Search results for: water resources yield and planning model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29908

Search results for: water resources yield and planning model

508 A Stochastic Vehicle Routing Problem with Ordered Customers and Collection of Two Similar Products

Authors: Epaminondas G. Kyriakidis, Theodosis D. Dimitrakos, Constantinos C. Karamatsoukis

Abstract:

The vehicle routing problem (VRP) is a well-known problem in Operations Research and has been widely studied during the last fifty-five years. The context of the VRP is that of delivering or collecting products to or from customers who are scattered in a geographical area and have placed orders for these products. A vehicle or a fleet of vehicles start their routes from a depot and visit the customers in order to satisfy their demands. Special attention has been given to the capacitated VRP in which the vehicles have limited carrying capacity for the goods that are delivered or collected. In the present work, we present a specific capacitated stochastic vehicle routing problem which has many realistic applications. We develop and analyze a mathematical model for a specific vehicle routing problem in which a vehicle starts its route from a depot and visits N customers according to a particular sequence in order to collect from them two similar but not identical products. We name these products, product 1 and product 2. Each customer possesses items either of product 1 or product 2 with known probabilities. The number of the items of product 1 or product 2 that each customer possesses is a discrete random variable with known distribution. The actual quantity and the actual type of product that each customer possesses are revealed only when the vehicle arrives at the customer’s site. It is assumed that the vehicle has two compartments. We name these compartments, compartment 1 and compartment 2. It is assumed that compartment 1 is suitable for loading product 1 and compartment 2 is suitable for loading product 2. However, it is permitted to load items of product 1 into compartment 2 and items of product 2 into compartment 1. These actions cause costs that are due to extra labor. The vehicle is allowed during its route to return to the depot to unload the items of both products. The travel costs between consecutive customers and the travel costs between the customers and the depot are known. The objective is to find the optimal routing strategy, i.e. the routing strategy that minimizes the total expected cost among all possible strategies for servicing all customers. It is possible to develop a suitable dynamic programming algorithm for the determination of the optimal routing strategy. It is also possible to prove that the optimal routing strategy has a specific threshold-type strategy. Specifically, it is shown that for each customer the optimal actions are characterized by some critical integers. This structural result enables us to design a special-purpose dynamic programming algorithm that operates only over these strategies having this structural property. Extensive numerical results provide strong evidence that the special-purpose dynamic programming algorithm is considerably more efficient than the initial dynamic programming algorithm. Furthermore, if we consider the same problem without the assumption that the customers are ordered, numerical experiments indicate that the optimal routing strategy can be computed if N is smaller or equal to eight.

Keywords: dynamic programming, similar products, stochastic demands, stochastic preferences, vehicle routing problem

Procedia PDF Downloads 226
507 Application of the Sufficiency Economy Philosophy to Integrated Instructional Model of In-Service Teachers of Schools under the Project Initiated by H.R.H Princess in Maha Chakri Sirindhorn, Nakhonnayok Educational Service Area Office

Authors: Kathaleeya Chanda

Abstract:

The schools under the Project Initiated by H.R.H Princess in Maha Chakri Sirindhorn in Nakhonnayok Educational Service Area Office are the small schools, situated in a remote and undeveloped area.Thus, the school-age youth didn’t have or have fewer opportunities to study at the higher education level which can lead to many social and economic problems. This study aims to solve these educational issues of the schools, under The Project Initiated by H.R.H Princess in Maha Chakri Sirindhorn, Nakhonnayok Educational Service Area Office, by the development of teachers, so that teachers could develop teaching and learning system with the ultimate goal to increase students’ academic achievement, increase the educational opportunities for the youth in the area, and help them learn happily. 154 in-service teachers from 22 schools and 4 different districts in Nakhonnayok participated in this teacher training. Most teachers were satisfied with the training content and the trainer. Thereafter, the teachers were given the test to assess the skills and knowledge after training. Most of the teachers earned a score higher than 75%. Accordingly, it can be concluded that after attending the training, teachers have a clear understanding of the contents. After the training session, the teachers have to write a lesson plan that is integrated or adapted to the Sufficiency Economy Philosophy. The teachers can either adopt intradisciplinary or interdisciplinary integration according to their actual teaching conditions in the school. Two weeks after training session, the researchers went to the schools to discuss with the teachers and follow up the assigned integrated lesson plan. It was revealed that the progress of integrated lesson plan could be divided into 3 groups: 1) the teachers who have completed the integrated lesson plan, but are concerned about the accuracy and consistency, 2) teachers who almost complete the lesson plan or made a great progress but are still concerned, confused in some aspects and not fill in the details of the plan, and 3), the teachers who made few progress, are uncertain and confused in many aspects, and may had overloaded tasks from their school. However, a follow-up procedure led to the commitment of teachers to complete the lesson plan. Regarding student learning assessment, from an experiment teaching, most of the students earned a score higher than 50 %. The rate is higher than the one from actual teaching. In addition, the teacher have assessed that the student is happy, enjoys learning, and providing a good cooperates in teaching activities. The students’ interview about the new lesson plan shows that they are happy with it, willing to learn, and able to apply such knowledge in daily life. Integrated lesson plan can increases the educational opportunities for youth in the area.

Keywords: sufficiency, economy, philosophy, integrated education syllabus

Procedia PDF Downloads 161
506 Exploring Tweeters’ Concerns and Opinions about FIFA Arab Cup 2021: An Investigation Study

Authors: Md. Rafiul Biswas, Uzair Shah, Mohammad Alkayal, Zubair Shah, Othman Althawadi, Kamila Swart

Abstract:

