Search results for: aircraft load
133 Influence of Glass Plates Different Boundary Conditions on Human Impact Resistance
Authors: Alberto Sanchidrián, José A. Parra, Jesús Alonso, Julián Pecharromán, Antonia Pacios, Consuelo Huerta
Abstract:
Glass is a commonly used material in building; there is not a unique design solution as plates with a different number of layers and interlayers may be used. In most façades, a security glazing have to be used according to its performance in the impact pendulum. The European Standard EN 12600 establishes an impact test procedure for classification under the point of view of the human security, of flat plates with different thickness, using a pendulum of two tires and 50 kg mass that impacts against the plate from different heights. However, this test does not replicate the actual dimensions and border conditions used in building configurations and so the real stress distribution is not determined with this test. The influence of different boundary conditions, as the ones employed in construction sites, is not well taking into account when testing the behaviour of safety glazing and there is not a detailed procedure and criteria to determinate the glass resistance against human impact. To reproduce the actual boundary conditions on site, when needed, the pendulum test is arranged to be used "in situ", with no account for load control, stiffness, and without a standard procedure. Fracture stress of small and large glass plates fit a Weibull distribution with quite a big dispersion so conservative values are adopted for admissible fracture stress under static loads. In fact, test performed for human impact gives a fracture strength two or three times higher, and many times without a total fracture of the glass plate. Newest standards, as for example DIN 18008-4, states for an admissible fracture stress 2.5 times higher than the ones used for static and wing loads. Now two working areas are open: a) to define a standard for the ‘in situ’ test; b) to prepare a laboratory procedure that allows testing with more real stress distribution. To work on both research lines a laboratory that allows to test medium size specimens with different border conditions, has been developed. A special steel frame allows reproducing the stiffness of the glass support substructure, including a rigid condition used as reference. The dynamic behaviour of the glass plate and its support substructure have been characterized with finite elements models updated with modal tests results. In addition, a new portable impact machine is being used to get enough force and direction control during the impact test. Impact based on 100 J is used. To avoid problems with broken glass plates, the test have been done using an aluminium plate of 1000 mm x 700 mm size and 10 mm thickness supported on four sides; three different substructure stiffness conditions are used. A detailed control of the dynamic stiffness and the behaviour of the plate is done with modal tests. Repeatability of the test and reproducibility of results prove that procedure to control both, stiffness of the plate and the impact level, is necessary.Keywords: glass plates, human impact test, modal test, plate boundary conditions
Procedia PDF Downloads 308132 Outputs from the Implementation of 'PHILOS' Programme: Emergency Health Response to Refugee Crisis, Greece, 2017
Authors: K. Mellou, G. Anastopoulos, T. Zakinthinos, C. Botsi, A. Terzidis
Abstract:
‘PHILOS – Emergency health response to refugee crisis’ is a programme of the Greek Ministry of Health, implemented by the Hellenic Center for Disease Control and Prevention (HCDCP). The programme is funded by the Asylum, Migration and Integration Fund (AMIF) of EU’s DG Migration and Home Affairs. With the EU Member States accepting, the last period, accelerating migration flows, Greece inevitably occupies a prominent position in the migratory map due to this geographical location. The main objectives of the programme are a) reinforcement of the capacity of the public health system and enhancement of the epidemiological surveillance in order to cover refugees/migrant population, b) provision of on-site primary health care and psychological support services, and c) strengthening of national health care system task-force. The basic methods for achieving the aforementioned goals are: a) implementation of syndromic surveillance system at camps and enhancement of public health response with the use of mobile medical units (Sub-action A), b) enhancement of health care services inside the camps via increasing human resources and implementing standard operating procedures (Sub-action B), and c) reinforcement of the national health care system (primary healthcare units, hospitals, and emergency care spots) of affected regions with personnel (Sub-action C). As a result, 58 health professionals were recruited under sub-action 2 and 10 mobile unit teams (one or two at each health region) were formed. The main actions taken so far by the mobile units are the evaluation, of syndromic surveillance, of living conditions at camps and medical services. Also, vaccination coverage of children population was assessed, and more than 600 catch-up vaccinations were performed by the end of June 2017. Mobile units supported transportation of refugees/migrants from camps to medical services reducing the load of the National Center for Emergency Care (more than 350 transportations performed). The total number of health professionals (MD, nurses, etc.) placed at camps was 104. Common practices were implemented in the recording and collection of psychological and medical history forms at the camps. Protocols regarding maternity care, gender based violence and handling of violent incidents were produced and distributed at personnel working at camps. Finally, 290 health care professionals were placed at primary healthcare units, public hospitals and the National Center for Emergency Care at affected regions. The program has, also, supported training activities inside the camps and resulted to better coordination of offered services on site.Keywords: migrants, refugees, public health, syndromic surveillance, national health care system, primary care, emergency health response
Procedia PDF Downloads 208131 Immobilization of β-Galactosidase from Kluyveromyces Lactis on Polyethylenimine-Agarose for Production of Lactulose
Authors: Carlos A. C. G. Neto, Natan C. G. Silva, Thais O. Costa, Luciana R. B. Goncalves, Maria v. P. Rocha
Abstract:
Galactosidases are enzymes responsible for catalyzing lactose hydrolysis reactions and also favoring transgalactosylation reactions for the production of prebiotics, among which lactulose stands out. These enzymes, when immobilized, can have some enzymatic characteristics substantially improved, and the coating of supports with multifunctional polymers in immobilization processes is a promising alternative in order to extend the useful life of the biocatalysts, for example, the coating with polyethyleneimine (PEI). PEI is a flexible polymer that suits the structure of the enzyme, giving greater stability, especially for multimeric enzymes such as β-galactosidases and also protects it from environmental variations, for example, pH and temperature. In addition, it can substantially improve the immobilization parameters and also the efficiency of enzymatic reactions. In this context, the aim of the present work was first to develop biocatalysts of β-galactosidase from Kluyveromyces lactis immobilized on PEI coated agarose, determining the immobilization parameters, its operational and thermal stability, and then to apply it in the hydrolysis of lactose and synthesis of lactulose, using whey as a substrate. This immobilization strategy was chosen in order to improve the catalytic efficiency of the enzyme in the transgalactosylation reaction for the production of prebiotics, and there are few studies with β-galactosidase from this strain. The immobilization of β-galactosidase in agarose previously functionalized with 48% (w/v) glycidol and then coated with 10% (w/v) PEI solution was evaluated using an enzymatic load of 10 mg/g of protein. Subsequently, the hydrolysis and transgalactosylation reactions were conducted at 50 °C, 120 RPM for 20 minutes, using whey (66.7 g/L of lactose) supplemented with 133.3 g/L fructose at a ratio of 1:2 (lactose/fructose). Operational stability studies were performed in the same conditions for 10 cycles. Thermal stabilities of biocatalysts were conducted at 50 ºC in 50 mM phosphate buffer, pH 6.6, with 0.1 mM MnCl2. The biocatalysts whose supports were coated were named AGA_GLY_PEI_GAL, and those that were not coated were named AGA_GLY_GAL. The coating of the support with PEI considerably improved immobilization yield (2.6-fold), the biocatalyst activity (1.4-fold), and efficiency (2.2-fold). The biocatalyst AGA_GLY_PEI_GAL was better than AGA_GLY_GAL in hydrolysis and transgalactosylation reactions, converting 88.92% of lactose at 5 min of reaction and obtaining a residual concentration of 5.24 g/L. Besides that, it was produced 13.90 g/L lactulose in the same time interval. AGA_GLY_PEI_GAL biocatalyst was stable during the 10 cycles evaluated, converting approximately 80% of lactose and producing 10.95 g/L of lactulose even after the tenth cycle. However, the thermal stability of AGA_GLY_GAL biocatalyst was superior, with a half-life time 5 times higher, probably because the enzyme was immobilized by covalent bonding, which is stronger than adsorption (AGA_GLY_PEI_GAL). Therefore, the strategy of coating the supports with PEI has proven to be effective for the immobilization of β-galactosidase from K. lactis, considerably improving the immobilization parameters, as well as the enzyme, catalyzed reactions. In addition, the use of whey as a raw material for lactulose production has proved to be an industrially advantageous alternative.Keywords: β-galactosidase, immobilization, lactulose, polyethylenimine, whey
Procedia PDF Downloads 119130 Implementation of Ecological and Energy-Efficient Building Concepts
Authors: Robert Wimmer, Soeren Eikemeier, Michael Berger, Anita Preisler
Abstract:
A relatively large percentage of energy and resource consumption occurs in the building sector. This concerns the production of building materials, the construction of buildings and also the energy consumption during the use phase. Therefore, the overall objective of this EU LIFE project “LIFE Cycle Habitation” (LIFE13 ENV/AT/000741) is to demonstrate innovative building concepts that significantly reduce CO₂emissions, mitigate climate change and contain a minimum of grey energy over their entire life cycle. The project is being realised with the contribution of the LIFE financial instrument of the European Union. The ultimate goal is to design and build prototypes for carbon-neutral and “LIFE cycle”-oriented residential buildings and make energy-efficient settlements the standard of tomorrow in line with the EU 2020 objectives. To this end, a resource and energy-efficient building compound is being built in Böheimkirchen, Lower Austria, which includes 6 living units and a community area as well as 2 single family houses with a total usable floor surface of approximately 740 m². Different innovative straw bale construction types (load bearing and pre-fabricated non loadbearing modules) together with a highly innovative energy-supply system, which is based on the maximum use of thermal energy for thermal energy services, are going to be implemented. Therefore only renewable resources and alternative energies are used to generate thermal as well as electrical energy. This includes the use of solar energy for space heating, hot water and household appliances like dishwasher or washing machine, but also a cooking place for the community area operated with thermal oil as heat transfer medium on a higher temperature level. Solar collectors in combination with a biomass cogeneration unit and photovoltaic panels are used to provide thermal and electric energy for the living units according to the seasonal demand. The building concepts are optimised by support of dynamic simulations. A particular focus is on the production and use of modular prefabricated components and building parts made of regionally available, highly energy-efficient, CO₂-storing renewable materials like straw bales. The building components will be produced in collaboration by local SMEs that are organised in an efficient way. The whole building process and results are monitored and prepared for knowledge transfer and dissemination including a trial living in the residential units to test and monitor the energy supply system and to involve stakeholders into evaluation and dissemination of the applied technologies and building concepts. The realised building concepts should then be used as templates for a further modular extension of the settlement in a second phase.Keywords: energy-efficiency, green architecture, renewable resources, sustainable building
