250 °C and 800 °C. The best materials had, the capacity to adsorbing 70 and 90 mg per gram of silica particles and its CO2 adsorption capacity depends on the way to thermal pretreatment of the porous silica before of the adsorption experiments and of the concentration of surfactant used during the synthesis of silica particles. Acknowledgments: This work was supported by SIP-IPN through project SIP-20161862.

Keywords: CO2 adsorption, lithium as dopant, porous silica, surfynol as surfactant, thermogravimetric analysis

Procedia PDF Downloads 268
296 Compact, Lightweight, Low Cost, Rectangular Core Power Transformers

Authors: Abidin Tortum, Kubra Kocabey

Abstract:

One of the sectors where the competition is experienced at the highest level in the world is the transformer sector, and sales can be made with a limited profit margin. For this reason, manufacturers must develop cost-cutting designs to achieve higher profits. The use of rectangular cores and coils in transformer design is one of the methods that can be used to reduce costs. According to the best knowledge we have obtained, we think that we are the first company producing rectangular core power transformers in our country. BETA, to reduce the cost of this project, more compact products to reveal, as we know it to increase the alleviate and competitiveness of the product, will perform cored coil design and production rectangle for the first-time power transformers in Turkey. The transformer to be designed shall be 16 MVA, 33/11 kV voltage level. With the rectangular design of the transformer core and windings, no-load losses can be reduced. Also, the least costly transformer type is rectangular. However, short-circuit forces on rectangular windings do not affect every point of the windings in the same way. Whereas more force is applied inwards to the mid-points of the low-voltage winding, the opposite occurs in the high-voltage winding. Therefore, the windings tend to deteriorate in the event of a short circuit. While trying to reach the project objectives, the difficulties in the design should be overcome. Rectangular core transformers to be produced in our country offer a more compact structure than conventional transformers. In other words, both height and width were smaller. Thus, the reducer takes up less space in the center. Because the transformer boiler is smaller, less oil is used, and its weight is lower. Biotemp natural ester fluid is used in rectangular transformer and the cooling performance of this oil is analyzed. The cost was also reduced with the reduction of dimensions. The decrease in the amount of oil used has also increased the environmental friendliness of the developed product. Transportation costs have been reduced by reducing the total weight. The amount of carbon emissions generated during the transportation process is reduced. Since the low-voltage winding is wound with a foil winding technique, a more resistant structure is obtained against short circuit forces. No-load losses were lower due to the use of a rectangular core. The project was handled in three phases. In the first stage, preliminary research and designs were carried out. In the second stage, the prototype manufacturing of the transformer whose designs have been completed has been started. The prototype developed in the last stage has been subjected to routine, type and special tests.

Keywords: rectangular core, power transformer, transformer, productivity

Procedia PDF Downloads 121
295 Site Suitability of Offshore Wind Energy: A Combination of Geographic Referenced Information and Analytic Hierarchy Process

Authors: Ayat-Allah Bouramdane

Abstract:

Power generation from offshore wind energy does not emit carbon dioxide or other air pollutants and therefore play a role in reducing greenhouse gas emissions from the energy sector. In addition, these systems are considered more efficient than onshore wind farms, as they generate electricity from the wind blowing across the sea, thanks to the higher wind speed and greater consistency in direction due to the lack of physical interference that the land or human-made objects can present. This means offshore installations require fewer turbines to produce the same amount of energy as onshore wind farms. However, offshore wind farms require more complex infrastructure to support them and, as a result, are more expensive to construct. In addition, higher wind speeds, strong seas, and accessibility issues makes offshore wind farms more challenging to maintain. This study uses a combination of Geographic Referenced Information (GRI) and Analytic Hierarchy Process (AHP) to identify the most suitable sites for offshore wind farm development in Morocco, with a particular focus on the Dakhla city. A range of environmental, socio-economic, and technical criteria are taken into account to solve this complex Multi-Criteria Decision-Making (MCDM) problem. Based on experts' knowledge, a pairwise comparison matrix at each level of the hierarchy is performed, and fourteen sub-criteria belong to the main criteria have been weighted to generate the site suitability of offshore wind plants and obtain an in-depth knowledge on unsuitable areas, and areas with low-, moderate-, high- and very high suitability. We find that wind speed is the most decisive criteria in offshore wind farm development, followed by bathymetry, while proximity to facilities, the sediment thickness, and the remaining parameters show much lower weightings rendering technical parameters most decisive in offshore wind farm development projects. We also discuss the potential of other marine renewable energy potential, in Morocco, such as wave and tidal energy. The proposed approach and analysis can help decision-makers and can be applied to other countries in order to support the site selection process of offshore wind farms.

Keywords: analytic hierarchy process, dakhla, geographic referenced information, morocco, multi-criteria decision-making, offshore wind, site suitability

Procedia PDF Downloads 157
294 Engineering Escherichia coli for Production of Short Chain Fatty Acid by Exploiting Fatty Acid Metabolic Pathway

Authors: Kamran Jawed, Anu Jose Mattam, Zia Fatma, Saima Wajid, Malik Z. Abdin, Syed Shams Yazdani

Abstract:

Worldwide demand of natural and sustainable fuels and chemicals have encouraged researchers to develop microbial platform for synthesis of short chain fatty acids as they are useful precursors to replace petroleum-based fuels and chemicals. In this study, we evaluated the role of fatty acid synthesis and β-oxidation cycle of Escherichia coli to produce butyric acid, a 4-carbon short chain fatty acid, with the help of three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron. We found that E. coli strain transformed with gene for TesBT and grown in presence of 8 g/L glucose produced maximum butyric acid titer at 1.46 g/L, followed by that of TesBF at 0.85 g/L and TesAT at 0.12 g/L, indicating that these thioesterases were efficiently converting short chain fatty acyl-ACP intermediate of fatty acid synthesis pathway into the corresponding acid. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. Deletion of genes for fatty acyl-CoA synthetase and acyl-CoA dehydrogenase, which are involved in initiating the fatty acid degradation cycle, and overexpression of FadR, which is a dual transcriptional regulator and exerts negative control over fatty acid degradation pathway, reduced up to 30% of butyric acid titer. This observation suggested that β-oxidation pathway is working synergistically with fatty acid synthesis pathway in production of butyric acid. Moreover, accelerating the fatty acid elongation cycle by overexpressing acetyl-CoA carboxyltransferase (Acc) and 3-hydroxy-acyl-ACP dehydratase (FabZ) or by deleting FabR, the transcription suppressor of elongation, did not improve the butyric acid titer, rather favored the long chain fatty acid production. Finally, a balance between cell growth and butyric acid production was achieved with the use of phosphorous limited growth medium and 14.3 g/L butyric acid, and 17.5 g/L total free fatty acids (FFAs) titer was achieved during fed-batch cultivation. We have engineered an E. coli strain which utilizes the intermediate of both fatty acid synthesis and degradation pathway, i.e. butyryl-ACP and -CoA, to produce butyric acid from glucose. The strategy used in this study resulted in highest reported titers of butyric acid and FFAs in engineered E. coli.