Background: Social media platforms play a significant role in the mediated consumption of sport, especially so for sport mega-event. The characteristics of Twitter data (e.g., user mentions, retweets, likes, #hashtag) accumulate the users in one ground and spread information widely and quickly. Analysis of Twitter data can reflect the public attitudes, behavior, and sentiment toward a specific event on a larger scale than traditional surveys. Qatar is going to be the first Arab country to host the mega sports event FIFA World Cup 2022 (Q22). Qatar has hosted the FIFA Arab Cup 2021 (FAC21) to serve as a preparation for the mega-event. Objectives: This study investigates public sentiments and experiences about FAC21 and provides an insight to enhance the public experiences for the upcoming Q22. Method: FCA21-related tweets were downloaded using Twitter Academic research API between 01 October 2021 to 18 February 2022. Tweets were divided into three different periods: before T1 (01 Oct 2021 to 29 Nov 2021), during T2 (30 Nov 2021 -18 Dec 2021), and after the FAC21 T3 (19 Dec 2021-18 Feb 2022). The collected tweets were preprocessed in several steps to prepare for analysis; (1) removed duplicate and retweets, (2) removed emojis, punctuation, and stop words (3) normalized tweets using word lemmatization. Then, rule-based classification was applied to remove irrelevant tweets. Next, the twitter-XLM-roBERTa-base model from Huggingface was applied to identify the sentiment in the tweets. Further, state-of-the-art BertTopic modeling will be applied to identify trending topics over different periods. Results: We downloaded 8,669,875 Tweets posted by 2728220 unique users in different languages. Of those, 819,813 unique English tweets were selected in this study. After splitting into three periods, 541630, 138876, and 139307 were from T1, T2, and T3, respectively. Most of the sentiments were neutral, around 60% in different periods. However, the rate of negative sentiment (23%) was high compared to positive sentiment (18%). The analysis indicates negative concerns about FAC21. Therefore, we will apply BerTopic to identify public concerns. This study will permit the investigation of people’s expectations before FAC21 (e.g., stadium, transportation, accommodation, visa, tickets, travel, and other facilities) and ascertain whether these were met. Moreover, it will highlight public expectations and concerns. The findings of this study can assist the event organizers in enhancing implementation plans for Q22. Furthermore, this study can support policymakers with aligning strategies and plans to leverage outstanding outcomes.

Keywords: FIFA Arab Cup, FIFA, Twitter, machine learning

Procedia PDF Downloads 71
505 Neuroprotection against N-Methyl-D-Aspartate-Induced Optic Nerve and Retinal Degeneration Changes by Philanthotoxin-343 to Alleviate Visual Impairments Involve Reduced Nitrosative Stress

Authors: Izuddin Fahmy Abu, Mohamad Haiqal Nizar Mohamad, Muhammad Fattah Fazel, Renu Agarwal, Igor Iezhitsa, Nor Salmah Bakar, Henrik Franzyk, Ian Mellor

Abstract:

Glaucoma is the global leading cause of irreversible blindness. Currently, the available treatment strategy only involves lowering intraocular pressure (IOP); however, the condition often progresses despite lowered or normal IOP in some patients. N-methyl-D-aspartate receptor (NMDAR) excitotoxicity often occurs in neurodegeneration-related glaucoma; thus it is a relevant target to develop a therapy based on neuroprotection approach. This study investigated the effects of Philanthotoxin-343 (PhTX-343), an NMDAR antagonist, on the neuroprotection of NMDA-induced glaucoma to alleviate visual impairments. Male Sprague-Dawley rats were equally divided: Groups 1 (control) and 2 (glaucoma) were intravitreally injected with phosphate buffer saline (PBS) and NMDA (160nM), respectively, while group 3 was pre-treated with PhTX-343 (160nM) 24 hours prior to NMDA injection. Seven days post-treatments, rats were subjected to visual behavior assessments and subsequently euthanized to harvest their retina and optic nerve tissues for histological analysis and determination of nitrosative stress level using 3-nitrotyrosine ELISA. Visual behavior assessments via open field, object, and color recognition tests demonstrated poor visual performance in glaucoma rats indicated by high exploratory behavior. PhTX-343 pre-treatment appeared to preserve visual abilities as all test results were significantly improved (p < 0.05). H&E staining of the retina showed a marked reduction of ganglion cell layer thickness in the glaucoma group; in contrast, PhTX-343 significantly increased the number by 1.28-folds (p < 0.05). PhTX-343 also increased the number of cell nuclei/100μm2 within inner retina by 1.82-folds compared to the glaucoma group (p < 0.05). Toluidine blue staining of optic nerve tissues showed that PhTX-343 reduced the degeneration changes compared to the glaucoma group which exhibited vacuolation overall sections. PhTX-343 also decreased retinal 3- nitrotyrosine concentration by 1.74-folds compared to the glaucoma group (p < 0.05). All results in PhTX-343 group were comparable to control (p > 0.05). We conclude that PhTX-343 protects against NMDA-induced changes and visual impairments in the rat model by reducing nitrosative stress levels.

Keywords: excitotoxicity, glaucoma, nitrosative stress , NMDA receptor , N-methyl-D-aspartate , philanthotoxin, visual behaviour

Procedia PDF Downloads 106
504 Civic E-Participation in Central and Eastern Europe: A Comparative Analysis

Authors: Izabela Kapsa

Abstract:

Civic participation is an important aspect of democracy. The contemporary model of democracy is based on citizens' participation in political decision-making (deliberative democracy, participatory democracy). This participation takes many forms of activities like display of slogans and symbols, voting, social consultations, political demonstrations, membership in political parties or organizing civil disobedience. The countries of Central and Eastern Europe after 1989 are characterized by great social, economic and political diversity. Civil society is also part of the process of democratization. Civil society, funded by the rule of law, civil rights, such as freedom of speech and association and private ownership, was to play a central role in the development of liberal democracy. Among the many interpretations of concepts, defining the concept of contemporary democracy, one can assume that the terms civil society and democracy, although different in meaning, nowadays overlap. In the post-communist countries, the process of shaping and maturing societies took place in the context of a struggle with a state governed by undemocratic power. State fraud or repudiation of the institution is a representative state, which in the past was the only way to manifest and defend its identity, but after the breakthrough became one of the main obstacles to the development of civil society. In Central and Eastern Europe, there are many obstacles to the development of civil society, for example, the elimination of economic poverty, the implementation of educational campaigns, consciousness-related obstacles, the formation of social capital and the deficit of social activity. Obviously, civil society does not only entail an electoral turnout but a broader participation in the decision-making process, which is impossible without direct and participative democratic institutions. This article considers such broad forms of civic participation and their characteristics in Central and Eastern Europe. The paper is attempts to analyze the functioning of electronic forms of civic participation in Central and Eastern European states. This is not accompanied by a referendum or a referendum initiative, and other forms of political participation, such as public consultations, participative budgets, or e-Government. However, this paper will broadly present electronic administration tools, the application of which results from both legal regulations and increasingly common practice in state and city management. In the comparative analysis, the experiences of post-communist bloc countries will be summed up to indicate the challenges and possible goals for further development of this form of citizen participation in the political process. The author argues that for to function efficiently and effectively, states need to involve their citizens in the political decision-making process, especially with the use of electronic tools.