Procedia PDF Downloads 149129 Work-Family Conflict and Family and Job Resources among Women: The Role of Negotiation
Authors: Noa Nelson, Meitar Moshe, Dana Cohen
Abstract:
Work-family conflict (WFC) is a significant source of stress for contemporary employees, with research indicating its heightened severity for women. The conservation of resources theory argues that individuals experience stress when their resources fall short of demands, and attempt to reach balance by obtaining resources. Presumably then, to achieve work-family balance women would need to negotiate for resources such as spouse support, employer support and work flexibility. The current research tested the hypotheses that competent negotiation at home and at work associated with increased family and job resources and with decreased WFC, as well as with higher work, marital and life satisfaction. In the first study, 113 employed mothers, married or cohabiting, reported to what extent they conducted satisfactory negotiation with spouse over division of housework, and their actual housework load compared to spouse. They answered a WFC questionnaire, measuring how much work interferes with family (WIF) and how much family interferes with work (FIW), and finally, measurements of satisfaction. In the second study, 94 employed mothers, married or cohabiting reported to what extent they conducted satisfactory negotiation with their boss over balancing work demands with family needs. They reported the levels of three job resources: flexibility, control and family-friendly organizational culture. Finally, they answered the same WFC and satisfaction measurements from study 1. Statistical analyses –t-tests, correlations, and hierarchical linear regressions- showed that in both studies, women reported higher WIF than FIW. Negotiations associated with increased resources: support from spouse, work flexibility and control and a family-friendly culture; negotiation with spouse associated also with satisfaction measurements. However, negotiations or resources (except family-friendly culture) did not associate with reduced conflict. The studies demonstrate the role of negotiation in obtaining family and job resources. Causation cannot be determined, but the fact is that employed mothers who enjoyed more support (at both home and work), flexibility and control, were more likely to keep active interactions to increase them. This finding has theoretical and practical implications, especially in view of research on female avoidance of negotiation. It is intriguing that negotiations and resources generally did not associate with reduced WFC. This finding might reflect the severity of the conflict, especially of work interfering with family, which characterizes many contemporary jobs. It might also suggest that employed mothers have high expectations from themselves, and even under supportive circumstances, experience the challenge of balancing two significant and demanding roles. The research contributes to the fields of negotiation, gender, and work-life balance. It calls for further studies, to test its model in additional populations and validate the role employees have in actively negotiating for the balance that they need. It also calls for further research to understand the contributions of job and family resources to reducing work-family conflict, and the circumstances under which they contribute.Keywords: sork-family conflict, work-life balance, negotiation, gender, job resources, family resources
Procedia PDF Downloads 227128 The Photovoltaic Panel at End of Life: Experimental Study of Metals Release
Authors: M. Tammaro, S. Manzo, J. Rimauro, A. Salluzzo, S. Schiavo
Abstract:
The solar photovoltaic (PV) modules are considered to have a negligible environmental impact compared to the fossil energy. Therefore also the waste management and the corresponding potential environmental hazard needs to be considered. The case of the photovoltaic panel is unique because the time lag from the manufacturing to the decommissioning as waste usually takes 25-30 years. Then the environmental hazard associated with end life of PV panels has been largely related to their metal contents. The principal concern regards the presence of heavy metals as Cd in thin film (TF) modules or Pb and Cr in crystalline silicon (c-Si) panels. At the end of life of PV panels, these dangerous substances could be released in the environment, if special requirements for their disposal are not adopted. Nevertheless, in literature, only a few experimental study about metal emissions from silicon crystalline/thin film panels and the corresponding environmental effect are present. As part of a study funded by the Italian national consortium for the waste collection and recycling (COBAT), the present work was aimed to analyze experimentally the potential release into the environment of hazardous elements, particularly metals, from PV waste. In this paper, for the first time, eighteen releasable metals a large number of photovoltaic panels, by c-Si and TF, manufactured in the last 30 years, together with the environmental effects by a battery of ecotoxicological tests, were investigated. Leaching tests are conducted on the crushed samples of PV module. The test is conducted according to Italian and European Standard procedure for hazard assessment of the granular waste and of the sludge. The sample material is shaken for 24 hours in HDPE bottles with an overhead mixer Rotax 6.8 VELP at indoor temperature and using pure water (18 MΩ resistivity) as leaching solution. The liquid-to-solid ratio was 10 (L/S=10, i.e. 10 liters of water per kg of solid). The ecotoxicological tests were performed in the subsequent 24 hours. A battery of toxicity test with bacteria (Vibrio fisheri), algae (Pseudochirneriella subcapitata) and crustacea (Daphnia magna) was carried out on PV panel leachates obtained as previously described and immediately stored in dark and at 4°C until testing (in the next 24 hours). For understand the actual pollution load, a comparison with the current European and Italian benchmark limits was performed. The trend of leachable metal amount from panels in relation to manufacturing years was then highlighted in order to assess the environmental sustainability of PV technology over time. The experimental results were very heterogeneous and show that the photovoltaic panels could represent an environmental hazard. The experimental results showed that the amounts of some hazardous metals (Pb, Cr, Cd, Ni), for c-Si and TF, exceed the law limits and they are a clear indication of the potential environmental risk of photovoltaic panels "as a waste" without a proper management.Keywords: photovoltaic panel, environment, ecotoxicity, metals emission
Procedia PDF Downloads 260127 Effects of Sulphide Mining on AISI 304 Stainless Steel
Authors: Aguasanta Miguel Sarmiento, José Miguel Dávila, María Luisa de la Torre
Abstract:
Acid mine drainage (AMD) is an acidic leachate with high levels of metals and sulphates in solution, which seriously affects the durability and strength of metallic materials used in the construction of structural and mechanical components. This paper presents the results of the evolution over time of the reduction in tensile strength and defects in AISI 304 stainless steel in contact with acid mine drainage. For this purpose, a total of 30 bars with a diameter of 8 mm and a length of 14 cm were placed transversely in the course of a stream contaminated by AMD from the sulphide mines of the Iberian Pyritic Belt (SW Spain). This stream has average pH values of 2.6, a potential of 660 mV, and average concentrations of 12 g/L of sulphates, 1.2 g/L of Fe, 191 mg/L of Zn, etc. Every two months of exposure, 6 stainless steel bars were extracted from the acid stream. They were subjected to surface roughness analysis carried out with the help of Mitutoyo Surftest SJ-210 surface roughness tester. The analysis was carried out at three different points on 5 specimens from each series. The average reading of each parameter is calculated in order to ensure the accuracy of the measurements and the surface coverage. Arithmetic mean roughness value (Ra), mean roughness depth (Rz), and root mean square roughness (Rq) were measured. Five specimens from each series were statically tensile tested using universal equipment (Servosis ME 403 of 200kN). The specimens were clamped at their ends with two grips for cylindrical sections, and the tensile force was applied at a constant speed of 0.5 kN/s, according to the requirements of standard UNE-EN ISO 6892-1: 2020. To determine the modulus of elasticity, limits close to 15% and 55% of the maximum load were used, depending on the course of each test. Field Emission Scanning Electron Microscopy (FESEM) was used to observe corrosion products and defects generated by exposure to AMD. Energy dispersive X-ray spectrometry (EDS) was used to analyse the chemical composition of the corrosion products formed. For this purpose, small pieces were cut from the resulting specimens, cleaned, and embedded in epoxy resin. The results show that after only 5 months of exposure of AISI 304 stainless steel to the mining environment, the surface roughness increases significantly, with average depths almost 6 times greater than the initial one. Cracks are observed on the surface of the material, which increases in size with the time of exposure. A large number of grains with a composition of more than 57% Pb and 16% Sn can be observed inside these cracks. Tensile tests show a reduction in the resistance of this material after only two months of exposure. The results show the serious problems that would result from the use of this material for the use of mechanical components in a sulphide mining environment, not only because of the significant reduction in the lifetime of such components, but also because of the implications for human safety.Keywords: acid mine drainage, corrosion, mechanical properties, stainless steel
Procedia PDF Downloads 22126 Microbial Contamination of Cell Phones of Health Care Workers: Case Study in Mampong Municipal Government Hospital, Ghana
Authors: Francis Gyapong, Denis Yar
Abstract:
The use of cell phones has become an indispensable tool in the hospital's settings. Cell phones are used in hospitals without restrictions regardless of their unknown microbial load. However, the indiscriminate use of mobile devices, especially at health facilities, can act as a vehicle for transmitting pathogenic bacteria and other microorganisms. These potential pathogens become exogenous sources of infection for the patients and are also a potential health hazard for self and as well as family members. These are a growing problem in many health care institutions. Innovations in mobile communication have led to better patient care in diabetes, asthma, and increased in vaccine uptake via SMS. Notwithstanding, the use of cell phones can be a great potential source for nosocomial infections. Many studies reported heavy microbial contamination of cell phones among healthcare workers and communities. However, limited studies have been reported in our region on bacterial contamination on cell phones among healthcare workers. This study assessed microbial contamination of cell phones of health care workers (HCWs) at the Mampong Municipal Government Hospital (MMGH), Ghana. A cross-sectional design was used to characterize bacterial microflora on cell phones of HCWs at the MMGH. A total of thirty-five (35) swab samples of cell phones of HCWs at the Laboratory, Dental Unit, Children’s Ward, Theater and Male ward were randomly collected for laboratory examinations. A suspension of the swab samples was each streak on blood and MacConkey agar and incubated at 37℃ for 48 hours. Bacterial isolates were identified using appropriate laboratory and biochemical tests. Kirby-Bauer disc diffusion method was used to determine the antimicrobial sensitivity tests of the isolates. Data analysis was performed using SPSS version 16. All mobile phones sampled were contaminated with one or more bacterial isolates. Cell phones from the Male ward, Dental Unit, Laboratory, Theatre and Children’s ward had at least three different bacterial isolates; 85.7%, 71.4%, 57.1% and 28.6% for both Theater and Children’s ward respectively. Bacterial contaminants identified were Staphylococcus epidermidis (37%), Staphylococcus aureus (26%), E. coli (20%), Bacillus spp. (11%) and Klebsiella spp. (6 %). Except for the Children ward, E. coli was isolated at all study sites and predominant (42.9%) at the Dental Unit while Klebsiella spp. (28.6%) was only isolated at the Children’s ward. Antibiotic sensitivity testing of Staphylococcus aureus indicated that they were highly sensitive to cephalexin (89%) tetracycline (80%), gentamycin (75%), lincomycin (70%), ciprofloxacin (67%) and highly resistant to ampicillin (75%). Some of these bacteria isolated are potential pathogens and their presence on cell phones of HCWs could be transmitted to patients and their families. Hence strict hand washing before and after every contact with patient and phone be enforced to reduce the risk of nosocomial infections.Keywords: mobile phones, bacterial contamination, patients, MMGH
Procedia PDF Downloads 104125 Sustainability of the Built Environment of Ranchi District
Authors: Vaidehi Raipat
Abstract:
A city is an expression of coexistence between its users and built environment. The way in which its spaces are animated signify the quality of this coexistence. Urban sustainability is the ability of a city to respond efficiently towards its people, culture, environment, visual image, history, visions and identity. The quality of built environment determines the quality of our lifestyles, but poor ability of the built environment to adapt and sustain itself through the changes leads to degradation of cities. Ranchi was created in November 2000, as the capital of the newly formed state Jharkhand, located on eastern side of India. Before this Ranchi was known as summer capital of Bihar and was a little larger than a town in terms of development. But since then it has been vigorously expanding in size, infrastructure as well as population. This sudden expansion has created a stress on existing built environment. The large forest covers, agricultural land, diverse culture and pleasant climatic conditions have degraded and decreased to a large extent. Narrow roads and old buildings are unable to bear the load of the changing requirements, fast improving technology and growing population. The built environment has hence been rendered unsustainable and unadaptable through fastidious changes of present era. Some of the common hazards that can be easily spotted in the built environment are half-finished built forms, pedestrians and vehicles moving on the same part of the road. Unpaved areas on street edges. Over-sized, bright and randomly placed hoardings. Negligible trees or green spaces. The old buildings have been poorly maintained and the new ones are being constructed over them. Roads are too narrow to cater to the increasing traffic, both pedestrian and vehicular. The streets have a large variety of activities taking place on them, but haphazardly. Trees are being cut down for road widening and new constructions. There is no space for greenery in the commercial as well as old residential areas. The old infrastructure is deteriorating because of poor maintenance and the economic limitations. Pseudo understanding of functionality as well as aesthetics drive the new infrastructure. It is hence necessary to evaluate the extent of sustainability of existing built environment of the city and create or regenerate the existing built environment into a more sustainable and adaptable one. For this purpose, research titled “Sustainability of the Built Environment of Ranchi District” has been carried out. In this research the condition of the built environment of Ranchi are explored so as to figure out the problems and shortcomings existing in the city and provide for design strategies that can make the existing built-environment sustainable. The built environment of Ranchi that include its outdoor spaces like streets, parks, other open areas, its built forms as well as its users, has been analyzed in terms of various urban design parameters. Based on which strategies have been suggested to make the city environmentally, socially, culturally and economically sustainable.Keywords: adaptable, built-environment, sustainability, urban
Procedia PDF Downloads 237124 Antimicrobial Value of Olax subscorpioidea and Bridelia ferruginea on Micro-Organism Isolates of Dental Infection
Authors: I. C. Orabueze, A. A. Amudalat, S. A. Adesegun, A. A. Usman
Abstract:
Dental and associated oral diseases are increasingly affecting a considerable portion of the population and are considered some of the major causes of tooth loss, discomfort, mouth odor and loss of confidence. This study focused on the ethnobotanical survey of medicinal plants used in oral therapy and evaluation of the antimicrobial activities of methanolic extracts of two selected plants from the survey for their efficacy against dental microorganisms. The ethnobotanical survey was carried out in six herbal markets in Lagos State, Nigeria by oral interviewing and information obtained from an old family manually complied herbal medication book. Methanolic extracts of Olax subscorpioidea (stem bark) and Bridelia ferruginea (stem bark) were assayed for their antimicrobial activities against clinical oral isolates (Aspergillus fumigatus, Candida albicans, Streptococcus spp, Staphylococcus aureus, Lactobacillus acidophilus and Pseudomonas aeruginosa). In vitro microbial technique (agar well diffusion method and minimum inhibitory concentration (MIC) assay) were employed for the assay. Chlorhexidine gluconate was used as the reference drug for comparison with the extract results. And the preliminary phytochemical screening of the constituents of the plants were done. The ethnobotanical survey produced plants (28) of diverse family. Different parts of plants (seed, fruit, leaf, root, bark) were mentioned but 60% mentioned were either the stem or the bark. O. subscorpioidea showed considerable antifungal activity with zone of inhibition ranging from 2.650 – 2.000 cm against Aspergillus fumigatus but no such encouraging inhibitory activity was observed in the other assayed organisms. B. ferruginea showed antibacterial sensitivity against Streptococcus spp, Staphylococcus aureus, Lactobacillus acidophilus and Pseudomonas aeruginosa with zone of inhibitions ranging from 3.400 - 2.500, 2.250 - 1.600, 2.700 - 1.950, 2.225 – 1.525 cm respectively. The minimum inhibitory concentration of O. subscorpioidea against Aspergillus fumigatus was 51.2 mg ml-1 while that of B. ferruginea against Streptococcus spp was 0.1mg ml-1 and for Staphylococcus aureus, Lactobacillus acidophilus and Pseudomonas aeruginosa were 25.6 mg ml-1. A phytochemical analysis reveals the presence of alkaloids, saponins, cardiac glycoside, tannins, phenols and terpenoids in both plants, with steroids only in B. ferruginea. No toxicity was observed among mice given the two methanolic extracts (1000 mg Kg-1) after 21 days. The barks of both plants exhibited antimicrobial properties against periodontal diseases causing organisms assayed, thus up-holding their folkloric use in oral disorder management. Further research could be done viewing these extracts as combination therapy, checking for possible synergistic value in toothpaste and oral rinse formulations for reducing oral bacterial flora and fungi load.Keywords: antimicrobial activities, Bridelia ferruginea, dental disinfection, methanolic extract, Olax subscorpioidea, ethnobotanical survey
Procedia PDF Downloads 244123 Design of an Ultra High Frequency Rectifier for Wireless Power Systems by Using Finite-Difference Time-Domain
Authors: Felipe M. de Freitas, Ícaro V. Soares, Lucas L. L. Fortes, Sandro T. M. Gonçalves, Úrsula D. C. Resende
Abstract:
There is a dispersed energy in Radio Frequencies (RF) that can be reused to power electronics circuits such as: sensors, actuators, identification devices, among other systems, without wire connections or a battery supply requirement. In this context, there are different types of energy harvesting systems, including rectennas, coil systems, graphene and new materials. A secondary step of an energy harvesting system is the rectification of the collected signal which may be carried out, for example, by the combination of one or more Schottky diodes connected in series or shunt. In the case of a rectenna-based system, for instance, the diode used must be able to receive low power signals at ultra-high frequencies. Therefore, it is required low values of series resistance, junction capacitance and potential barrier voltage. Due to this low-power condition, voltage multiplier configurations are used such as voltage doublers or modified bridge converters. Lowpass filter (LPF) at the input, DC output filter, and a resistive load are also commonly used in the rectifier design. The electronic circuits projects are commonly analyzed through simulation in SPICE (Simulation Program with Integrated Circuit Emphasis) environment. Despite the remarkable potential of SPICE-based simulators for complex circuit modeling and analysis of quasi-static electromagnetic fields interaction, i.e., at low frequency, these simulators are limited and they cannot model properly applications of microwave hybrid circuits in which there are both, lumped elements as well as distributed elements. This work proposes, therefore, the electromagnetic modelling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-high frequencies, with application in rectifiers coupled to antennas, as in energy harvesting systems, that is, in rectennas. For this purpose, the numerical method FDTD (Finite-Difference Time-Domain) is applied and SPICE computational tools are used for comparison. In the present work, initially the Ampere-Maxwell equation is applied to the equations of current density and electric field within the FDTD method and its circuital relation with the voltage drop in the modeled component for the case of lumped parameter using the FDTD (Lumped-Element Finite-Difference Time-Domain) proposed in for the passive components and the one proposed in for the diode. Next, a rectifier is built with the essential requirements for operating rectenna energy harvesting systems and the FDTD results are compared with experimental measurements.Keywords: energy harvesting system, LE-FDTD, rectenna, rectifier, wireless power systems
Procedia PDF Downloads 134122 Designing Sustainable and Energy-Efficient Urban Network: A Passive Architectural Approach with Solar Integration and Urban Building Energy Modeling (UBEM) Tools
Authors: A. Maghoul, A. Rostampouryasouri, MR. Maghami
Abstract:
The development of an urban design and power network planning has been gaining momentum in recent years. The integration of renewable energy with urban design has been widely regarded as an increasingly important solution leading to climate change and energy security. Through the use of passive strategies and solar integration with Urban Building Energy Modeling (UBEM) tools, architects and designers can create high-quality designs that meet the needs of clients and stakeholders. To determine the most effective ways of combining renewable energy with urban development, we analyze the relationship between urban form and renewable energy production. The procedure involved in this practice include passive solar gain (in building design and urban design), solar integration, location strategy, and 3D models with a case study conducted in Tehran, Iran. The study emphasizes the importance of spatial and temporal considerations in the development of sector coupling strategies for solar power establishment in arid and semi-arid regions. The substation considered in the research consists of two parallel transformers, 13 lines, and 38 connection points. Each urban load connection point is equipped with 500 kW of solar PV capacity and 1 kWh of battery Energy Storage (BES) to store excess power generated from solar, injecting it into the urban network during peak periods. The simulations and analyses have occurred in EnergyPlus software. Passive solar gain involves maximizing the amount of sunlight that enters a building to reduce the need for artificial lighting and heating. Solar integration involves integrating solar photovoltaic (PV) power into smart grids to reduce emissions and increase energy efficiency. Location strategy is crucial to maximize the utilization of solar PV in an urban distribution feeder. Additionally, 3D models are made in Revit, and they are keys component of decision-making in areas including climate change mitigation, urban planning, and infrastructure. we applied these strategies in this research, and the results show that it is possible to create sustainable and energy-efficient urban environments. Furthermore, demand response programs can be used in conjunction with solar integration to optimize energy usage and reduce the strain on the power grid. This study highlights the influence of ancient Persian architecture on Iran's urban planning system, as well as the potential for reducing pollutants in building construction. Additionally, the paper explores the advances in eco-city planning and development and the emerging practices and strategies for integrating sustainability goals.Keywords: energy-efficient urban planning, sustainable architecture, solar energy, sustainable urban design
Procedia PDF Downloads 77121 Augmenting Navigational Aids: The Development of an Assistive Maritime Navigation Application
Abstract:
On the bridge of a ship the officers are looking for visual aids to guide navigation in order to reconcile the outside world with the position communicated by the digital navigation system. Aids to navigation include: Lighthouses, lightships, sector lights, beacons, buoys, and others. They are designed to help navigators calculate their position, establish their course or avoid dangers. In poor visibility and dense traffic areas, it can be very difficult to identify these critical aids to guide navigation. The paper presents the usage of Augmented Reality (AR) as a means to present digital information about these aids to support navigation. To date, nautical navigation related mobile AR applications have been limited to the leisure industry. If proved viable, this prototype can facilitate the creation of other similar applications that could help commercial officers with navigation. While adopting a user centered design approach, the team has developed the prototype based on insights from initial research carried on board of several ships. The prototype, built on Nexus 9 tablet and Wikitude, features a head-up display of the navigational aids (lights) in the area, presented in AR and a bird’s eye view mode presented on a simplified map. The application employs the aids to navigation data managed by Hydrographic Offices and the tablet’s sensors: GPS, gyroscope, accelerometer, compass and camera. Sea trials on board of a Navy and a commercial ship revealed the end-users’ interest in using the application and further possibility of other data to be presented in AR. The application calculates the GPS position of the ship, the bearing and distance to the navigational aids; all within a high level of accuracy. However, during testing several issues were highlighted which need to be resolved as the prototype is developed further. The prototype stretched the capabilities of Wikitude, loading over 500 objects during tests in a major port. This overloaded the display and required over 45 seconds to load the data. Therefore, extra filters for the navigational aids are being considered in order to declutter the screen. At night, the camera is not powerful enough to distinguish all the lights in the area. Also, magnetic interference with the bridge of the ship generated a continuous compass error of the AR display that varied between 5 and 12 degrees. The deviation of the compass was consistent over the whole testing durations so the team is now looking at the possibility of allowing users to manually calibrate the compass. It is expected that for the usage of AR in professional maritime contexts, further development of existing AR tools and hardware is needed. Designers will also need to implement a user-centered design approach in order to create better interfaces and display technologies for enhanced solutions to aid navigation.Keywords: compass error, GPS, maritime navigation, mobile augmented reality
Procedia PDF Downloads 330120 Growth and Differentiation of Mesenchymal Stem Cells on Titanium Alloy Ti6Al4V and Novel Beta Titanium Alloy Ti36Nb6Ta
Authors: Eva Filová, Jana Daňková, Věra Sovková, Matej Daniel
Abstract:
Titanium alloys are biocompatible metals that are widely used in clinical practice as load bearing implants. The chemical modification may influence cell adhesion, proliferation, and differentiation as well as stiffness of the material. The aim of the study was to evaluate the adhesion, growth and differentiation of pig mesenchymal stem cells on the novel beta titanium alloy Ti36Nb6Ta compared to standard medical titanium alloy Ti6Al4V. Discs of Ti36Nb6Ta and Ti6Al4V alloy were sterilized by ethanol, put in 48-well plates, and seeded by pig mesenchymal stem cells at the density of 60×103/cm2 and cultured in Minimum essential medium (Sigma) supplemented with 10% fetal bovine serum and penicillin/streptomycin. Cell viability was evaluated using MTS assay (CellTiter 96® AQueous One Solution Cell Proliferation Assay;Promega), cell proliferation using Quant-iT™ ds DNA Assay Kit (Life Technologies). Cells were stained immunohistochemically using monoclonal antibody beta-actin, and secondary antibody conjugated with AlexaFluor®488 and subsequently the spread area of cells was measured. Cell differentiation was evaluated by alkaline phosphatase assay using p-nitrophenyl phosphate (pNPP) as a substrate; the reaction was stopped by NaOH, and the absorbance was measured at 405 nm. Osteocalcin, specific bone marker was stained immunohistochemically and subsequently visualized using confocal microscopy; the fluorescence intensity was analyzed and quantified. Moreover, gene expression of osteogenic markers osteocalcin and type I collagen was evaluated by real-time reverse transcription-PCR (qRT-PCR). For statistical evaluation, One-way ANOVA followed by Student-Newman-Keuls Method was used. For qRT-PCR, the nonparametric Kruskal-Wallis Test and Dunn's Multiple Comparison Test were used. The absorbance in MTS assay was significantly higher on titanium alloy Ti6Al4V compared to beta titanium alloy Ti36Nb6Ta on days 7 and 14. Mesenchymal stem cells were well spread on both alloys, but no difference in spread area was found. No differences in alkaline phosphatase assay, fluorescence intensity of osteocalcin as well as the expression of type I collagen, and osteocalcin genes were observed. Higher expression of type I collagen compared to osteocalcin was observed for cells on both alloys. Both beta titanium alloy Ti36Nb6Ta and titanium alloy Ti6Al4V Ti36Nb6Ta supported mesenchymal stem cellsˈ adhesion, proliferation and osteogenic differentiation. Novel beta titanium alloys Ti36Nb6Ta is a promising material for bone implantation. The project was supported by the Czech Science Foundation: grant No. 16-14758S, the Grant Agency of the Charles University, grant No. 1246314 and by the Ministry of Education, Youth and Sports NPU I: LO1309.Keywords: beta titanium, cell growth, mesenchymal stem cells, titanium alloy, implant
Procedia PDF Downloads 318119 Stainless Steel Degradation by Sulphide Mining
Authors: Aguasanta M. Sarmiento, Jose Miguel Davila, Juan Carlos Fortes, Maria Luisa de la Torre
Abstract:
Acid mine drainage (AMD) is an acidic leachate with high levels of metals and sulphates in solution, which seriously affects the durability and strength of metallic materials used in the construction of structural and mechanical components. This paper presents the results of the evolution over time of the reduction in tensile strength and defects in AISI 304 stainless steel in contact with acid mine drainage. For this purpose, a total of 30 bars with a diameter of 8 mm and a length of 14 cm were placed transversely in the course of a stream contaminated by AMD from the sulphide mines of the Iberian Pyritic Belt (SW Spain). This stream has average pH values of 2.6, a potential of 660 mV and average concentrations of 12 g/L of sulphates, 1.2 g/L of Fe, 191 mg/L of Zn, etc. Every two months of exposure, 6 stainless steel bars were extracted from the acid stream. They were subjected to surface roughness analysis carried out with the help of Mitutoyo Surftest SJ-210 surface roughness tester. The analysis was carried out at three different points on 5 specimens from each series. The average reading of each parameter is calculated in order to ensure the accuracy of the measurements and the surface coverage. Arithmetic mean roughness value (Ra), mean roughness depth (Rz) and root mean square roughness (Rq) were measured. Five specimens from each series were statically tensile tested using universal equipment (Servosis ME 403 of 200kN). The specimens were clamped at their ends with two grips for cylindrical sections, and the tensile force was applied at a constant speed of 0.5 kN/s, according to the requirements of standard UNE-EN ISO 6892-1: 2020. To determine the modulus of elasticity, limits close to 15% and 55% of the maximum load were used, depending on the course of each test. Field Emission Scanning Electron Microscopy (FESEM) was used to observe corrosion products and defects generated by exposure to AMD. Energy dispersive X-ray spectrometry (EDS) was used to analyze the chemical composition of the corrosion products formed. For this purpose, small pieces were cut from the resulting specimens, cleaned and embedded in epoxy resin. The results show that after only 5 months of exposure of AISI 304 stainless steel to the mining environment, the surface roughness increases significantly, with average depths almost 6 times greater than the initial one. Cracks are observed on the surface of the material, which increases in size with the time of exposure. A large number of grains with a composition of more than 57% Pb and 16% Sn can be observed inside these cracks. Tensile tests show a reduction in the resistance of this material after only two months of exposure. The results show the serious problems that would result from the use of this material for the use of mechanical components in a sulphide mining environment, not only because of the significant reduction in the lifetime of such components but also because of the implications for human safety.Keywords: Acid mine drainage, Corrosion, Mechanical properties, Stainless steel
Procedia PDF Downloads 11118 Direct Current Electric Field Stimulation against PC12 Cells in 3D Bio-Reactor to Enhance Axonal Extension