Keywords: butenoic acid, butyric acid, Escherichia coli, fed-batch fermentation, short chain fatty acids, thioesterase

Procedia PDF Downloads 371
293 Photocatalytic Disintegration of Naphthalene and Naphthalene Similar Compounds in Indoors Air

Authors: Tobias Schnabel

Abstract:

Naphthalene and naphthalene similar compounds are a common problem in the indoor air of buildings from the 1960s and 1970s in Germany. Often tar containing roof felt was used under the concrete floor to prevent humidity to come through the floor. This tar containing roof felt has high concentrations of PAH (Polycyclic aromatic hydrocarbon) and naphthalene. Naphthalene easily evaporates and contaminates the indoor air. Especially after renovations and energetically modernization of the buildings, the naphthalene concentration rises because no forced air exchange can happen. Because of this problem, it is often necessary to change the floors after renovation of the buildings. The MFPA Weimar (Material research and testing facility) developed in cooperation a project with LEJ GmbH and Reichmann Gebäudetechnik GmbH. It is a technical solution for the disintegration of naphthalene in naphthalene, similar compounds in indoor air with photocatalytic reforming. Photocatalytic systems produce active oxygen species (hydroxyl radicals) through trading semiconductors on a wavelength of their bandgap. The light energy separates the charges in the semiconductor and produces free electrons in the line tape and defect electrons. The defect electrons can react with hydroxide ions to hydroxyl radicals. The produced hydroxyl radicals are a strong oxidation agent, and can oxidate organic matter to carbon dioxide and water. During the research, new titanium oxide catalysator surface coatings were developed. This coating technology allows the production of very porous titan oxide layer on temperature stable carrier materials. The porosity allows the naphthalene to get easily absorbed by the surface coating, what accelerates the reaction of the heterogeneous photocatalysis. The photocatalytic reaction is induced by high power and high efficient UV-A (ultra violet light) Leds with a wavelength of 365nm. Various tests in emission chambers and on the reformer itself show that a reduction of naphthalene in important concentrations between 2 and 250 µg/m³ is possible. The disintegration rate was at least 80%. To reduce the concentration of naphthalene from 30 µg/m³ to a level below 5 µg/m³ in a usual 50 ² classroom, an energy of 6 kWh is needed. The benefits of the photocatalytic indoor air treatment are that every organic compound in the air can be disintegrated and reduced. The use of new photocatalytic materials in combination with highly efficient UV leds make a safe and energy efficient reduction of organic compounds in indoor air possible. At the moment the air cleaning systems take the step from prototype stage into the usage in real buildings.

Keywords: naphthalene, titandioxide, indoor air, photocatalysis

Procedia PDF Downloads 143
292 Relationship between Functional Properties and Supramolecular Structure of the Poly(Trimethylene 2,5-Furanoate) Based Multiblock Copolymers with Aliphatic Polyethers or Aliphatic Polyesters

Authors: S. Paszkiewicz, A. Zubkiewicz, A. Szymczyk, D. Pawlikowska, I. Irska, E. Piesowicz, A. Linares, T. A. Ezquerra

Abstract:

Over the last century, the world has become increasingly dependent on oil as its main source of chemicals and energy. Driven largely by the strong economic growth of India and China, demand for oil is expected to increase significantly in the coming years. This growth in demand, combined with diminishing reserves, will require the development of new, sustainable sources for fuels and bulk chemicals. Biomass is an attractive alternative feedstock, as it is widely available carbon source apart from oil and coal. Nowadays, academic and industrial research in the field of polymer materials is strongly oriented towards bio-based alternatives to petroleum-derived plastics with enhanced properties for advanced applications. In this context, 2,5-furandicarboxylic acid (FDCA), a biomass-based chemical product derived from lignocellulose, is one of the most high-potential biobased building blocks for polymers and the first candidate to replace the petro-derived terephthalic acid. FDCA has been identified as one of the top 12 chemicals in the future, which may be used as a platform chemical for the synthesis of biomass-based polyester. The aim of this study is to synthesize and characterize the multiblock copolymers containing rigid segments of poly(trimethylene 2,5-furanoate) (PTF) and soft segments of poly(tetramethylene oxide) (PTMO) with excellent elastic properties or aliphatic polyesters of polycaprolactone (PCL). Two series of PTF based copolymers, i.e., PTF-block-PTMO-T and PTF-block-PCL-T, with different content of flexible segments were synthesized by means of a two-step melt polycondensation process and characterized by various methods. The rigid segments of PTF, as well as the flexible PTMO/or PCL ones, were randomly distributed along the chain. On the basis of 1H NMR, SAXS and WAXS, DSC an DMTA results, one can conclude that both phases were thermodynamically immiscible and the values of phase transition temperatures varied with the composition of the copolymer. The copolymers containing 25, 35 and 45wt.% of flexible segments (PTMO) exhibited elastomeric property characteristics. Moreover, with respect to the flexible segments content, the temperatures corresponding to 5%, 25%, 50% and 90% mass loss as well as the values of tensile modulus decrease with the increasing content of aliphatic polyether or aliphatic polyester in the composition.

Keywords: furan based polymers, multiblock copolymers, supramolecular structure, functional properties

Procedia PDF Downloads 129
291 Synthesis, Physicochemical Characterization and Study of the Antimicrobial Activity of Chlorobutanol

Authors: N. Hadhoum, B. Guerfi, T. M. Sider, Z. Yassa, T. Djerboua, M. Boursouti, M. Mamou, F. Z. Hadjadj Aoul, L. R. Mekacher

Abstract:

Introduction and objectives: Chlorobutanol is a raw material, mainly used as an antiseptic and antimicrobial preservative in injectable and ophthalmic preparations. The main objective of our study was the synthesis and evaluation of the antimicrobial activity of chlorobutanol hemihydrates. Material and methods: Chlorobutanol was synthesized according to the nucleophilic addition reaction of chloroform to acetone, identified by an infrared absorption using Spectrum One FTIR spectrometer, melting point, Scanning electron microscopy and colorimetric reactions. The dosage of carvedilol active substance was carried out by assaying the degradation products of chlorobutanol in a basic solution. The chlorobutanol obtained was subjected to bacteriological tests in order to study its antimicrobial activity. The antibacterial activity was evaluated against strains such as Escherichia coli (ATCC 25 922), Staphylococcus aureus (ATCC 25 923) and Pseudomonas aeroginosa (ATCC = American type culture collection). The antifungal activity was evaluated against human pathogenic fungal strains, such as Candida albicans and Aspergillus niger provided by the parasitology laboratory of the Hospital of Tizi-Ouzou, Algeria. Results and discussion: Chlorobutanol was obtained in an acceptable yield. The characterization tests of the product obtained showed a white and crystalline appearance (confirmed by scanning electron microscopy), solubilities (in water, ethanol and glycerol), and a melting temperature in accordance with the requirements of the European pharmacopoeia. The colorimetric reactions were directed towards the presence of a trihalogenated carbon and an alcohol function. The spectral identification (IR) showed the presence of characteristic chlorobutanol peaks and confirmed the structure of the latter. The microbiological study revealed an antimicrobial effect on all strains tested (Sataphylococcus aureus (MIC = 1250 µg/ml), E. coli (MIC = 1250 µg/ml), Pseudomonas aeroginosa (MIC = 1250 µg/ml), Candida albicans (MIC =2500 µg/ml), Aspergillus niger (MIC =2500 µg/ml)) with MIC values close to literature data. Conclusion: Thus, on the whole, the synthesized chlorobutanol satisfied the requirements of the European Pharmacopoeia, and possesses antibacterial and antifungal activity; nevertheless, it is necessary to insist on the purification step of the product in order to eliminate the maximum impurities.

Keywords: antimicrobial agent, bacterial and fungal strains, chlorobutanol, MIC, minimum inhibitory concentration

Procedia PDF Downloads 168
290 Contributions of Natural and Human Activities to Urban Surface Runoff with Different Hydrological Scenarios (Orléans, France)

Authors: Al-Juhaishi Mohammed, Mikael Motelica-Heino, Fabrice Muller, Audrey Guirimand-Dufour, Christian Défarge

Abstract:

This study aims at improving the urban hydrological cycle of the Orléans agglomeration (France) and understanding the relationship between physical and chemical parameters of urban surface runoff and the hydrological conditions. In particular water quality parameters such as pH, conductivity, total dissolved solids, major dissolved cations and anions, and chemical and biological oxygen demands were monitored for three types of urban water discharges (wastewater treatment plant output (WWTP), storm overflow and stormwater outfall) under two hydrologic scenarii (dry and wet weather). The first results were obtained over a period of five months.Each investigated (Ormes and l’Egoutier) outfall represents an urban runoff source that receives water from runoff roads, gutters, the irrigation of gardens and other sources of flow over the Earth’s surface that drains in its catchments and carries it to the Loire River. In wet weather conditions there is rain water runoff and an additional input from the roof gutters that have entered the stormwater system during rainfall. For the comparison the results La Chilesse is a storm overflow that was selected in our study as a potential source of waste water which is located before the (WWTP).The comparison of the physical-chemical parameters (total dissolved solids, turbidity, pH, conductivity, dissolved organic carbon (DOC), concentration of major cations and anions) together with the chemical oxygen demand (COD) and biological oxygen demand (BOD) helped to characterize sources of runoff waters in the different watersheds. It also helped to highlight the infiltration of wastewater in some stormwater systems that reject directly in the Loire River. The values of the conductivity measured in the outflow of Ormes were always higher than those measured in the other two outlets. The results showed a temporal variation for the Ormes outfall of conductivity from 1465 µS cm-1 in the dry weather flow to 650 µS cm-1 in the wet weather flow and also a spatial variation in the wet weather flow from 650 µS cm-1 in the Ormes outfall to 281 μS cm-1 in L’Egouttier outfall. The ultimate BOD (BOD28) showed a significant decrease in La Corne outfall from 210 mg L-1 in the wet weather flow to 75 mg L-1 in the dry weather flow because of the nutrient load that was transported by the runoff.

Keywords: BOD, COD, the Loire River, urban hydrology, urban dry and wet weather discharges, macronutrients

Procedia PDF Downloads 266
289 A Comparative Study of the Impact of Membership in International Climate Change Treaties and the Environmental Kuznets Curve (EKC) in Line with Sustainable Development Theories

Authors: Mojtaba Taheri, Saied Reza Ameli

Abstract:

In this research, we have calculated the effect of membership in international climate change treaties for 20 developed countries based on the human development index (HDI) and compared this effect with the process of pollutant reduction in the Environmental Kuznets Curve (EKC) theory. For this purpose, the data related to The real GDP per capita with 2010 constant prices is selected from the World Development Indicators (WDI) database. Ecological Footprint (ECOFP) is the amount of biologically productive land needed to meet human needs and absorb carbon dioxide emissions. It is measured in global hectares (gha), and the data retrieved from the Global Ecological Footprint (2021) database will be used, and we will proceed by examining step by step and performing several series of targeted statistical regressions. We will examine the effects of different control variables, including Energy Consumption Structure (ECS) will be counted as the share of fossil fuel consumption in total energy consumption and will be extracted from The United States Energy Information Administration (EIA) (2021) database. Energy Production (EP) refers to the total production of primary energy by all energy-producing enterprises in one country at a specific time. It is a comprehensive indicator that shows the capacity of energy production in the country, and the data for its 2021 version, like the Energy Consumption Structure, is obtained from (EIA). Financial development (FND) is defined as the ratio of private credit to GDP, and to some extent based on the stock market value, also as a ratio to GDP, and is taken from the (WDI) 2021 version. Trade Openness (TRD) is the sum of exports and imports of goods and services measured as a share of GDP, and we use the (WDI) data (2021) version. Urbanization (URB) is defined as the share of the urban population in the total population, and for this data, we used the (WDI) data source (2021) version. The descriptive statistics of all the investigated variables are presented in the results section. Related to the theories of sustainable development, Environmental Kuznets Curve (EKC) is more significant in the period of study. In this research, we use more than fourteen targeted statistical regressions to purify the net effects of each of the approaches and examine the results.

Keywords: climate change, globalization, environmental economics, sustainable development, international climate treaty

Procedia PDF Downloads 71
288 Durham Region: How to Achieve Zero Waste in a Municipal Setting

Authors: Mirka Januszkiewicz

Abstract:

The Regional Municipality of Durham is the upper level of a two-tier municipal and regional structure comprised of eight lower-tier municipalities. With a population of 655,000 in both urban and rural settings, the Region is approximately 2,537 square kilometers neighboring the City of Toronto, Ontario Canada to the east. The Region has been focused on diverting waste from disposal since the development of its Long Term Waste Management Strategy Plan for 2000-2020. With a 54 percent solid waste diversion rate, the focus now is on achieving 70 percent diversion on the path to zero waste using local waste management options whenever feasible. The Region has an Integrated Waste Management System that consists of a weekly curbside collection of recyclable printed paper and packaging and source separated organics; a seasonal collection of leaf and yard waste; a bi-weekly collection of residual garbage; and twice annual collection of intact, sealed household batteries. The Region also maintains three Waste Management Facilities for residential drop-off of household hazardous waste, polystyrene, construction and demolition debris and electronics. Special collection events are scheduled in the spring, summer and fall months for reusable items, household hazardous waste, and electronics. The Region is in the final commissioning stages of an energy from the waste facility for residual waste disposal that will recover energy from non-recyclable wastes. This facility is state of the art and is equipped for installation of carbon capture technology in the future. Despite all of these diversion programs and efforts, there is still room for improvement. Recent residential waste studies revealed that over 50% of the residual waste placed at the curb that is destined for incineration could be recycled. To move towards a zero waste community, the Region is looking to more advanced technologies for extracting the maximum recycling value from residential waste. Plans are underway to develop a pre-sort facility to remove organics and recyclables from the residual waste stream, including the growing multi-residential sector. Organics would then be treated anaerobically to generate biogas and fertilizer products for beneficial use within the Region. This project could increase the Region’s diversion rate beyond 70 percent and enhance the Region’s climate change mitigation goals. Zero waste is an ambitious goal in a changing regulatory and economic environment. Decision makers must be willing to consider new and emerging technologies and embrace change to succeed.