Keywords: Central and Eastern Europe, e-participation, e-government, post-communism

Procedia PDF Downloads 163
503 The Effect of Metal-Organic Framework Pore Size to Hydrogen Generation of Ammonia Borane via Nanoconfinement

Authors: Jing-Yang Chung, Chi-Wei Liao, Jing Li, Bor Kae Chang, Cheng-Yu Wang

Abstract:

Chemical hydride ammonia borane (AB, NH3BH3) draws attentions to hydrogen energy researches for its high theoretical gravimetrical capacity (19.6 wt%). Nevertheless, the elevated AB decomposition temperatures (Td) and unwanted byproducts are main hurdles in practical application. It was reported that the byproducts and Td can be reduced with nanoconfinement technique, in which AB molecules are confined in porous materials, such as porous carbon, zeolite, metal-organic frameworks (MOFs), etc. Although nanoconfinement empirically shows effectiveness on hydrogen generation temperature reduction in AB, the theoretical mechanism is debatable. Low Td was reported in AB@IRMOF-1 (Zn4O(BDC)3, BDC = benzenedicarboxylate), where Zn atoms form closed metal clusters secondary building unit (SBU) with no exposed active sites. Other than nanosized hydride, it was also observed that catalyst addition facilitates AB decomposition in the composite of Li-catalyzed carbon CMK-3, MOF JUC-32-Y with exposed Y3+, etc. It is believed that nanosized AB is critical for lowering Td, while active sites eliminate byproducts. Nonetheless, some researchers claimed that it is the catalytic sites that are the critical factor to reduce Td, instead of the hydride size. The group physically ground AB with ZIF-8 (zeolitic imidazolate frameworks, (Zn(2-methylimidazolate)2)), and found similar reduced Td phenomenon, even though AB molecules were not ‘confined’ or forming nanoparticles by physical hand grinding. It shows the catalytic reaction, not nanoconfinement, leads to AB dehydrogenation promotion. In this research, we explored the possible criteria of hydrogen production temperature from nanoconfined AB in MOFs with different pore sizes and active sites. MOFs with metal SBU such as Zn (IRMOF), Zr (UiO), and Al (MIL-53), accompanying with various organic ligands (BDC and BPDC; BPDC = biphenyldicarboxylate) were modified with AB. Excess MOFs were used for AB size constrained in micropores estimated by revisiting Horvath-Kawazoe model. AB dissolved in methanol was added to MOFs crystalline with MOF pore volume to AB ratio 4:1, and the slurry was dried under vacuum to collect AB@MOF powders. With TPD-MS (temperature programmed desorption with mass spectroscopy), we observed Td was reduced with smaller MOF pores. For example, it was reduced from 100°C to 64°C when MOF micropore ~1 nm, while ~90°C with pore size up to 5 nm. The behavior of Td as a function of AB crystalline radius obeys thermodynamics when the Gibbs free energy of AB decomposition is zero, and no obvious correlation with metal type was observed. In conclusion, we discovered Td of AB is proportional to the reciprocal of MOF pore size, possibly stronger than the effect of active sites.

Keywords: ammonia borane, chemical hydride, metal-organic framework, nanoconfinement

Procedia PDF Downloads 161
502 Interface Designer as Cultural Producer: A Dialectic Materialist Approach to the Role of Visual Designer in the Present Digital Era

Authors: Cagri Baris Kasap

Abstract:

In this study, how interface designers can be viewed as producers of culture in the current era will be interrogated from a critical theory perspective. Walter Benjamin was a German Jewish literary critical theorist who, during 1930s, was engaged in opposing and criticizing the Nazi use of art and media. ‘The Author as Producer’ is an essay that Benjamin has read at the Communist Institute for the Study of Fascism in Paris. In this article, Benjamin relates directly to the dialectics between base and superstructure and argues that authors, normally placed within the superstructure should consider how writing and publishing is production and directly related to the base. Through it, he discusses what it could mean to see author as producer of his own text, as a producer of writing, understood as an ideological construct that rests on the apparatus of production and distribution. So Benjamin concludes that the author must write in ways that relate to the conditions of production, he must do so in order to prepare his readers to become writers and even make this possible for them by engineering an ‘improved apparatus’ and must work toward turning consumers to producers and collaborators. In today’s world, it has become a leading business model within Web 2.0 services of multinational Internet technologies and culture industries like Amazon, Apple and Google, to transform readers, spectators, consumers or users into collaborators and co-producers through platforms such as Facebook, YouTube and Amazon’s CreateSpace Kindle Direct Publishing print-on-demand, e-book and publishing platforms. However, the way this transformation happens is tightly controlled and monitored by combinations of software and hardware. In these global-market monopolies, it has become increasingly difficult to get insight into how one’s writing and collaboration is used, captured, and capitalized as a user of Facebook or Google. In the lens of this study, it could be argued that this criticism could very well be considered by digital producers or even by the mass of collaborators in contemporary social networking software. How do software and design incorporate users and their collaboration? Are they truly empowered, are they put in a position where they are able to understand the apparatus and how their collaboration is part of it? Or has the apparatus become a means against the producers? Thus, when using corporate systems like Google and Facebook, iPhone and Kindle without any control over the means of production, which is closed off by opaque interfaces and licenses that limit our rights of use and ownership, we are already the collaborators that Benjamin calls for. For example, the iPhone and the Kindle combine a specific use of technology to distribute the relations between the ‘authors’ and the ‘prodUsers’ in ways that secure their monopolistic business models by limiting the potential of the technology.

Keywords: interface designer, cultural producer, Walter Benjamin, materialist aesthetics, dialectical thinking

Procedia PDF Downloads 116
501 On-Ice Force-Velocity Modeling Technical Considerations

Authors: Dan Geneau, Mary Claire Geneau, Seth Lenetsky, Ming -Chang Tsai, Marc Klimstra

Abstract:

Introduction— Horizontal force-velocity profiling (HFVP) involves modeling an athletes linear sprint kinematics to estimate valuable maximum force and velocity metrics. This approach to performance modeling has been used in field-based team sports and has recently been introduced to ice-hockey as a forward skating performance assessment. While preliminary data has been collected on ice, distance constraints of the on-ice test restrict the ability of the athletes to reach their maximal velocity which result in limits of the model to effectively estimate athlete performance. This is especially true of more elite athletes. This report explores whether athletes on-ice are able to reach a velocity plateau similar to what has been seen in overground trials. Fourteen male Major Junior ice-hockey players (BW= 83.87 +/- 7.30 kg, height = 188 ± 3.4cm cm, age = 18 ± 1.2 years n = 14) were recruited. For on-ice sprints, participants completed a standardized warm-up consisting of skating and dynamic stretching and a progression of three skating efforts from 50% to 95%. Following the warm-up, participants completed three on ice 45m sprints, with three minutes of rest in between each trial. For overground sprints, participants completed a similar dynamic warm-up to that of on-ice trials. Following the warm-up participants completed three 40m overground sprint trials. For each trial (on-ice and overground), radar was used to collect instantaneous velocity (Stalker ATS II, Texas, USA) aimed at the participant’s waist. Sprint velocities were modelled using custom Python (version 3.2) script using a mono-exponential function, similar to previous work. To determine if on-ice tirals were achieving a maximum velocity (plateau), minimum acceleration values of the modeled data at the end of the sprint were compared (using paired t-test) between on-ice and overground trials. Significant differences (P<0.001) between overground and on-ice minimum accelerations were observed. It was found that on-ice trials consistently reported higher final acceleration values, indicating a maximum maintained velocity (plateau) had not been reached. Based on these preliminary findings, it is suggested that reliable HFVP metrics cannot yet be collected from all ice-hockey populations using current methods. Elite male populations were not able to achieve a velocity plateau similar to what has been seen in overground trials, indicating the absence of a maximum velocity measure. With current velocity and acceleration modeling techniques, including a dependency of a velocity plateau, these results indicate the potential for error in on-ice HFVP measures. Therefore, these findings suggest that a greater on-ice sprint distance may be required or the need for other velocity modeling techniques, where maximal velocity is not required for a complete profile.   

Keywords: ice-hockey, sprint, skating, power

Procedia PDF Downloads 73
500 Study on the Geometric Similarity in Computational Fluid Dynamics Calculation and the Requirement of Surface Mesh Quality

Authors: Qian Yi Ooi

Abstract:

At present, airfoil parameters are still designed and optimized according to the scale of conventional aircraft, and there are still some slight deviations in terms of scale differences. However, insufficient parameters or poor surface mesh quality is likely to occur if these small deviations are embedded in a future civil aircraft with a size that is quite different from conventional aircraft, such as a blended-wing-body (BWB) aircraft with future potential, resulting in large deviations in geometric similarity in computational fluid dynamics (CFD) simulations. To avoid this situation, the study on the CFD calculation on the geometric similarity of airfoil parameters and the quality of the surface mesh is conducted to obtain the ability of different parameterization methods applied on different airfoil scales. The research objects are three airfoil scales, including the wing root and wingtip of conventional civil aircraft and the wing root of the giant hybrid wing, used by three parameterization methods to compare the calculation differences between different sizes of airfoils. In this study, the constants including NACA 0012, a Reynolds number of 10 million, an angle of attack of zero, a C-grid for meshing, and the k-epsilon (k-ε) turbulence model are used. The experimental variables include three airfoil parameterization methods: point cloud method, B-spline curve method, and class function/shape function transformation (CST) method. The airfoil dimensions are set to 3.98 meters, 17.67 meters, and 48 meters, respectively. In addition, this study also uses different numbers of edge meshing and the same bias factor in the CFD simulation. Studies have shown that with the change of airfoil scales, different parameterization methods, the number of control points, and the meshing number of divisions should be used to improve the accuracy of the aerodynamic performance of the wing. When the airfoil ratio increases, the most basic point cloud parameterization method will require more and larger data to support the accuracy of the airfoil’s aerodynamic performance, which will face the severe test of insufficient computer capacity. On the other hand, when using the B-spline curve method, average number of control points and meshing number of divisions should be set appropriately to obtain higher accuracy; however, the quantitative balance cannot be directly defined, but the decisions should be made repeatedly by adding and subtracting. Lastly, when using the CST method, it is found that limited control points are enough to accurately parameterize the larger-sized wing; a higher degree of accuracy and stability can be obtained by using a lower-performance computer.

Keywords: airfoil, computational fluid dynamics, geometric similarity, surface mesh quality

Procedia PDF Downloads 196
499 Topological Language for Classifying Linear Chord Diagrams via Intersection Graphs

Authors: Michela Quadrini

Abstract:

Chord diagrams occur in mathematics, from the study of RNA to knot theory. They are widely used in theory of knots and links for studying the finite type invariants, whereas in molecular biology one important motivation to study chord diagrams is to deal with the problem of RNA structure prediction. An RNA molecule is a linear polymer, referred to as the backbone, that consists of four types of nucleotides. Each nucleotide is represented by a point, whereas each chord of the diagram stands for one interaction for Watson-Crick base pairs between two nonconsecutive nucleotides. A chord diagram is an oriented circle with a set of n pairs of distinct points, considered up to orientation preserving diffeomorphisms of the circle. A linear chord diagram (LCD) is a special kind of graph obtained cutting the oriented circle of a chord diagram. It consists of a line segment, called its backbone, to which are attached a number of chords with distinct endpoints. There is a natural fattening on any linear chord diagram; the backbone lies on the real axis, while all the chords are in the upper half-plane. Each linear chord diagram has a natural genus of its associated surface. To each chord diagram and linear chord diagram, it is possible to associate the intersection graph. It consists of a graph whose vertices correspond to the chords of the diagram, whereas the chord intersections are represented by a connection between the vertices. Such intersection graph carries a lot of information about the diagram. Our goal is to define an LCD equivalence class in terms of identity of intersection graphs, from which many chord diagram invariants depend. For studying these invariants, we introduce a new representation of Linear Chord Diagrams based on a set of appropriate topological operators that permits to model LCD in terms of the relations among chords. Such set is composed of: crossing, nesting, and concatenations. The crossing operator is able to generate the whole space of linear chord diagrams, and a multiple context free grammar able to uniquely generate each LDC starting from a linear chord diagram adding a chord for each production of the grammar is defined. In other words, it allows to associate a unique algebraic term to each linear chord diagram, while the remaining operators allow to rewrite the term throughout a set of appropriate rewriting rules. Such rules define an LCD equivalence class in terms of the identity of intersection graphs. Starting from a modelled RNA molecule and the linear chord, some authors proposed a topological classification and folding. Our LCD equivalence class could contribute to the RNA folding problem leading to the definition of an algorithm that calculates the free energy of the molecule more accurately respect to the existing ones. Such LCD equivalence class could be useful to obtain a more accurate estimate of link between the crossing number and the topological genus and to study the relation among other invariants.