Authors: E. Nakamachi, S. Tanaka, K. Yamamoto, Y. Morita
Abstract:
In this study, we developed a three-dimensional (3D) direct current electric field (DCEF) stimulation bio-reactor for axonal outgrowth enhancement to generate the neural network of the central nervous system (CNS). By using our newly developed 3D DCEF stimulation bio-reactor, we cultured the rat pheochromocytoma cells (PC12) and investigated the effects on the axonal extension enhancement and network generation. Firstly, we designed and fabricated a 3D bio-reactor, which can load DCEF stimulation on PC12 cells embedded in the collagen gel as extracellular environment. The connection between the electrolyte and the medium using salt bridges for DCEF stimulation was introduced to avoid the cell death by the toxicity of metal ion. The distance between the salt bridges was adopted as the design variable to optimize a structure for uniform DCEF stimulation, where the finite element (FE) analyses results were used. Uniform DCEF strength and electric flux vector direction in the PC12 cells embedded in collagen gel were examined through measurements of the fabricated 3D bio-reactor chamber. Measurement results of DCEF strength in the bio-reactor showed a good agreement with FE results. In addition, the perfusion system was attached to maintain pH 7.2 ~ 7.6 of the medium because pH change was caused by DCEF stimulation loading. Secondly, we disseminated PC12 cells in collagen gel and carried out 3D culture. Finally, we measured the morphology of PC12 cell bodies and neurites by the multiphoton excitation fluorescence microscope (MPM). The effectiveness of DCEF stimulation to enhance the axonal outgrowth and the neural network generation was investigated. We confirmed that both an increase of mean axonal length and axogenesis rate of PC12, which have been exposed 5 mV/mm for 6 hours a day for 4 days in the bioreactor. We found following conclusions in our study. 1) Design and fabrication of DCEF stimulation bio-reactor capable of 3D culture nerve cell were completed. A uniform electric field strength of average value of 17 mV/mm within the 1.2% error range was confirmed by using FE analyses, after the structure determination through the optimization process. In addition, we attached a perfusion system capable of suppressing the pH change of the culture solution due to DCEF stimulation loading. 2) Evaluation of DCEF stimulation effects on PC12 cell activity was executed. The 3D culture of PC 12 was carried out adopting the embedding culture method using collagen gel as a scaffold for four days under the condition of 5.0 mV/mm and 10mV/mm. There was a significant effect on the enhancement of axonal extension, as 11.3% increase in an average length, and the increase of axogenesis rate. On the other hand, no effects on the orientation of axon against the DCEF flux direction was observed. Further, the network generation was enhanced to connect longer distance between the target neighbor cells by DCEF stimulation.Keywords: PC12, DCEF stimulation, 3D bio-reactor, axonal extension, neural network generation
Procedia PDF Downloads 185117 Analysing the Stability of Electrical Grid for Increased Renewable Energy Penetration by Focussing on LI-Ion Battery Storage Technology
Authors: Hemendra Singh Rathod
Abstract:
Frequency is, among other factors, one of the governing parameters for maintaining electrical grid stability. The quality of an electrical transmission and supply system is mainly described by the stability of the grid frequency. Over the past few decades, energy generation by intermittent sustainable sources like wind and solar has seen a significant increase globally. Consequently, controlling the associated deviations in grid frequency within safe limits has been gaining momentum so that the balance between demand and supply can be maintained. Lithium-ion battery energy storage system (Li-Ion BESS) has been a promising technology to tackle the challenges associated with grid instability. BESS is, therefore, an effective response to the ongoing debate whether it is feasible to have an electrical grid constantly functioning on a hundred percent renewable power in the near future. In recent years, large-scale manufacturing and capital investment into battery production processes have made the Li-ion battery systems cost-effective and increasingly efficient. The Li-ion systems require very low maintenance and are also independent of geographical constraints while being easily scalable. The paper highlights the use of stationary and moving BESS for balancing electrical energy, thereby maintaining grid frequency at a rapid rate. Moving BESS technology, as implemented in the selected railway network in Germany, is here considered as an exemplary concept for demonstrating the same functionality in the electrical grid system. Further, using certain applications of Li-ion batteries, such as self-consumption of wind and solar parks or their ancillary services, wind and solar energy storage during low demand, black start, island operation, residential home storage, etc. offers a solution to effectively integrate the renewables and support Europe’s future smart grid. EMT software tool DIgSILENT PowerFactory has been utilised to model an electrical transmission system with 100% renewable energy penetration. The stability of such a transmission system has been evaluated together with BESS within a defined frequency band. The transmission system operators (TSO) have the superordinate responsibility for system stability and must also coordinate with the other European transmission system operators. Frequency control is implemented by TSO by maintaining a balance between electricity generation and consumption. Li-ion battery systems are here seen as flexible, controllable loads and flexible, controllable generation for balancing energy pools. Thus using Li-ion battery storage solution, frequency-dependent load shedding, i.e., automatic gradual disconnection of loads from the grid, and frequency-dependent electricity generation, i.e., automatic gradual connection of BESS to the grid, is used as a perfect security measure to maintain grid stability in any case scenario. The paper emphasizes the use of stationary and moving Li-ion battery storage for meeting the demands of maintaining grid frequency and stability for near future operations.Keywords: frequency control, grid stability, li-ion battery storage, smart grid
Procedia PDF Downloads 152116 Improving the Biomechanical Resistance of a Treated Tooth via Composite Restorations Using Optimised Cavity Geometries
Authors: Behzad Babaei, B. Gangadhara Prusty
Abstract:
The objective of this study is to assess the hypotheses that a restored tooth with a class II occlusal-distal (OD) cavity can be strengthened by designing an optimized cavity geometry, as well as selecting the composite restoration with optimized elastic moduli when there is a sharp de-bonded edge at the interface of the tooth and restoration. Methods: A scanned human maxillary molar tooth was segmented into dentine and enamel parts. The dentine and enamel profiles were extracted and imported into a finite element (FE) software. The enamel rod orientations were estimated virtually. Fifteen models for the restored tooth with different cavity occlusal depths (1.5, 2, and 2.5 mm) and internal cavity angles were generated. By using a semi-circular stone part, a 400 N load was applied to two contact points of the restored tooth model. The junctions between the enamel, dentine, and restoration were considered perfectly bonded. All parts in the model were considered homogeneous, isotropic, and elastic. The quadrilateral and triangular elements were employed in the models. A mesh convergence analysis was conducted to verify that the element numbers did not influence the simulation results. According to the criteria of a 5% error in the stress, we found that a total element number of over 14,000 elements resulted in the convergence of the stress. A Python script was employed to automatically assign 2-22 GPa moduli (with increments of 4 GPa) for the composite restorations, 18.6 GPa to the dentine, and two different elastic moduli to the enamel (72 GPa in the enamel rods’ direction and 63 GPa in perpendicular one). The linear, homogeneous, and elastic material models were considered for the dentine, enamel, and composite restorations. 108 FEA simulations were successively conducted. Results: The internal cavity angles (α) significantly altered the peak maximum principal stress at the interface of the enamel and restoration. The strongest structures against the contact loads were observed in the models with α = 100° and 105. Even when the enamel rods’ directional mechanical properties were disregarded, interestingly, the models with α = 100° and 105° exhibited the highest resistance against the mechanical loads. Regarding the effect of occlusal cavity depth, the models with 1.5 mm depth showed higher resistance to contact loads than the model with thicker cavities (2.0 and 2.5 mm). Moreover, the composite moduli in the range of 10-18 GPa alleviated the stress levels in the enamel. Significance: For the class II OD cavity models in this study, the optimal geometries, composite properties, and occlusal cavity depths were determined. Designing the cavities with α ≥100 ̊ was significantly effective in minimizing peak stress levels. The composite restoration with optimized properties reduced the stress concentrations on critical points of the models. Additionally, when more enamel was preserved, the sturdier enamel-restoration interface against the mechanical loads was observed.Keywords: dental composite restoration, cavity geometry, finite element approach, maximum principal stress
Procedia PDF Downloads 102115 University Building: Discussion about the Effect of Numerical Modelling Assumptions for Occupant Behavior
Authors: Fabrizio Ascione, Martina Borrelli, Rosa Francesca De Masi, Silvia Ruggiero, Giuseppe Peter Vanoli
Abstract:
The refurbishment of public buildings is one of the key factors of energy efficiency policy of European States. Educational buildings account for the largest share of the oldest edifice with interesting potentialities for demonstrating best practice with regards to high performance and low and zero-carbon design and for becoming exemplar cases within the community. In this context, this paper discusses the critical issue of dealing the energy refurbishment of a university building in heating dominated climate of South Italy. More in detail, the importance of using validated models will be examined exhaustively by proposing an analysis on uncertainties due to modelling assumptions mainly referring to the adoption of stochastic schedules for occupant behavior and equipment or lighting usage. Indeed, today, the great part of commercial tools provides to designers a library of possible schedules with which thermal zones can be described. Very often, the users do not pay close attention to diversify thermal zones and to modify or to adapt predefined profiles, and results of designing are affected positively or negatively without any alarm about it. Data such as occupancy schedules, internal loads and the interaction between people and windows or plant systems, represent some of the largest variables during the energy modelling and to understand calibration results. This is mainly due to the adoption of discrete standardized and conventional schedules with important consequences on the prevision of the energy consumptions. The problem is surely difficult to examine and to solve. In this paper, a sensitivity analysis is presented, to understand what is the order of magnitude of error that is committed by varying the deterministic schedules used for occupation, internal load, and lighting system. This could be a typical uncertainty for a case study as the presented one where there is not a regulation system for the HVAC system thus the occupant cannot interact with it. More in detail, starting from adopted schedules, created according to questioner’ s responses and that has allowed a good calibration of energy simulation model, several different scenarios are tested. Two type of analysis are presented: the reference building is compared with these scenarios in term of percentage difference on the projected total electric energy need and natural gas request. Then the different entries of consumption are analyzed and for more interesting cases also the comparison between calibration indexes. Moreover, for the optimal refurbishment solution, the same simulations are done. The variation on the provision of energy saving and global cost reduction is evidenced. This parametric study wants to underline the effect on performance indexes evaluation of the modelling assumptions during the description of thermal zones.Keywords: energy simulation, modelling calibration, occupant behavior, university building