Keywords: municipal waste, residential, waste diversion, zero waste

Procedia PDF Downloads 219
287 Urban Rehabilitation Assessment: Buildings' Integrity and Embodied Energy

Authors: Joana Mourão

Abstract:

Transition to a low carbon economy requires changes in consumption and production patterns, including the improvement of existing buildings’ environmental performance. Urban rehabilitation is a top policy priority in Europe, creating an opportunity to increase this performance. However, urban rehabilitation comprises different typologies of interventions with distinct levels of consideration for cultural urban heritage values and for environmental values, thus with different impacts. Cities rely on both material and non-material forms of heritage that are deep-rooted and resilient. One of the most relevant parts of that urban heritage is the historical pre-industrial housing stock, with an extensive presence in many European cities, as Lisbon. This stock is rehabilitated and transformed at the framework of urban management and local governance traditions, as well as the framework of the global economy, and in that context, faces opportunities and threats that need evaluation and control. The scope of this article is to define methodological bases and research lines for the assessment of impacts that urban rehabilitation initiatives set on the vulnerable and historical pre-industrial urban housing stock, considering it as an environmental and cultural unreplaceable material value and resource. As a framework, this article reviews the concepts of urban regeneration, urban renewal, current buildings conservation and refurbishment, and energy refurbishment of buildings, seeking to define key typologies of urban rehabilitation that represent different approaches to the urban fabric, in terms of scope, actors, and priorities. Moreover, main types of interventions - basing on a case-study in a XVIII century neighborhood in Lisbon - are defined and analyzed in terms of the elements lost in each type of intervention, and relating those to urbanistic, architectonic and constructive values of urban heritage, as well as to environmental and energy efficiency. Further, the article overviews environmental cultural heritage assessment and life-cycle assessment tools, selecting relevant and feasible impact assessment criteria for urban buildings rehabilitation regulation, focusing on multi-level urban heritage integrity. Urbanistic, architectonic, constructive and energetic integrity are studied as criteria for impact assessment and specific indicators are proposed. The role of these criteria in sustainable urban management is discussed. Throughout this article, the key challenges for urban rehabilitation planning and management, concerning urban built heritage as a resource for sustainability, are discussed and clarified.

Keywords: urban rehabilitation, impact assessment criteria, buildings integrity, embodied energy

Procedia PDF Downloads 196
286 Valorization of Mineralogical Byproduct TiO₂ Using Photocatalytic Degradation of Organo-Sulfur Industrial Effluent

Authors: Harish Kuruva, Vedasri Bai Khavala, Tiju Thomas, K. Murugan, B. S. Murty

Abstract:

Industries are growing day to day to increase the economy of the country. The biggest problem with industries is wastewater treatment. Releasing these wastewater directly into the river is more harmful to human life and a threat to aquatic life. These industrial effluents contain many dissolved solids, organic/inorganic compounds, salts, toxic metals, etc. Phenols, pesticides, dioxins, herbicides, pharmaceuticals, and textile dyes were the types of industrial effluents and more challenging to degrade eco-friendly. So many advanced techniques like electrochemical, oxidation process, and valorization have been applied for industrial wastewater treatment, but these are not cost-effective. Industrial effluent degradation is complicated compared to commercially available pollutants (dyes) like methylene blue, methylene orange, rhodamine B, etc. TiO₂ is one of the widely used photocatalysts which can degrade organic compounds using solar light and moisture available in the environment (organic compounds converted to CO₂ and H₂O). TiO₂ is widely studied in photocatalysis because of its low cost, non-toxic, high availability, and chemically and physically stable in the atmosphere. This study mainly focused on valorizing the mineralogical product TiO₂ (IREL, India). This mineralogical graded TiO₂ was characterized and compared with its structural and photocatalytic properties (industrial effluent degradation) with the commercially available Degussa P-25 TiO₂. It was testified that this mineralogical TiO₂ has the best photocatalytic properties (particle shape - spherical, size - 30±5 nm, surface area - 98.19 m²/g, bandgap - 3.2 eV, phase - 95% anatase, and 5% rutile). The industrial effluent was characterized by TDS (total dissolved solids), ICP-OES (inductively coupled plasma – optical emission spectroscopy), CHNS (Carbon, Hydrogen, Nitrogen, and sulfur) analyzer, and FT-IR (fourier-transform infrared spectroscopy). It was observed that it contains high sulfur (S=11.37±0.15%), organic compounds (C=4±0.1%, H=70.25±0.1%, N=10±0.1%), heavy metals, and other dissolved solids (60 g/L). However, the organo-sulfur industrial effluent was degraded by photocatalysis with the industrial mineralogical product TiO₂. In this study, the industrial effluent pH value (2.5 to 10), catalyst concentration (50 to 150 mg) were varied, and effluent concentration (0.5 Abs) and light exposure time (2 h) were maintained constant. The best degradation is about 80% of industrial effluent was achieved at pH 5 with a concentration of 150 mg - TiO₂. The FT-IR results and CHNS analyzer confirmed that the sulfur and organic compounds were degraded.