Keywords: chord diagrams, linear chord diagram, equivalence class, topological language

Procedia PDF Downloads 177
498 Emotion-Convolutional Neural Network for Perceiving Stress from Audio Signals: A Brain Chemistry Approach

Authors: Anup Anand Deshmukh, Catherine Soladie, Renaud Seguier

Abstract:

Emotion plays a key role in many applications like healthcare, to gather patients’ emotional behavior. Unlike typical ASR (Automated Speech Recognition) problems which focus on 'what was said', it is equally important to understand 'how it was said.' There are certain emotions which are given more importance due to their effectiveness in understanding human feelings. In this paper, we propose an approach that models human stress from audio signals. The research challenge in speech emotion detection is finding the appropriate set of acoustic features corresponding to an emotion. Another difficulty lies in defining the very meaning of emotion and being able to categorize it in a precise manner. Supervised Machine Learning models, including state of the art Deep Learning classification methods, rely on the availability of clean and labelled data. One of the problems in affective computation is the limited amount of annotated data. The existing labelled emotions datasets are highly subjective to the perception of the annotator. We address the first issue of feature selection by exploiting the use of traditional MFCC (Mel-Frequency Cepstral Coefficients) features in Convolutional Neural Network. Our proposed Emo-CNN (Emotion-CNN) architecture treats speech representations in a manner similar to how CNN’s treat images in a vision problem. Our experiments show that Emo-CNN consistently and significantly outperforms the popular existing methods over multiple datasets. It achieves 90.2% categorical accuracy on the Emo-DB dataset. We claim that Emo-CNN is robust to speaker variations and environmental distortions. The proposed approach achieves 85.5% speaker-dependant categorical accuracy for SAVEE (Surrey Audio-Visual Expressed Emotion) dataset, beating the existing CNN based approach by 10.2%. To tackle the second problem of subjectivity in stress labels, we use Lovheim’s cube, which is a 3-dimensional projection of emotions. Monoamine neurotransmitters are a type of chemical messengers in the brain that transmits signals on perceiving emotions. The cube aims at explaining the relationship between these neurotransmitters and the positions of emotions in 3D space. The learnt emotion representations from the Emo-CNN are mapped to the cube using three component PCA (Principal Component Analysis) which is then used to model human stress. This proposed approach not only circumvents the need for labelled stress data but also complies with the psychological theory of emotions given by Lovheim’s cube. We believe that this work is the first step towards creating a connection between Artificial Intelligence and the chemistry of human emotions.

Keywords: deep learning, brain chemistry, emotion perception, Lovheim's cube

Procedia PDF Downloads 126
497 Using Fractal Architectures for Enhancing the Thermal-Fluid Transport

Authors: Surupa Shaw, Debjyoti Banerjee

Abstract:

Enhancing heat transfer in compact volumes is a challenge when constrained by cost issues, especially those associated with requirements for minimizing pumping power consumption. This is particularly acute for electronic chip cooling applications. Technological advancements in microelectronics have led to development of chip architectures that involve increased power consumption. As a consequence packaging, technologies are saddled with needs for higher rates of power dissipation in smaller form factors. The increasing circuit density, higher heat flux values for dissipation and the significant decrease in the size of the electronic devices are posing thermal management challenges that need to be addressed with a better design of the cooling system. Maximizing surface area for heat exchanging surfaces (e.g., extended surfaces or “fins”) can enable dissipation of higher levels of heat flux. Fractal structures have been shown to maximize surface area in compact volumes. Self-replicating structures at multiple length scales are called “Fractals” (i.e., objects with fractional dimensions; unlike regular geometric objects, such as spheres or cubes whose volumes and surface area values scale as integer values of the length scale dimensions). Fractal structures are expected to provide an appropriate technology solution to meet these challenges for enhanced heat transfer in the microelectronic devices by maximizing surface area available for heat exchanging fluids within compact volumes. In this study, the effect of different fractal micro-channel architectures and flow structures on the enhancement of transport phenomena in heat exchangers is explored by parametric variation of fractal dimension. This study proposes a model that would enable cost-effective solutions for thermal-fluid transport for energy applications. The objective of this study is to ascertain the sensitivity of various parameters (such as heat flux and pressure gradient as well as pumping power) to variation in fractal dimension. The role of the fractal parameters will be instrumental in establishing the most effective design for the optimum cooling of microelectronic devices. This can help establish the requirement of minimal pumping power for enhancement of heat transfer during cooling. Results obtained in this study show that the proposed models for fractal architectures of microchannels significantly enhanced heat transfer due to augmentation of surface area in the branching networks of varying length-scales.

Keywords: fractals, microelectronics, constructal theory, heat transfer enhancement, pumping power enhancement

Procedia PDF Downloads 296
496 Bi-Directional Impulse Turbine for Thermo-Acoustic Generator

Authors: A. I. Dovgjallo, A. B. Tsapkova, A. A. Shimanov

Abstract:

The paper is devoted to one of engine types with external heating – a thermoacoustic engine. In thermoacoustic engine heat energy is converted to an acoustic energy. Further, acoustic energy of oscillating gas flow must be converted to mechanical energy and this energy in turn must be converted to electric energy. The most widely used way of transforming acoustic energy to electric one is application of linear generator or usual generator with crank mechanism. In both cases, the piston is used. Main disadvantages of piston use are friction losses, lubrication problems and working fluid pollution which cause decrease of engine power and ecological efficiency. Using of a bidirectional impulse turbine as an energy converter is suggested. The distinctive feature of this kind of turbine is that the shock wave of oscillating gas flow passing through the turbine is reflected and passes through the turbine again in the opposite direction. The direction of turbine rotation does not change in the process. Different types of bidirectional impulse turbines for thermoacoustic engines are analyzed. The Wells turbine is the simplest and least efficient of them. A radial impulse turbine has more complicated design and is more efficient than the Wells turbine. The most appropriate type of impulse turbine was chosen. This type is an axial impulse turbine, which has a simpler design than that of a radial turbine and similar efficiency. The peculiarities of the method of an impulse turbine calculating are discussed. They include changes in gas pressure and velocity as functions of time during the generation of gas oscillating flow shock waves in a thermoacoustic system. In thermoacoustic system pressure constantly changes by a certain law due to acoustic waves generation. Peak values of pressure are amplitude which determines acoustic power. Gas, flowing in thermoacoustic system, periodically changes its direction and its mean velocity is equal to zero but its peak values can be used for bi-directional turbine rotation. In contrast with feed turbine, described turbine operates on un-steady oscillating flows with direction changes which significantly influence the algorithm of its calculation. Calculated power output is 150 W with frequency 12000 r/min and pressure amplitude 1,7 kPa. Then, 3-d modeling and numerical research of impulse turbine was carried out. As a result of numerical modeling, main parameters of the working fluid in turbine were received. On the base of theoretical and numerical data model of impulse turbine was made on 3D printer. Experimental unit was designed for numerical modeling results verification. Acoustic speaker was used as acoustic wave generator. Analysis if the acquired data shows that use of the bi-directional impulse turbine is advisable. By its characteristics as a converter, it is comparable with linear electric generators. But its lifetime cycle will be higher and engine itself will be smaller due to turbine rotation motion.