Procedia PDF Downloads 141114 Numerical Investigation of Combustion Chamber Geometry on Combustion Performance and Pollutant Emissions in an Ammonia-Diesel Common Rail Dual-Fuel Engine
Authors: Youcef Sehili, Khaled Loubar, Lyes Tarabet, Mahfoudh Cerdoun, Clement Lacroix
Abstract:
As emissions regulations grow more stringent and traditional fuel sources become increasingly scarce, incorporating carbon-free fuels in the transportation sector emerges as a key strategy for mitigating the impact of greenhouse gas emissions. While the utilization of hydrogen (H2) presents significant technological challenges, as evident in the engine limitation known as knocking, ammonia (NH3) provides a viable alternative that overcomes this obstacle and offers convenient transportation, storage, and distribution. Moreover, the implementation of a dual-fuel engine using ammonia as the primary gas is promising, delivering both ecological and economic benefits. However, when employing this combustion mode, the substitution of ammonia at high rates adversely affects combustion performance and leads to elevated emissions of unburnt NH3, especially under high loads, which requires special treatment of this mode of combustion. This study aims to simulate combustion in a common rail direct injection (CRDI) dual-fuel engine, considering the fundamental geometry of the combustion chamber as well as fifteen (15) alternative proposed geometries to determine the configuration that exhibits superior engine performance during high-load conditions. The research presented here focuses on improving the understanding of the equations and mechanisms involved in the combustion of finely atomized jets of liquid fuel and on mastering the CONVERGETM code, which facilitates the simulation of this combustion process. By analyzing the effect of piston bowl shape on the performance and emissions of a diesel engine operating in dual fuel mode, this work combines knowledge of combustion phenomena with proficiency in the calculation code. To select the optimal geometry, an evaluation of the Swirl, Tumble, and Squish flow patterns was conducted for the fifteen (15) studied geometries. Variations in-cylinder pressure, heat release rate, turbulence kinetic energy, turbulence dissipation rate, and emission rates were observed, while thermal efficiency and specific fuel consumption were estimated as functions of crankshaft angle. To maximize thermal efficiency, a synergistic approach involving the enrichment of intake air with oxygen (O2) and the enrichment of primary fuel with hydrogen (H2) was implemented. Based on the results obtained, it is worth noting that the proposed geometry (T8_b8_d0.6/SW_8.0) outperformed the others in terms of flow quality, reduction of pollutants emitted with a reduction of more than 90% in unburnt NH3, and an impressive improvement in engine efficiency of more than 11%.Keywords: ammonia, hydrogen, combustion, dual-fuel engine, emissions
Procedia PDF Downloads 75113 Comparative Assessment of Heavy Metals Influence on Growth of Silver Catfish (Chrysichthys nigrodigitatus) and Tilapia Fish (Oreochromis niloticus) Collected from Brackish and Freshwater, South-West, Nigeria
Authors: Atilola O. Abidemi-Iromini, Oluayo A. Bello-Olusoji, Immanuel A. Adebayo
Abstract:
Ecological studies were carried out in Asejire Reservoir (AR) and Lagos Lagoon (LL), Southwest Nigeria from January 2012 to December 2013 to determine the health status of Chrysichthys nigrodigitatus (CN) and Oreochromis niloticus (ON). The fish species samples were collected every month, these were separated into sexes, and growth pattern {length, (cm); weight (g), Isometric index, condition factor} were measured. Heavy metals (lead (Pb), iron (Fe), zinc (Zn), copper (Cu), and chromium (Cr) in ppm concentrations were also determined while bacteria occurrence(s), (load and prevalence) on fish skins, gills and intestine in the two ecological zones were determined. The fish ratio collected is in range with normal aquatic (1: 1+) male: female ratio. Growth assessment determined revealed no significant difference in length and weight in O. niloticus between locations, but a significant difference in weight occurred in C. nigrodigitatus between locations, with a higher weight (196.06 ±0.16 g) from Lagos Lagoon. Highest condition factor (5.25) was recorded in Asejire Reservoir O. niloticus, (ARON); and lowest condition factor (1.64) was observed in Asejire Reservoir C. nigrodigitatus (ARCN); as this indicated a negative allometric value which is normal in Bagridae species because it increases more in Length to weight gain than for the Cichlidae growth status. Normal growth rate (K > 1) occurred between sexes, with the male species having higher K - factors than female species within locations, between locations, between species, and within species, except for female C. nigrodigitatus having higher condition factor (K = 1.75) than male C. nigrodigitatus (K = 1.54) in Asejire Reservoir. The highest isometric value (3.05) was recorded in Asejire Reservoir O. niloticus and lowest in Lagos Lagoon C. nigrodigitatus. Male O. niloticus from Asejire Reservoir had highest isometric value, and O. niloticus species had higher condition factor which ranged between isometric (b ≤ 3) and positive allometric (b > 3), hence, denoted robustness of fish to grow more in weight than in length; while C. nigrodigitatus fish has negative allometric (b < 3) indicating fish add more length than in weight on growth. The status of condition factors and isometric values obtained is species-specific, and environmental influence, food availability or reproduction factor may as well be contributing factors. The concentrations of heavy metals in fish flesh revealed that Zn (6.52 ±0.82) had the highest, while Cr (0.01±0.00) was ranked lowest; for O. niloticus in Asejire Reservoir. In Lagos Lagoon, heavy metals concentration level revealed that O. niloticus flesh had highest in Zn (4.71±0.25) and lowest in Pb (0.01±0.00). Lagos Lagoon C. nigrodigitatus heavy metal concentration level revealed Zn (9.56±0.96) had highest, while Cr (0.06±0.01) had lowest; and Asejire Reservoir C. nigrodigitatus heavy metal level revealed that Zn (8.26 ±0.74) had highest, and Cr (0.08±0.00) had lowest. In all, Zinc (Zn) was top-ranked in level among species.Keywords: Oreochromis niloticus, growth status, Chrysichthys nigrodigitatus, environments, heavy metals
Procedia PDF Downloads 116112 Belarus Rivers Runoff: Current State, Prospects
Authors: Aliaksandr Volchak, Мaryna Barushka
Abstract:
The territory of Belarus is studied quite well in terms of hydrology but runoff fluctuations over time require more detailed research in order to forecast changes in rivers runoff in future. Generally, river runoff is shaped by natural climatic factors, but man-induced impact has become so big lately that it can be compared to natural processes in forming runoffs. In Belarus, a heavy man load on the environment was caused by large-scale land reclamation in the 1960s. Lands of southern Belarus were reclaimed most, which contributed to changes in runoff. Besides, global warming influences runoff. Today we observe increase in air temperature, decrease in precipitation, changes in wind velocity and direction. These result from cyclic climate fluctuations and, to some extent, the growth of concentration of greenhouse gases in the air. Climate change affects Belarus’s water resources in different ways: in hydropower industry, other water-consuming industries, water transportation, agriculture, risks of floods. In this research we have done an assessment of river runoff according to the scenarios of climate change and global climate forecast presented in the 4th and 5th Assessment Reports conducted by Intergovernmental Panel on Climate Change (IPCC) and later specified and adjusted by experts from Vilnius Gediminas Technical University with the use of a regional climatic model. In order to forecast changes in climate and runoff, we analyzed their changes from 1962 up to now. This period is divided into two: from 1986 up to now in comparison with the changes observed from 1961 to 1985. Such a division is a common world-wide practice. The assessment has revealed that, on the average, changes in runoff are insignificant all over the country, even with its irrelevant increase by 0.5 – 4.0% in the catchments of the Western Dvina River and north-eastern part of the Dnieper River. However, changes in runoff have become more irregular both in terms of the catchment area and inter-annual distribution over seasons and river lengths. Rivers in southern Belarus (the Pripyat, the Western Bug, the Dnieper, the Neman) experience reduction of runoff all year round, except for winter, when their runoff increases. The Western Bug catchment is an exception because its runoff reduces all year round. Significant changes are observed in spring. Runoff of spring floods reduces but the flood comes much earlier. There are different trends in runoff changes in spring, summer, and autumn. Particularly in summer, we observe runoff reduction in the south and west of Belarus, with its growth in the north and north-east. Our forecast of runoff up to 2035 confirms the trend revealed in 1961 – 2015. According to it, in the future, there will be a strong difference between northern and southern Belarus, between small and big rivers. Although we predict irrelevant changes in runoff, it is quite possible that they will be uneven in terms of seasons or particular months. Especially, runoff can change in summer, but decrease in the rest seasons in the south of Belarus, whereas in the northern part the runoff is predicted to change insignificantly.Keywords: assessment, climate fluctuation, forecast, river runoff
Procedia PDF Downloads 121111 Standardization of the Roots of Gnidia stenophylla Gilg: A Potential Medicinal Plant of South Eastern Ethiopia Traditionally Used as an Antimalarial
Authors: Mebruka Mohammed, Daniel Bisrat, Asfaw Debella, Tarekegn Birhanu
Abstract:
Lack of quality control standards for medicinal plants and their preparations is considered major barrier to their integration in to effective primary health care in Ethiopia. Poor quality herbal preparations led to countless adverse reactions extending to death. Denial of penetration for the Ethiopian medicinal plants in to the world’s booming herbal market is also another significant loss resulting from absence of herbal quality control system. Thus, in the present study, Gnidia stenophylla Gilg (popular antimalarial plant of south eastern Ethiopia), is standardized and a full monograph is produced that can serve as a guideline in quality control of the crude drug. Morphologically, the roots are found to be cylindrical and tapering towards the end. It has a hard, corky and friable touch with saddle brown color externally and it is relatively smooth and pale brown internally. It has got characteristic pungent odor and very bitter taste. Microscopically it has showed lignified xylem vessels, wider medullary rays with some calcium oxalate crystals, reddish brown secondary metabolite contents and slender shaped long fibres. Physicochemical standards quantified and resulted: foreign matter (5.25%), moisture content (6.69%), total ash (40.80%), acid insoluble ash (8.00%), water soluble ash (2.30%), alcohol soluble extractive (15.27%), water soluble extractive (10.98%), foaming index (100.01 ml/g), swelling index (7.60 ml/g). Phytochemically: Phenols, flavonoids, steroids, tannins and saponins were detected in the root extract; TLC and HPLC fingerprints were produced and an analytical marker was also tentatively characterized as 3-(3,4-dihydro-3,5-dihydroxy-2-(4-hydroxy-5-methylhex-1-en-2-yl)-7-methoxy-4-oxo-2H-chromen-8-yl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one. Residue wise pesticides (i.e. DDT, DDE, g-BHC) and radiochemical levels fall below the WHO limit while Heavy metals (i.e. Co, Ni, Cr, Pb, and Cu), total aerobic count and fungal load lie way above the WHO limit. In conclusion, the result can be taken as signal that employing non standardized medicinal plants could cause many health risks of the Ethiopian people and Africans’ at large (as 80% of inhabitants in the continent depends on it for primary health care). Therefore, following a more universal approach to herbal quality by adopting the WHO guidelines and developing monographs using the various quality parameters is inevitable to minimize quality breach and promote effective herbal drug usage.Keywords: Gnidia stenophylla Gilg, standardization/monograph, pharmacognostic, residue/impurity, quality
Procedia PDF Downloads 290110 Influence of Counter-Face Roughness on the Friction of Bionic Microstructures
Authors: Haytam Kasem
Abstract:
The problem of quick and easy reversible attachment has become of great importance in different fields of technology. For the reason, during the last decade, a new emerging field of adhesion science has been developed. Essentially inspired by some animals and insects, which during their natural evolution have developed fantastic biological attachment systems allowing them to adhere and run on walls and ceilings of uneven surfaces. Potential applications of engineering bio-inspired solutions include climbing robots, handling systems for wafers in nanofabrication facilities, and mobile sensor platforms, to name a few. However, despite the efforts provided to apply bio-inspired patterned adhesive-surfaces to the biomedical field, they are still in the early stages compared with their conventional uses in other industries mentioned above. In fact, there are some critical issues that still need to be addressed for the wide usage of the bio-inspired patterned surfaces as advanced biomedical platforms. For example, surface durability and long-term stability of surfaces with high adhesive capacity should be improved, but also the friction and adhesion capacities of these bio-inspired microstructures when contacting rough surfaces. One of the well-known prototypes for bio-inspired attachment systems is biomimetic wall-shaped hierarchical microstructure for gecko-like attachments. Although physical background of these attachment systems is widely understood, the influence of counter-face roughness and its relationship with the friction force generated when sliding against wall-shaped hierarchical microstructure have yet to be fully analyzed and understood. To elucidate the effect of the counter-face roughness on the friction of biomimetic wall-shaped hierarchical microstructure we have replicated the isotropic topography of 12 different surfaces using replicas made of the same epoxy material. The different counter-faces were fully characterized under 3D optical profilometer to measure roughness parameters. The friction forces generated by spatula-shaped microstructure in contact with the tested counter-faces were measured on a home-made tribometer and compared with the friction forces generated by the spatulae in contact with a smooth reference. It was found that classical roughness parameters, such as average roughness Ra and others, could not be utilized to explain topography-related variation in friction force. This has led us to the development of an integrated roughness parameter obtained by combining different parameters which are the mean asperity radius of curvature (R), the asperity density (η), the deviation of asperities high (σ) and the mean asperities angle (SDQ). This new integrated parameter is capable of explaining the variation of results of friction measurements. Based on the experimental results, we developed and validated an analytical model to predict the variation of the friction force as a function of roughness parameters of the counter-face and the applied normal load, as well.Keywords: friction, bio-mimetic micro-structure, counter-face roughness, analytical model
Procedia PDF Downloads 239109 Paramedic Strength and Flexibility: Findings of a 6-Month Workplace Exercise Randomised Controlled Trial
Authors: Jayden R. Hunter, Alexander J. MacQuarrie, Samantha C. Sheridan, Richard High, Carolyn Waite
Abstract:
Workplace exercise programs have been recommended to improve the musculoskeletal fitness of paramedics with the aim of reducing injury rates, and while they have shown efficacy in other occupations, they have not been delivered and evaluated in Australian paramedics to our best knowledge. This study investigated the effectiveness of a 6-month workplace exercise program (MedicFit; MF) to improve paramedic fitness with or without health coach (HC) support. A group of regional Australian paramedics (n=76; 43 male; mean ± SD 36.5 ± 9.1 years; BMI 28.0 ± 5.4 kg/m²) were randomised at the station level to either exercise with remote health coach support (MFHC; n=30), exercise without health coach support (MF; n=23), or no-exercise control (CON; n=23) groups. MFHC and MF participants received a 6-month, low-moderate intensity resistance and flexibility exercise program to be performed ƒ on station without direct supervision. Available exercise equipment included dumbbells, resistance bands, Swiss balls, medicine balls, kettlebells, BOSU balls, yoga mats, and foam rollers. MFHC and MF participants were also provided with a comprehensive exercise manual including sample exercise sessions aimed at improving musculoskeletal strength and flexibility which included exercise prescription (i.e. sets, reps, duration, load). Changes to upper-body (push-ups), lower-body (wall squat) and core (plank hold) strength and flexibility (back scratch and sit-reach tests) after the 6-month intervention were analysed using repeated measures ANOVA to compare changes between groups and over time. Upper-body (+20.6%; p < 0.01; partial eta squared = 0.34 [large effect]) and lower-body (+40.8%; p < 0.05; partial eta squared = 0.08 (moderate effect)) strength increased significantly with no interaction or group effects. Changes to core strength (+1.4%; p=0.17) and both upper-body (+19.5%; p=0.56) and lower-body (+3.3%; p=0.15) flexibility were non-significant with no interaction or group effects observed. While upper- and lower-body strength improved over the course of the intervention, providing a 6-month workplace exercise program with or without health coach support did not confer any greater strength or flexibility benefits than exercise testing alone (CON). Although exercise adherence was not measured, it is possible that participants require additional methods of support such as face-to-face exercise instruction and guidance and individually-tailored exercise programs to achieve adequate participation and improvements in musculoskeletal fitness. This presents challenges for more remote paramedic stations without regular face-to-face access to suitably qualified exercise professionals, and future research should investigate the effectiveness of other forms of exercise delivery and guidance for these paramedic officers such as remotely-facilitated digital exercise prescription and monitoring.Keywords: workplace exercise, paramedic health, strength training, flexibility training
Procedia PDF Downloads 140108 Gas Metal Arc Welding of Clad Plates API 5L X-60/316L Applying External Magnetic Fields during Welding
Authors: Blanca A. Pichardo, Victor H. Lopez, Melchor Salazar, Rafael Garcia, Alberto Ruiz
Abstract:
Clad pipes in comparison to plain carbon steel pipes offer the oil and gas industry high corrosion resistance, reduction in economic losses due to pipeline failures and maintenance, lower labor risk, prevent pollution and environmental damage due to hydrocarbons spills caused by deteriorated pipelines. In this context, it is paramount to establish reliable welding procedures to join bimetallic plates or pipes. Thus, the aim of this work is to study the microstructure and mechanical behavior of clad plates welded by the gas metal arc welding (GMAW) process. A clad of 316L stainless steel was deposited onto API 5L X-60 plates by overlay welding with the GMAW process. Welding parameters were, 22.5 V, 271 A, heat input 1,25 kJ/mm, shielding gas 98% Ar + 2% O₂, reverse polarity, torch displacement speed 3.6 mm/s, feed rate 120 mm/s, electrode diameter 1.2 mm and application of an electromagnetic field of 3.5 mT. The overlay welds were subjected to macro-structural and microstructural characterization. After manufacturing the clad plates, a single V groove joint was machined with a 60° bevel and 1 mm root face. GMA welding of the bimetallic plates was performed in four passes with ER316L-Si filler for the root pass and an ER70s-6 electrode for the subsequent welding passes. For joining the clad plates, an electromagnetic field was applied with 2 purposes; to improve the microstructural characteristics and to assist the stability of the electric arc during welding in order to avoid magnetic arc blow. The welds were macro and microstructurally characterized and the mechanical properties were also evaluated. Vickers microhardness (100 g load for 10 s) measurements were made across the welded joints at three levels. The first profile, at the 316L stainless steel cladding, was quite even with a value of approximately 230 HV. The second microhardness profile showed high values in the weld metal, ~400 HV, this was due to the formation of a martensitic microstructure by dilution of the first welding pass with the second. The third profile crossed the third and fourth welding passes and an average value of 240 HV was measured. In the tensile tests, yield strength was between 400 to 450 MPa with a tensile strength of ~512 MPa. In the Charpy impact tests, the results were 86 and 96 J for specimens with the notch in the face and in the root of the weld bead, respectively. The results of the mechanical properties were in the range of the API 5L X-60 base material. The overlap welding process used for cladding is not suitable for large components, however, it guarantees a metallurgical bond, unlike the most commonly used processes such as thermal expansion. For welding bimetallic plates, control of the temperature gradients is key to avoid distortions. Besides, the dissimilar nature of the bimetallic plates gives rise to the formation of a martensitic microstructure during welding.Keywords: clad pipe, dissimilar welding, gas metal arc welding, magnetic fields
Procedia PDF Downloads 152107 Development and Testing of an Instrument to Measure Beliefs about Cervical Cancer Screening among Women in Botswana
Authors: Ditsapelo M. McFarland
Abstract:
Background: Despite the availability of the Pap smear services in urban areas in Botswana, most women in such areas do not seem to screen regular for prevention of the cervical cancer disease. Reasons for non-use of the available Pap smear services are not well understood. Beliefs about cancer may influence participation in cancer screening in these women. The purpose of this study was to develop an instrument to measure beliefs about cervical cancer and Pap smear screening among Black women in Botswana, and evaluate the psychometric properties of the instrument. Significance: Instruments that are designed to measure beliefs about cervical cancer and screening among black women in Botswana, as well as in the surrounding region, are presently not available. Valid and reliable instruments are needed for exploration of the women’s beliefs about cervical cancer. Conceptual Framework: The Health Belief Model (HBM) provided a conceptual framework for the study. Methodology: The study was done in four phases: Phase 1: item generation: 15 items were generated from literature review and qualitative data for each of four conceptually defined HBM constructs: Perceived susceptibility, severity, benefits, and barriers (Version 1). Phase 2: content validity: Four experts who were advanced practice nurses of African descent and were familiar with the content and the HBM evaluated the content. Experts rated the items on a 4-point Likert scale ranging from: 1=not relevant, 2=somewhat relevant, 3=relevant and 4=very relevant. Fifty-five items were retained for instrument development: perceived susceptibility - 11, severity - 14, benefits - 15 and barriers - 15, all measuring on a 4-point Likert scale ranging from strongly disagree (1) to strongly agree (4). (Version 2). Phase 3: pilot testing: The instrument was pilot tested on a convenient sample of 30 women in Botswana and revised as needed. Phase 4: reliability: the revised instrument (Version 3) was submitted to a larger sample of women in Botswana (n=300) for reliability testing. The sample included women who were Batswana by birth and decent, were aged 30 years and above and could complete an English questionnaire. Data were collected with the assistance of trained research assistants. Major findings: confirmatory factor analysis of the 55 items found that a number of items did not adequately load in a four-factor solution. Items that exhibited reasonable reliability and had low frequency of missing values (n=36) were retained: perceived barriers (14 items), perceived benefits (8 items), perceived severity (4 items), and perceived susceptibility (10 items). confirmatory factor analysis (principle components) for a four factor solution using varimax rotation demonstrated that these four factors explained 43% of the variation in these 36 items. Conclusion: reliability analysis using Cronbach’s Alpha gave generally satisfactory results with values from 0.53 to 0.89.Keywords: cervical cancer, factor analysis, psychometric evaluation, varimax rotation
Procedia PDF Downloads 127106 Interface Fracture of Sandwich Composite Influenced by Multiwalled Carbon Nanotube
Authors: Alak Kumar Patra, Nilanjan Mitra
Abstract:
Higher strength to weight ratio is the main advantage of sandwich composite structures. Interfacial delamination between the face sheet and core is a major problem in these structures. Many research works are devoted to improve the interfacial fracture toughness of composites majorities of which are on nano and laminated composites. Work on influence of multiwalled carbon nano-tubes (MWCNT) dispersed resin system on interface fracture of glass-epoxy PVC core sandwich composite is extremely limited. Finite element study is followed by experimental investigation on interface fracture toughness of glass-epoxy (G/E) PVC core sandwich composite with and without MWCNT. Results demonstrate an improvement in interface fracture toughness values (Gc) of samples with a certain percentages of MWCNT. In addition, dispersion of MWCNT in epoxy resin through sonication followed by mixing of hardener and vacuum resin infusion (VRI) technology used in this study is an easy and cost effective methodology in comparison to previously adopted other methods limited to laminated composites. The study also identifies the optimum weight percentage of MWCNT addition in the resin system for maximum performance gain in interfacial fracture toughness. The results agree with finite element study, high-resolution transmission electron microscope (HRTEM) analysis and fracture micrograph of field emission scanning electron microscope (FESEM) investigation. Interface fracture toughness (GC) of the DCB sandwich samples is calculated using the compliance calibration (CC) method considering the modification due to shear. Compliance (C) vs. crack length (a) data of modified sandwich DCB specimen is fitted to a power function of crack length. The calculated mean value of the exponent n from the plots of experimental results is 2.22 and is different from the value (n=3) prescribed in ASTM D5528-01for mode 1 fracture toughness of laminate composites (which is the basis for modified compliance calibration method). Differentiating C with respect to crack length (a) and substituting it in the expression GC provides its value. The research demonstrates improvement of 14.4% in peak load carrying capacity and 34.34% in interface fracture toughness GC for samples with 1.5 wt% MWCNT (weight % being taken with respect to weight of resin) in comparison to samples without MWCNT. The paper focuses on significant improvement in experimentally determined interface fracture toughness of sandwich samples with MWCNT over the samples without MWCNT using much simpler method of sonication. Good dispersion of MWCNT was observed in HRTEM with 1.5 wt% MWCNT addition in comparison to other percentages of MWCNT. FESEM studies have also demonstrated good dispersion and fiber bridging of MWCNT in resin system. Ductility is also observed to be higher for samples with MWCNT in comparison to samples without.Keywords: carbon nanotube, epoxy resin, foam, glass fibers, interfacial fracture, sandwich composite
Procedia PDF Downloads 304105 Piled Critical Size Bone-Biomimetic and Biominerizable Nanocomposites: Formation of Bioreactor-Induced Stem Cell Gradients under Perfusion and Compression
Authors: W. Baumgartner, M. Welti, N. Hild, S. C. Hess, W. J. Stark, G. Meier Bürgisser, P. Giovanoli, J. Buschmann
Abstract:
Perfusion bioreactors are used to solve problems in tissue engineering in terms of sufficient nutrient and oxygen supply. Such problems especially occur in critical size grafts because vascularization is often too slow after implantation ending up in necrotic cores. Biominerizable and biocompatible nanocomposite materials are attractive and suitable scaffold materials for bone tissue engineering because they offer mineral components in organic carriers – mimicking natural bone tissue. In addition, human adipose derived stem cells (ASCs) can potentially be used to increase bone healing as they are capable of differentiating towards osteoblasts or endothelial cells among others. In the present study, electrospun nanocomposite disks of poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles (PLGA/a-CaP) were seeded with human ASCs and eight disks were stacked in a bioreactor running with normal culture medium (no differentiation supplements). Under continuous perfusion and uniaxial cyclic compression, load-displacement curves as a function of time were assessed. Stiffness and energy dissipation were recorded. Moreover, stem cell densities in the layers of the piled scaffold were determined as well as their morphologies and differentiation status (endothelial cell differentiation, chondrogenesis and osteogenesis). While the stiffness of the cell free constructs increased over time caused by the transformation of the a-CaP nanoparticles into flake-like apatite, ASC-seeded constructs showed a constant stiffness. Stem cell density gradients were histologically determined with a linear increase in the flow direction from the bottom to the top of the 3.5 mm high pile (r2 > 0.95). Cell morphology was influenced by the flow rate, with stem cells getting more roundish at higher flow rates. Less than 1 % osteogenesis was found upon osteopontin immunostaining at the end of the experiment (9 days), while no endothelial cell differentiation and no chondrogenesis was triggered under these conditions. All ASCs had mainly remained in their original pluripotent status within this time frame. In summary, we have fabricated a critical size bone graft based on a biominerizable bone-biomimetic nanocomposite with preserved stiffness when seeded with human ASCs. The special feature of this bone graft was that ASC densities inside the piled construct varied with a linear gradient, which is a good starting point for tissue engineering interfaces such as bone-cartilage where the bone tissue is cell rich while the cartilage exhibits low cell densities. As such, this tissue-engineered graft may act as a bone-cartilage interface after the corresponding differentiation of the ASCs.Keywords: bioreactor, bone, cartilage, nanocomposite, stem cell gradient
Procedia PDF Downloads 308104 The Influence of Microsilica on the Cluster Cracks' Geometry of Cement Paste
Authors: Maciej Szeląg
Abstract:
The changing nature of environmental impacts, in which cement composites are operating, are causing in the structure of the material a number of phenomena, which result in volume deformation of the composite. These strains can cause composite cracking. Cracks are merging by propagation or intersect to form a characteristic structure of cracks known as the cluster cracks. This characteristic mesh of cracks is crucial to almost all building materials, which are working in service loads conditions. Particularly dangerous for a cement matrix is a sudden load of elevated temperature – the thermal shock. Resulting in a relatively short period of time a large value of a temperature gradient between the outer surface and the material’s interior can result in cracks formation on the surface and in the volume of the material. In the paper, in order to analyze the geometry of the cluster cracks of the cement pastes, the image analysis tools were used. Tested were 4 series of specimens made of two different Portland cement. In addition, two series include microsilica as a substitute for the 10% of the cement. Within each series, specimens were performed in three w/b indicators (water/binder): 0.4; 0.5; 0.6. The cluster cracks were created by sudden loading the samples by elevated temperature of 250°C. Images of the cracked surfaces were obtained via scanning at 2400 DPI. Digital processing and measurements were performed using ImageJ v. 1.46r software. To describe the structure of the cluster cracks three stereological parameters were proposed: the average cluster area - A ̅, the average length of cluster perimeter - L ̅, and the average opening width of a crack between clusters - I ̅. The aim of the study was to identify and evaluate the relationships between measured stereological parameters, and the compressive strength and the bulk density of the modified cement pastes. The tests of the mechanical and physical feature have been carried out in accordance with EN standards. The curves describing the relationships have been developed using the least squares method, and the quality of the curve fitting to the empirical data was evaluated using three diagnostic statistics: the coefficient of determination – R2, the standard error of estimation - Se, and the coefficient of random variation – W. The use of image analysis allowed for a quantitative description of the cluster cracks’ geometry. Based on the obtained results, it was found a strong correlation between the A ̅ and L ̅ – reflecting the fractal nature of the cluster cracks formation process. It was noted that the compressive strength and the bulk density of cement pastes decrease with an increase in the values of the stereological parameters. It was also found that the main factors, which impact on the cluster cracks’ geometry are the cement particles’ size and the general content of the binder in a volume of the material. The microsilica caused the reduction in the A ̅, L ̅ and I ̅ values compared to the values obtained by the classical cement paste’s samples, which is caused by the pozzolanic properties of the microsilica.Keywords: cement paste, cluster cracks, elevated temperature, image analysis, microsilica, stereological parameters
Procedia PDF Downloads 246