Keywords: wastewater treatment, industrial mineralogical product TiO₂, photocatalysis, organo-sulfur industrial effluent

Procedia PDF Downloads 116
285 From the Perspective of a Veterinarian: The Future of Plant Raw Materials Used in the Feeding of Farm Animals

Authors: Ertuğrul Yılmaz

Abstract:

One of the most important occupational groups in the food chain from farm to fork is a veterinary medicine. This occupational group, which has important duties in the prevention of many zoonotic diseases and in public health, takes place in many critical control points from soil to our kitchen. It has important duties from mycotoxins transmitted from the soil to slaughterhouses or milk processing facilities. Starting from the soil, which constitutes 70% of mycotoxin contamination, up to the TMR made from raw materials obtained from the soil, there are all critical control points from feeding to slaughterhouses and milk production enterprises. We can take the precaution of mycotoxins such as Aflatoxin B1, Ochratoxin, Zearalenone, and Fumonisin, which we encounter on farms while in the field. It has been reported that aflatoxin B1 is a casenerogen and passes into milk in studies. It is likely that many mycotoxins pose significant threats to public health and will turn out to be even more dangerous over time. Even raw material storage and TMR preparation are very important for public health. The danger of fumonisin accumulating in the liver will be understood over time. Zoonotic diseases are also explained with examples. In this study, how important veterinarians are in terms of public health is explained with examples. In the two-year mycotoxin screenings, fumonisin mycotoxin was found to be very high in corn and corn by-products, and it was determined that it accumulated in the liver for a long time and remained cornic in animals. It has been determined that mycotoxins are present in all livestock feeds, poultry feeds, and raw materials, not alone, but in double-triple form. Starting from the end, mycotoxin scans should be carried out from feed to raw materials and from raw materials to soil. In this way, we prevent the transmission of mycotoxins to animals and from animals to humans. Liver protectors such as toxin binders, beta-glucan, mannan oligosaccharides, activated carbon, prebiotics, and silymarin were used in certain proportions in the total mixed ratio, and positive results were obtained. Humidity and temperature controls of raw material silos were made at certain intervals. Necropsy was performed on animals that died as a result of mycotoxicosis, and macroscopic photographs were taken of the organs. We have determined that the mycotoxin screening in experimental animals and the feeds made without detecting the presence and amount of bacterial factors affect the results of the project to be made. For this, a series of precautionary plans have been created, starting from the production processes.

Keywords: mycotoxins, feed safety, processes, public health

Procedia PDF Downloads 83
284 Single Cell Oil of Oleaginous Fungi from Lebanese Habitats as a Potential Feed Stock for Biodiesel

Authors: M. El-haj, Z. Olama, H. Holail

Abstract:

Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Five fungal strains were isolated from the Lebanese environment namely Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger that have been selected among 39 oleaginous strains for their potential ability to accumulate lipids (lipid content was more than 40% on dry weight basis). Wide variations were recorded in the environmental factors that lead to maximum lipid production by fungi under test and were cultivated under submerged fermentation on medium containing glucose as a carbon source. The maximum lipid production was attained within 6-8 days, at pH range 6-7, 24 to 48 hours age of seed culture, 4 to 6.107 spores/ml inoculum level and 100 ml culture volume. Eleven culture conditions were examined for their significance on lipid production using Plackett-Burman factorial design. Reducing sugars and nitrogen source were the most significant factors affecting lipid production process. Maximum lipid yield was noticed with 15.62, 14.48, 12.75, 13.68 and 20.41g/l for Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger respectively. A verification experiment was carried out to examine model validation and revealed more than 94% validity. The profile of extracted lipids from each fungal isolate was studied using thin layer chromatography (TLC) indicating the presence of monoacylglycerols, diaacylglycerols, free fatty acids, triacylglycerols and sterol esters. The fatty acids profiles were also determined by gas-chromatography coupled with flame ionization detector (GC-FID). Data revealed the presence of significant amount of oleic acid (29-36%), palmitic acid (18-24%), linoleic acid (26.8-35%), and low amount of other fatty acids in the extracted fungal oils which indicate that the fatty acid profiles were quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with acid-pretreated lignocellulotic corncob waste, whey and date molasses to be utilized as the raw material for the oleaginous fungi. The results showed that the microbial lipid from the studied fungi was a potential alternative resource for biodiesel production.

Keywords: agro-industrial waste products, biodiesel, fatty acid, single cell oil, Lebanese environment, oleaginous fungi

Procedia PDF Downloads 411
283 Unleashing the Potential of Green Finance in Architecture: A Promising Path for Balkan Countries

Authors: Luan Vardari, Dena Arapi Vardari

Abstract:

The Balkan countries, known for their diverse landscapes and cultural heritage, face the dual challenge of promoting economic growth while addressing pressing environmental concerns. In recent years, the concept of green finance has emerged as a powerful tool to achieve sustainable development and mitigate the environmental impact of various sectors, including architecture. This extended abstract explores the untapped potential of green finance in architecture within the Balkan region and highlights its role in driving sustainable construction practices and fostering a greener future. The abstract begins by defining green finance and emphasizing its relevance in the context of the architectural sector in Balkan countries. It underlines the benefits of green finance, such as economic growth, environmental conservation, and social well-being. Integrating green finance into architectural projects is important as a means to achieve sustainable development goals while promoting financial viability. Also, delves into the current state of green building practices in the Balkan countries and identifies the need for financial support to further drive adoption. It explores the existing regulatory frameworks and policies that promote sustainable architecture and discusses how green finance can complement these initiatives. Unique challenges faced by Balkan countries are highlighted, along with the potential opportunities that green finance presents in overcoming these challenges. We highlight successful sustainable architectural projects in the region to showcase the practical application of green finance in the Balkans. These projects exemplify the effective utilization of green finance mechanisms, resulting in tangible economic and environmental impacts, including job creation, energy efficiency, and reduced carbon emissions. The abstract concludes by identifying replicable models and lessons learned from these projects that can serve as a blueprint for future sustainable architecture initiatives in the Balkans. The importance of collaboration and knowledge sharing among stakeholders is emphasized. Engaging architects, financial institutions, governments, and local communities is crucial to promoting green finance in architecture. The abstract suggests the establishment of knowledge exchange platforms and regional/international networks to foster collaboration and facilitate the sharing of expertise among Balkan countries.

Keywords: sustainable finance, renewable energy, Balkan region, investment opportunities, green infrastructure, ESG criteria, architecture

Procedia PDF Downloads 68
282 Vibrational Spectra and Nonlinear Optical Investigations of a Chalcone Derivative (2e)-3-[4-(Methylsulfanyl) Phenyl]-1-(3-Bromophenyl) Prop-2-En-1-One

Authors: Amit Kumar, Archana Gupta, Poonam Tandon, E. D. D’Silva

Abstract:

Nonlinear optical (NLO) materials are the key materials for the fast processing of information and optical data storage applications. In the last decade, materials showing nonlinear optical properties have been the object of increasing attention by both experimental and computational points of view. Chalcones are one of the most important classes of cross conjugated NLO chromophores that are reported to exhibit good SHG efficiency, ultra fast optical nonlinearities and are easily crystallizable. The basic structure of chalcones is based on the π-conjugated system in which two aromatic rings are connected by a three-carbon α, β-unsaturated carbonyl system. Due to the overlap of π orbitals, delocalization of electronic charge distribution leads to a high mobility of the electron density. On a molecular scale, the extent of charge transfer across the NLO chromophore determines the level of SHG output. Hence, the functionalization of both ends of the π-bond system with appropriate electron donor and acceptor groups can enhance the asymmetric electronic distribution in either or both ground and excited states, leading to an increased optical nonlinearity. In this research, the experimental and theoretical study on the structure and vibrations of (2E)-3-[4-(methylsulfanyl) phenyl]-1-(3-bromophenyl) prop-2-en-1-one (3Br4MSP) is presented. The FT-IR and FT-Raman spectra of the NLO material in the solid phase have been recorded. Density functional theory (DFT) calculations at B3LYP with 6-311++G(d,p) basis set were carried out to study the equilibrium geometry, vibrational wavenumbers, infrared absorbance and Raman scattering activities. The interpretation of vibrational features (normal mode assignments, for instance) has an invaluable aid from DFT calculations that provide a quantum-mechanical description of the electronic energies and forces involved. Perturbation theory allows one to obtain the vibrational normal modes by estimating the derivatives of the Kohn−Sham energy with respect to atomic displacements. The molecular hyperpolarizability β plays a chief role in the NLO properties, and a systematical study on β has been carried out. Furthermore, the first order hyperpolarizability (β) and the related properties such as dipole moment (μ) and polarizability (α) of the title molecule are evaluated by Finite Field (FF) approach. The electronic α and β of the studied molecule are 41.907×10-24 and 79.035×10-24 e.s.u. respectively, indicating that 3Br4MSP can be used as a good nonlinear optical material.

Keywords: DFT, MEP, NLO, vibrational spectra

Procedia PDF Downloads 221
281 Exploring the Potential of Bio-Inspired Lattice Structures for Dynamic Applications in Design

Authors: Axel Thallemer, Aleksandar Kostadinov, Abel Fam, Alex Teo

Abstract:

For centuries, the forming processes in nature served as a source of inspiration for both architects and designers. It seems as most human artifacts are based on ideas which stem from the observation of the biological world and its principles of growth. As a fact, in the cultural history of Homo faber, materials have been mostly used in their solid state: From hand axe to computer mouse, the principle of employing matter has not changed ever since the first creation. In the scope of history only recently and by the help of additive-generative fabrication processes through Computer Aided Design (CAD), designers were enabled to deconstruct solid artifacts into an outer skin and an internal lattice structure. The intention behind this approach is to create a new topology which reduces resources and integrates functions into an additively manufactured component. However, looking at the currently employed lattice structures, it is very clear that those lattice structure geometries have not been thoroughly designed, but rather taken out of basic-geometry libraries which are usually provided by the CAD. In the here presented study, a group of 20 industrial design students created new and unique lattice structures using natural paragons as their models. The selected natural models comprise both the animate and inanimate world, with examples ranging from the spiraling of narwhal tusks, off-shooting of mangrove roots, minimal surfaces of soap bubbles, up to the rhythmical arrangement of molecular geometry, like in the case of SiOC (Carbon-Rich Silicon Oxicarbide). This ideation process leads to a design of a geometric cell, which served as a basic module for the lattice structure, whereby the cell was created in visual analogy to its respective natural model. The spatial lattices were fabricated additively in mostly [X]3 by [Y]3 by [Z]3 units’ volumes using selective powder bed melting in polyamide with (z-axis) 50 mm and 100 µm resolution and subdued to mechanical testing of their elastic zone in a biomedical laboratory. The results demonstrate that additively manufactured lattice structures can acquire different properties when they are designed in analogy to natural models. Several of the lattices displayed the ability to store and return kinetic energy, while others revealed a structural failure which can be exploited for purposes where a controlled collapse of a structure is required. This discovery allows for various new applications of functional lattice structures within industrially created objects.

Keywords: bio-inspired, biomimetic, lattice structures, additive manufacturing

Procedia PDF Downloads 148
280 Metal Binding Phage Clones in a Quest for Heavy Metal Recovery from Water

Authors: Tomasz Łęga, Marta Sosnowska, Mirosława Panasiuk, Lilit Hovhannisyan, Beata Gromadzka, Marcin Olszewski, Sabina Zoledowska, Dawid Nidzworski

Abstract:

Toxic heavy metal ion contamination of industrial wastewater has recently become a significant environmental concern in many regions of the world. Although the majority of heavy metals are naturally occurring elements found on the earth's surface, anthropogenic activities such as mining and smelting, industrial production, and agricultural use of metals and metal-containing compounds are responsible for the majority of environmental contamination and human exposure. The permissible limits (ppm) for heavy metals in food, water and soil are frequently exceeded and considered hazardous to humans, other organisms, and the environment as a whole. Human exposure to highly nickel-polluted environments causes a variety of pathologic effects. In 2008, nickel received the shameful name of “Allergen of the Year” (GILLETTE 2008). According to the dermatologist, the frequency of nickel allergy is still growing, and it can’t be explained only by fashionable piercing and nickel devices used in medicine (like coronary stents and endoprostheses). Effective remediation methods for removing heavy metal ions from soil and water are becoming increasingly important. Among others, methods such as chemical precipitation, micro- and nanofiltration, membrane separation, conventional coagulation, electrodialysis, ion exchange, reverse and forward osmosis, photocatalysis and polymer or carbon nanocomposite absorbents have all been investigated so far. The importance of environmentally sustainable industrial production processes and the conservation of dwindling natural resources has highlighted the need for affordable, innovative biosorptive materials capable of recovering specific chemical elements from dilute aqueous solutions. The use of combinatorial phage display techniques for selecting and recognizing material-binding peptides with a selective affinity for any target, particularly inorganic materials, has gained considerable interest in the development of advanced bio- or nano-materials. However, due to the limitations of phage display libraries and the biopanning process, the accuracy of molecular recognition for inorganic materials remains a challenge. This study presents the isolation, identification and characterisation of metal binding phage clones that preferentially recover nickel.

Keywords: Heavy metal recovery, cleaning water, phage display, nickel

Procedia PDF Downloads 99
279 Physical, Chemical and Mechanical Properties of Different Varieties of Jatropha curcas Cultivated in Pakistan

Authors: Mehmood Ali, Attaullah Khan, Md. Abul Kalam

Abstract:

Petroleum crude oil reserves are going to deplete in future due to the consumption of fossil fuels in transportation and energy generating sector. Thus, increasing the fossil fuel prices and also causing environmental degradation issues such as climate change and global warming due to air pollution. Therefore, to tackle these issues the environmentally friendly fuels are the potential substitute with lower emissions of toxic gases. A non-edible vegetable oilseed crop, Jatropha curcas, from different origins such as Malaysia, Thailand and India were cultivated in Pakistan. The harvested seeds physical, chemical and mechanical properties were measured, having an influence on the post-harvesting machines design parameters for dehulling, storing bins, drying, oil extraction from seeds with a screw expeller and in-situ transesterification reaction to produce biodiesel fuel. The seed variety from Thailand was found better in comparison of its properties with other varieties from Malaysia and India. The seed yield from these three varieties i.e. Malaysia, Thailand and India were 829, 943 and 735 kg/ acre/ year respectively. While the oil extraction yield from Thailand variety seed was found higher (i.e. 32.61 % by wt.) as compared to other two varieties from Malaysia and India were 27.96 and 24.96 % by wt respectively. The physical properties investigated showed the geometric mean diameter of seeds from three varieties Malaysia, Thailand and India were 11.350, 10.505 and 11.324 mm, while the sphericity of seeds were found 0.656, 0.664 and 0.655. The bulk densities of the powdered seeds from three varieties Malaysia, Thailand and India, were found as 0.9697, 0.9932 and 0.9601 g/cm³ and % passing was obtained with sieve test were 78.7, 87.1 and 79.3 respectively. The densities of the extracted oil from three varieties Malaysia, Thailand and India were found 0.902, 0.898 and 0.902 g/ mL with corresponding kinematic viscosities 54.50, 49.18 and 48.16 mm2/sec respectively. The higher heating values (HHV) of extracted oil from Malaysia, Thailand and India seed varieties were measured as 40.29, 36.41 and 34.27 MJ/ kg, while the HHV of de-oiled cake from these varieties were 21.23, 20.78 and 17.31 MJ/kg respectively. The de-oiled cake can be used as compost with nutrients and carbon content to enhance soil fertility to grow future Jatropha curcas oil seed crops and also can be used as a fuel for heating and cooking purpose. Moreover, the mechanical parameter micro Vickers hardness of Malaysia seed was found lowest 16.30 HV measured with seed in a horizontal position to the loading in comparison to other two varieties as 25.2 and 18.7 HV from Thailand and India respectively. The fatty acid composition of three varieties of seed oil showed the presence of C8-C22, required to produce good quality biodiesel fuel. In terms of physicochemical properties of seeds and its extracted oil, the variety from Thailand was found better as compared to the other two varieties.

Keywords: biodiesel, Jatropha curcas, mechanical property, physico-chemical properties

Procedia PDF Downloads 141
278 Analysis and Modeling of Graphene-Based Percolative Strain Sensor

Authors: Heming Yao

Abstract:

Graphene-based percolative strain gauges could find applications in many places such as touch panels, artificial skins or human motion detection because of its advantages over conventional strain gauges such as flexibility and transparency. These strain gauges rely on a novel sensing mechanism that depends on strain-induced morphology changes. Once a compression or tension strain is applied to Graphene-based percolative strain gauges, the overlap area between neighboring flakes becomes smaller or larger, which is reflected by the considerable change of resistance. Tiny strain change on graphene-based percolative strain sensor can act as an important leverage to tremendously increase resistance of strain sensor, which equipped graphene-based percolative strain gauges with higher gauge factor. Despite ongoing research in the underlying sensing mechanism and the limits of sensitivity, neither suitable understanding has been obtained of what intrinsic factors play the key role in adjust gauge factor, nor explanation on how the strain gauge sensitivity can be enhanced, which is undoubtedly considerably meaningful and provides guideline to design novel and easy-produced strain sensor with high gauge factor. We here simulated the strain process by modeling graphene flakes and its percolative networks. We constructed the 3D resistance network by simulating overlapping process of graphene flakes and interconnecting tremendous number of resistance elements which were obtained by fractionizing each piece of graphene. With strain increasing, the overlapping graphenes was dislocated on new stretched simulation graphene flake simulation film and a new simulation resistance network was formed with smaller flake number density. By solving the resistance network, we can get the resistance of simulation film under different strain. Furthermore, by simulation on possible variable parameters, such as out-of-plane resistance, in-plane resistance, flake size, we obtained the changing tendency of gauge factor with all these variable parameters. Compared with the experimental data, we verified the feasibility of our model and analysis. The increase of out-of-plane resistance of graphene flake and the initial resistance of sensor, based on flake network, both improved gauge factor of sensor, while the smaller graphene flake size gave greater gauge factor. This work can not only serve as a guideline to improve the sensitivity and applicability of graphene-based strain sensors in the future, but also provides method to find the limitation of gauge factor for strain sensor based on graphene flake. Besides, our method can be easily transferred to predict gauge factor of strain sensor based on other nano-structured transparent optical conductors, such as nanowire and carbon nanotube, or of their hybrid with graphene flakes.

Keywords: graphene, gauge factor, percolative transport, strain sensor

Procedia PDF Downloads 416
277 Emissions and Total Cost of Ownership Assessment of Hybrid Propulsion Concepts for Bus Transport with Compressed Natural Gases or Diesel Engine

Authors: Volker Landersheim, Daria Manushyna, Thinh Pham, Dai-Duong Tran, Thomas Geury, Omar Hegazy, Steven Wilkins

Abstract:

Air pollution is one of the emerging problems in our society. Targets of reduction of CO₂ emissions address low-carbon and resource-efficient transport. (Plug-in) hybrid electric propulsion concepts offer the possibility to reduce total cost of ownership (TCO) and emissions for public transport vehicles (e.g., bus application). In this context, typically, diesel engines are used to form the hybrid propulsion system of the vehicle. Though the technological development of diesel engines experience major advantages, some challenges such as the high amount of particle emissions remain relevant. Gaseous fuels (i.e., compressed natural gases (CNGs) or liquefied petroleum gases (LPGs) represent an attractive alternative to diesel because of their composition. In the framework of the research project 'Optimised Real-world Cost-Competitive Modular Hybrid Architecture' (ORCA), which was funded by the EU, two different hybrid-electric propulsion concepts have been investigated: one using a diesel engine as internal combustion engine and one using CNG as fuel. The aim of the current study is to analyze specific benefits for the aforementioned hybrid propulsion systems for predefined driving scenarios with regard to emissions and total cost of ownership in bus application. Engine models based on experimental data for diesel and CNG were developed. For the purpose of designing optimal energy management strategies for each propulsion system, maps-driven or quasi-static models for specific engine types are used in the simulation framework. An analogous modelling approach has been chosen to represent emissions. This paper compares the two concepts regarding their CO₂ and NOx emissions. This comparison is performed for relevant bus missions (urban, suburban, with and without zero-emission zone) and with different energy management strategies. In addition to the emissions, also the downsizing potential of the combustion engine has been analysed to minimize the powertrain TCO (pTCO) for plug-in hybrid electric buses. The results of the performed analyses show that the hybrid vehicle concept using the CNG engine shows advantages both with respect to emissions as well as to pTCO. The pTCO is 10% lower, CO₂ emissions are 13% lower, and the NOx emissions are more than 50% lower than with the diesel combustion engine. These results are consistent across all usage profiles under investigation.