Keywords: acoustic power, bi-directional pulse turbine, linear alternator, thermoacoustic generator

Procedia PDF Downloads 349
495 Robust Inference with a Skew T Distribution

Authors: M. Qamarul Islam, Ergun Dogan, Mehmet Yazici

Abstract:

There is a growing body of evidence that non-normal data is more prevalent in nature than the normal one. Examples can be quoted from, but not restricted to, the areas of Economics, Finance and Actuarial Science. The non-normality considered here is expressed in terms of fat-tailedness and asymmetry of the relevant distribution. In this study a skew t distribution that can be used to model a data that exhibit inherent non-normal behavior is considered. This distribution has tails fatter than a normal distribution and it also exhibits skewness. Although maximum likelihood estimates can be obtained by solving iteratively the likelihood equations that are non-linear in form, this can be problematic in terms of convergence and in many other respects as well. Therefore, it is preferred to use the method of modified maximum likelihood in which the likelihood estimates are derived by expressing the intractable non-linear likelihood equations in terms of standardized ordered variates and replacing the intractable terms by their linear approximations obtained from the first two terms of a Taylor series expansion about the quantiles of the distribution. These estimates, called modified maximum likelihood estimates, are obtained in closed form. Hence, they are easy to compute and to manipulate analytically. In fact the modified maximum likelihood estimates are equivalent to maximum likelihood estimates, asymptotically. Even in small samples the modified maximum likelihood estimates are found to be approximately the same as maximum likelihood estimates that are obtained iteratively. It is shown in this study that the modified maximum likelihood estimates are not only unbiased but substantially more efficient than the commonly used moment estimates or the least square estimates that are known to be biased and inefficient in such cases. Furthermore, in conventional regression analysis, it is assumed that the error terms are distributed normally and, hence, the well-known least square method is considered to be a suitable and preferred method for making the relevant statistical inferences. However, a number of empirical researches have shown that non-normal errors are more prevalent. Even transforming and/or filtering techniques may not produce normally distributed residuals. Here, a study is done for multiple linear regression models with random error having non-normal pattern. Through an extensive simulation it is shown that the modified maximum likelihood estimates of regression parameters are plausibly robust to the distributional assumptions and to various data anomalies as compared to the widely used least square estimates. Relevant tests of hypothesis are developed and are explored for desirable properties in terms of their size and power. The tests based upon modified maximum likelihood estimates are found to be substantially more powerful than the tests based upon least square estimates. Several examples are provided from the areas of Economics and Finance where such distributions are interpretable in terms of efficient market hypothesis with respect to asset pricing, portfolio selection, risk measurement and capital allocation, etc.

Keywords: least square estimates, linear regression, maximum likelihood estimates, modified maximum likelihood method, non-normality, robustness

Procedia PDF Downloads 383
494 Factors Affecting Air Surface Temperature Variations in the Philippines

Authors: John Christian Lequiron, Gerry Bagtasa, Olivia Cabrera, Leoncio Amadore, Tolentino Moya

Abstract:

Changes in air surface temperature play an important role in the Philippine’s economy, industry, health, and food production. While increasing global mean temperature in the recent several decades has prompted a number of climate change and variability studies in the Philippines, most studies still focus on rainfall and tropical cyclones. This study aims to investigate the trend and variability of observed air surface temperature and determine its major influencing factor/s in the Philippines. A non-parametric Mann-Kendall trend test was applied to monthly mean temperature of 17 synoptic stations covering 56 years from 1960 to 2015 and a mean change of 0.58 °C or a positive trend of 0.0105 °C/year (p < 0.05) was found. In addition, wavelet decomposition was used to determine the frequency of temperature variability show a 12-month, 30-80-month and more than 120-month cycles. This indicates strong annual variations, interannual variations that coincide with ENSO events, and interdecadal variations that are attributed to PDO and CO2 concentrations. Air surface temperature was also correlated with smoothed sunspot number and galactic cosmic rays, the results show a low to no effect. The influence of ENSO teleconnection on temperature, wind pattern, cloud cover, and outgoing longwave radiation on different ENSO phases had significant effects on regional temperature variability. Particularly, an anomalous anticyclonic (cyclonic) flow east of the Philippines during the peak and decay phase of El Niño (La Niña) events leads to the advection of warm southeasterly (cold northeasterly) air mass over the country. Furthermore, an apparent increasing cloud cover trend is observed over the West Philippine Sea including portions of the Philippines, and this is believed to lessen the effect of the increasing air surface temperature. However, relative humidity was also found to be increasing especially on the central part of the country, which results in a high positive trend of heat index, exacerbating the effects on human discomfort. Finally, an assessment of gridded temperature datasets was done to look at the viability of using three high-resolution datasets in future climate analysis and model calibration and verification. Several error statistics (i.e. Pearson correlation, Bias, MAE, and RMSE) were used for this validation. Results show that gridded temperature datasets generally follows the observed surface temperature change and anomalies. In addition, it is more representative of regional temperature rather than a substitute to station-observed air temperature.

Keywords: air surface temperature, carbon dioxide, ENSO, galactic cosmic rays, smoothed sunspot number

Procedia PDF Downloads 289
493 Evidence-Triggers for Care of Patients with Cleft Lip and Palate in Srinagarind Hospital: The Tawanchai Center and Out-Patients Surgical Room

Authors: Suteera Pradubwong, Pattama Surit, Sumalee Pongpagatip, Tharinee Pethchara, Bowornsilp Chowchuen

Abstract:

Background: Cleft lip and palate (CLP) is a congenital anomaly of the lip and palate that is caused by several factors. It was found in approximately one per 500 to 550 live births depending on nationality and socioeconomic status. The Tawanchai Center and out-patients surgical room of Srinagarind Hospital are responsible for providing care to patients with CLP (starting from birth to adolescent) and their caregivers. From the observations and interviews with nurses working in these units, they reported that both patients and their caregivers confronted many problems which affected their physical and mental health. Based on the Soukup’s model (2000), the researchers used evidence triggers from clinical practice (practice triggers) and related literature (knowledge triggers) to investigate the problems. Objective: The purpose of this study was to investigate the problems of care for patients with CLP in the Tawanchai Center and out-patient surgical room of Srinagarind Hospital. Material and Method: The descriptive method was used in this study. For practice triggers, the researchers obtained the data from medical records of ten patients with CLP and from interviewing two patients with CLP, eight caregivers, two nurses, and two assistant workers. Instruments for the interview consisted of a demographic data form and a semi-structured questionnaire. For knowledge triggers, the researchers used a literature search. The data from both practice and knowledge triggers were collected between February and May 2016. The quantitative data were analyzed through frequency and percentage distributions, and the qualitative data were analyzed through a content analysis. Results: The problems of care gained from practice and knowledge triggers were consistent and were identified as holistic issues, including 1) insufficient feeding, 2) risks of respiratory tract infections and physical disorders, 3) psychological problems, such as anxiety, stress, and distress, 4) socioeconomic problems, such as stigmatization, isolation, and loss of income, 5)spiritual problems, such as low self-esteem and low quality of life, 6) school absence and learning limitation, 7) lack of knowledge about CLP and its treatments, 8) misunderstanding towards roles among the multidisciplinary team, 9) no available services, and 10) shortage of healthcare professionals, especially speech-language pathologists (SLPs). Conclusion: From evidence-triggers, the problems of care affect the patients and their caregivers holistically. Integrated long-term care by the multidisciplinary team is needed for children with CLP starting from birth to adolescent. Nurses should provide effective care to these patients and their caregivers by using a holistic approach and working collaboratively with other healthcare providers in the multidisciplinary team.

Keywords: evidence-triggers, cleft lip, cleft palate, problems of care

Procedia PDF Downloads 198
492 Integrating Computational Modeling and Analysis with in Vivo Observations for Enhanced Hemodynamics Diagnostics and Prognosis

Authors: Shreyas S. Hegde, Anindya Deb, Suresh Nagesh

Abstract:

Computational bio-mechanics is developing rapidly as a non-invasive tool to assist the medical fraternity to help in both diagnosis and prognosis of human body related issues such as injuries, cardio-vascular dysfunction, atherosclerotic plaque etc. Any system that would help either properly diagnose such problems or assist prognosis would be a boon to the doctors and medical society in general. Recently a lot of work is being focused in this direction which includes but not limited to various finite element analysis related to dental implants, skull injuries, orthopedic problems involving bones and joints etc. Such numerical solutions are helping medical practitioners to come up with alternate solutions for such problems and in most cases have also reduced the trauma on the patients. Some work also has been done in the area related to the use of computational fluid mechanics to understand the flow of blood through the human body, an area of hemodynamics. Since cardio-vascular diseases are one of the main causes of loss of human life, understanding of the blood flow with and without constraints (such as blockages), providing alternate methods of prognosis and further solutions to take care of issues related to blood flow would help save valuable life of such patients. This project is an attempt to use computational fluid dynamics (CFD) to solve specific problems related to hemodynamics. The hemodynamics simulation is used to gain a better understanding of functional, diagnostic and theoretical aspects of the blood flow. Due to the fact that many fundamental issues of the blood flow, like phenomena associated with pressure and viscous forces fields, are still not fully understood or entirely described through mathematical formulations the characterization of blood flow is still a challenging task. The computational modeling of the blood flow and mechanical interactions that strongly affect the blood flow patterns, based on medical data and imaging represent the most accurate analysis of the blood flow complex behavior. In this project the mathematical modeling of the blood flow in the arteries in the presence of successive blockages has been analyzed using CFD technique. Different cases of blockages in terms of percentages have been modeled using commercial software CATIA V5R20 and simulated using commercial software ANSYS 15.0 to study the effect of varying wall shear stress (WSS) values and also other parameters like the effect of increase in Reynolds number. The concept of fluid structure interaction (FSI) has been used to solve such problems. The model simulation results were validated using in vivo measurement data from existing literature

Keywords: computational fluid dynamics, hemodynamics, blood flow, results validation, arteries

Procedia PDF Downloads 379
491 Capacity of Cold-Formed Steel Warping-Restrained Members Subjected to Combined Axial Compressive Load and Bending

Authors: Maryam Hasanali, Syed Mohammad Mojtabaei, Iman Hajirasouliha, G. Charles Clifton, James B. P. Lim

Abstract:

Cold-formed steel (CFS) elements are increasingly being used as main load-bearing components in the modern construction industry, including low- to mid-rise buildings. In typical multi-storey buildings, CFS structural members act as beam-column elements since they are exposed to combined axial compression and bending actions, both in moment-resisting frames and stud wall systems. Current design specifications, including the American Iron and Steel Institute (AISI S100) and the Australian/New Zealand Standard (AS/NZS 4600), neglect the beneficial effects of warping-restrained boundary conditions in the design of beam-column elements. Furthermore, while a non-linear relationship governs the interaction of axial compression and bending, the combined effect of these actions is taken into account through a simplified linear expression combining pure axial and flexural strengths. This paper aims to evaluate the reliability of the well-known Direct Strength Method (DSM) as well as design proposals found in the literature to provide a better understanding of the efficiency of the code-prescribed linear interaction equation in the strength predictions of CFS beam columns and the effects of warping-restrained boundary conditions on their behavior. To this end, the experimentally validated finite element (FE) models of CFS elements under compression and bending were developed in ABAQUS software, which accounts for both non-linear material properties and geometric imperfections. The validated models were then used for a comprehensive parametric study containing 270 FE models, covering a wide range of key design parameters, such as length (i.e., 0.5, 1.5, and 3 m), thickness (i.e., 1, 2, and 4 mm) and cross-sectional dimensions under ten different load eccentricity levels. The results of this parametric study demonstrated that using the DSM led to the most conservative strength predictions for beam-column members by up to 55%, depending on the element’s length and thickness. This can be sourced by the errors associated with (i) the absence of warping-restrained boundary condition effects, (ii) equations for the calculations of buckling loads, and (iii) the linear interaction equation. While the influence of warping restraint is generally less than 6%, the code suggested interaction equation led to an average error of 4% to 22%, based on the element lengths. This paper highlights the need to provide more reliable design solutions for CFS beam-column elements for practical design purposes.