Keywords: bus transport, emissions, hybrid propulsion, pTCO, CNG

Procedia PDF Downloads 147
276 Geochemical Study of Natural Bitumen, Condensate and Gas Seeps from Sousse Area, Central Tunisia

Authors: Belhaj Mohamed, M. Saidi, N. Boucherab, N. Ouertani, I. Bouazizi, M. Ben Jrad

Abstract:

Natural hydrocarbon seepage has helped petroleum exploration as a direct indicator of gas and/or oil subsurface accumulations. Surface macro-seeps are generally an indication of a fault in an active Petroleum Seepage System belonging to a Total Petroleum System. This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected from Sousse aquifer (Central Tunisia). The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GC-MS), capillary GC with flame-ionization detection, Compund Specific Isotope Analysis, Rock Eval Pyrolysis. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The oil and gas seeps have been investigated using biomarker and stable carbon isotope analyses to perform oil-oil and oil-source rock correlations. The seepage gases are characterized by high CH4 content, very low δ13CCH4 values (-71,9 ‰) and high C1/C1–5 ratios (0.95–1.0), light deuterium–hydrogen isotope ratios (-198 ‰) and light δ13CC2 and δ13CCO2 values (-23,8‰ and-23,8‰ respectively) indicating a thermogenic origin with the contribution of the biogenic gas. An organic geochemistry study was carried out on the more ten oil seep samples. This study includes light hydrocarbon and biomarkers analyses (hopanes, steranes, n-alkanes, acyclic isoprenoids, and aromatic steroids) using GC and GC-MS. The studied samples show at least two distinct families, suggesting two different types of crude oil origins: the first oil seeps appears to be highly mature, showing evidence of chemical and/or biological degradation and was derived from a clay-rich source rock deposited in suboxic conditions. It has been sourced mainly by the lower Fahdene (Albian) source rocks. The second oil seeps was derived from a carbonate-rich source rock deposited in anoxic conditions, well correlated with the Bahloul (Cenomanian-Turonian) source rock.

Keywords: biomarkers, oil and gas seeps, organic geochemistry, source rock

Procedia PDF Downloads 443
275 Enhancing Photocatalytic Hydrogen Production: Modification of TiO₂ by Coupling with Semiconductor Nanoparticles

Authors: Saud Hamdan Alshammari

Abstract:

Photocatalytic water splitting to produce hydrogen (H₂) has obtained significant attention as an environmentally friendly technology. This process, which produces hydrogen from water and sunlight, represents a renewable energy source. Titanium dioxide (TiO₂) plays a critical role in photocatalytic hydrogen production due to its chemical stability, availability, and low cost. Nevertheless, TiO₂'s wide band gap (3.2 eV) limits its visible light absorption and might affect the effectiveness of the photocatalytic. Coupling TiO₂ with other semiconductors is a strategy that can enhance TiO₂ by narrowing its band gap and improving visible light absorption. This paper studies the modification of TiO₂ by coupling it with another semiconductor such as CdS nanoparticles using a reflux reactor and autoclave reactor that helps form a core-shell structure. Characterization techniques, including TEM and UV-Vis spectroscopy, confirmed successful coating of TiO₂ on CdS core, reduction of the band gap from 3.28 eV to 3.1 eV, and enhanced light absorption in the visible region. These modifications are attributed to the heterojunction structure between TiO₂ and CdS.The essential goal of this study is to improve TiO₂ for use in photocatalytic water splitting to enhance hydrogen production. The core-shell TiO₂@CdS nanoparticles exhibited promising results, due to band gap narrowing and improved light absorption. Future work will involve adding Pt as a co-catalyst, which is known to increase surface reaction activity by enhancing proton adsorption. Evaluation of the TiO₂@CdS@Pt catalyst will include performance assessments and hydrogen productivity tests, considering factors such as effective shapes and material ratios. Moreover, the study could be enhanced by studying further modifications to the catalyst and displaying additional performance evaluations. For instance, doping TiO₂ with metals such as nickel (Ni), iron (Fe), and cobalt (Co) and non-metals such as nitrogen (N), carbon (C), and sulfur (S) could positively influence the catalyst by reducing the band gap, enhancing the separation of photogenerated electron-hole pairs, and increasing the surface area, respectively. Additionally, to further improve catalytic performance, examining different catalyst morphologies, such as nanorods, nanowires, and nanosheets, in hydrogen production could be highly beneficial. Optimizing photoreactor design for efficient photon delivery and illumination will further enhance the photocatalytic process. These strategies collectively aim to overcome current challenges and improve the efficiency of hydrogen production via photocatalysis.

Keywords: hydrogen production, photocatalytic, water spliiting, semiconductor, nanoparticles

Procedia PDF Downloads 21
274 New Suspension Mechanism for a Formula Car using Camber Thrust

Authors: Shinji Kajiwara

Abstract:

The basic ability of a vehicle is the ability to “run”, “turn” and “stop”. The safeness and comfort during a drive on various road surfaces and speed depends on the performance of these basic abilities of the vehicle. Stability and maneuverability of a vehicle is vital in automotive engineering. Stability of a vehicle is the ability of the vehicle to revert back to a stable state during a drive when faced with crosswind and irregular road conditions. Maneuverability of a vehicle is the ability of the vehicle to change direction during a drive swiftly based on the steering of the driver. The stability and maneuverability of a vehicle can also be defined as the driving stability of the vehicle. Since fossil fueled vehicle is the main type of transportation today, the environmental factor in automotive engineering is also vital. By improving the fuel efficiency of the vehicle, the overall carbon emission will be reduced thus reducing the effect of global warming and greenhouse gas on the Earth. Another main focus of the automotive engineering is the safety performance of the vehicle especially with the worrying increase of vehicle collision every day. With better safety performance on a vehicle, every driver will be more confidence driving every day. Next, let us focus on the “turn” ability of a vehicle. By improving this particular ability of the vehicle, the cornering limit of the vehicle can be improved thus increasing the stability and maneuverability factor. In order to improve the cornering limit of the vehicle, a study to find the balance between the steering systems, the stability of the vehicle, higher lateral acceleration and the cornering limit detection must be conducted. The aim of this research is to study and develop a new suspension system that that will boost the lateral acceleration of the vehicle and ultimately improving the cornering limit of the vehicle. This research will also study environmental factor and the stability factor of the new suspension system. The double wishbone suspension system is widely used in four-wheel vehicle especially for high cornering performance sports car and racing car. The double wishbone designs allow the engineer to carefully control the motion of the wheel by controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff and more. The development of the new suspension system will focus on the ability of the new suspension system to optimize the camber control and to improve the camber limit during a cornering motion. The research will be carried out using the CAE analysis tool. Using this analysis tool we will develop a JSAE Formula Machine equipped with the double wishbone system and also the new suspension system and conduct simulation and conduct studies on performance of both suspension systems.

Keywords: automobile, camber thrust, cornering force, suspension

Procedia PDF Downloads 322