Keywords: beam-columns, cold-formed steel, finite element model, interaction equation, warping-restrained boundary conditions

Procedia PDF Downloads 78
490 The French Ekang Ethnographic Dictionary. The Quantum Approach

Authors: Henda Gnakate Biba, Ndassa Mouafon Issa

Abstract:

Dictionaries modeled on the Western model [tonic accent languages] are not suitable and do not account for tonal languages phonologically, which is why the [prosodic and phonological] ethnographic dictionary was designed. It is a glossary that expresses the tones and the rhythm of words. It recreates exactly the speaking or singing of a tonal language, and allows the non-speaker of this language to pronounce the words as if they were a native. It is a dictionary adapted to tonal languages. It was built from ethnomusicological theorems and phonological processes, according to Jean. J. Rousseau 1776 hypothesis /To say and to sing were once the same thing/. Each word in the French dictionary finds its corresponding language, ekaη. And each word ekaη is written on a musical staff. This ethnographic dictionary is also an inventive, original and innovative research thesis, but it is also an inventive, original and innovative research thesis. A contribution to the theoretical, musicological, ethno musicological and linguistic conceptualization of languages, giving rise to the practice of interlocution between the social and cognitive sciences, the activities of artistic creation and the question of modeling in the human sciences: mathematics, computer science, translation automation and artificial intelligence. When you apply this theory to any text of a folksong of a world-tone language, you do not only piece together the exact melody, rhythm, and harmonies of that song as if you knew it in advance but also the exact speaking of this language. The author believes that the issue of the disappearance of tonal languages and their preservation has been structurally resolved, as well as one of the greatest cultural equations related to the composition and creation of tonal, polytonal and random music. The experimentation confirming the theorization designed a semi-digital, semi-analog application which translates the tonal languages of Africa (about 2,100 languages) into blues, jazz, world music, polyphonic music, tonal and anatonal music and deterministic and random music). To test this application, I use a music reading and writing software that allows me to collect the data extracted from my mother tongue, which is already modeled in the musical staves saved in the ethnographic (semiotic) dictionary for automatic translation ( volume 2 of the book). Translation is done (from writing to writing, from writing to speech and from writing to music). Mode of operation: you type a text on your computer, a structured song (chorus-verse), and you command the machine a melody of blues, jazz and, world music or, variety etc. The software runs, giving you the option to choose harmonies, and then you select your melody.

Keywords: music, language, entenglement, science, research

Procedia PDF Downloads 38
489 Optimization Principles of Eddy Current Separator for Mixtures with Different Particle Sizes

Authors: Cao Bin, Yuan Yi, Wang Qiang, Amor Abdelkader, Ali Reza Kamali, Diogo Montalvão

Abstract:

The study of the electrodynamic behavior of non-ferrous particles in time-varying magnetic fields is a promising area of research with wide applications, including recycling of non-ferrous metals, mechanical transmission, and space debris. The key technology for recovering non-ferrous metals is eddy current separation (ECS), which utilizes the eddy current force and torque to separate non-ferrous metals. ECS has several advantages, such as low energy consumption, large processing capacity, and no secondary pollution, making it suitable for processing various mixtures like electronic scrap, auto shredder residue, aluminum scrap, and incineration bottom ash. Improving the separation efficiency of mixtures with different particle sizes in ECS can create significant social and economic benefits. Our previous study investigated the influence of particle size on separation efficiency by combining numerical simulations and separation experiments. Pearson correlation analysis found a strong correlation between the eddy current force in simulations and the repulsion distance in experiments, which confirmed the effectiveness of our simulation model. The interaction effects between particle size and material type, rotational speed, and magnetic pole arrangement were examined. It offer valuable insights for the design and optimization of eddy current separators. The underlying mechanism behind the effect of particle size on separation efficiency was discovered by analyzing eddy current and field gradient. The results showed that the magnitude and distribution heterogeneity of eddy current and magnetic field gradient increased with particle size in eddy current separation. Based on this, we further found that increasing the curvature of magnetic field lines within particles could also increase the eddy current force, providing a optimized method to improving the separation efficiency of fine particles. By combining the results of the studies, a more systematic and comprehensive set of optimization guidelines can be proposed for mixtures with different particle size ranges. The separation efficiency of fine particles could be improved by increasing the rotational speed, curvature of magnetic field lines, and electrical conductivity/density of materials, as well as utilizing the eddy current torque. When designing an ECS, the particle size range of the target mixture should be investigated in advance, and the suitable parameters for separating the mixture can be fixed accordingly. In summary, these results can guide the design and optimization of ECS, and also expand the application areas for ECS.

Keywords: eddy current separation, particle size, numerical simulation, metal recovery

Procedia PDF Downloads 52
488 Study of the Possibility of Adsorption of Heavy Metal Ions on the Surface of Engineered Nanoparticles

Authors: Antonina A. Shumakova, Sergey A. Khotimchenko

Abstract:

The relevance of research is associated, on the one hand, with an ever-increasing volume of production and the expansion of the scope of application of engineered nanomaterials (ENMs), and on the other hand, with the lack of sufficient scientific information on the nature of the interactions of nanoparticles (NPs) with components of biogenic and abiogenic origin. In particular, studying the effect of ENMs (TiO2 NPs, SiO2 NPs, Al2O3 NPs, fullerenol) on the toxicometric characteristics of common contaminants such as lead and cadmium is an important hygienic task, given the high probability of their joint presence in food products. Data were obtained characterizing a multidirectional change in the toxicity of model toxicants when they are co-administered with various types of ENMs. One explanation for this fact is the difference in the adsorption capacity of ENMs, which was further studied in in vitro studies. For this, a method was proposed based on in vitro modeling of conditions simulating the environment of the small intestine. It should be noted that the obtained data are in good agreement with the results of in vivo experiments: - with the combined administration of lead and TiO2 NPs, there were no significant changes in the accumulation of lead in rat liver; in other organs (kidneys, spleen, testes and brain), the lead content was lower than in animals of the control group; - studying the combined effect of lead and Al2O3 NPs, a multiple and significant increase in the accumulation of lead in rat liver was observed with an increase in the dose of Al2O3 NPs. For other organs, the introduction of various doses of Al2O3 NPs did not significantly affect the bioaccumulation of lead; - with the combined administration of lead and SiO2 NPs in different doses, there was no increase in lead accumulation in all studied organs. Based on the data obtained, it can be assumed that at least three scenarios of the combined effects of ENMs and chemical contaminants on the body: - ENMs quite firmly bind contaminants in the gastrointestinal tract and such a complex becomes inaccessible (or inaccessible) for absorption; in this case, it can be expected that the toxicity of both ENMs and contaminants will decrease; - the complex formed in the gastrointestinal tract has partial solubility and can penetrate biological membranes and / or physiological barriers of the body; in this case, ENMs can play the role of a kind of conductor for contaminants and, thus, their penetration into the internal environment of the body increases, thereby increasing the toxicity of contaminants; - ENMs and contaminants do not interact with each other in any way, therefore the toxicity of each of them is determined only by its quantity and does not depend on the quantity of another component. Authors hypothesized that the degree of adsorption of various elements on the surface of ENMs may be a unique characteristic of their action, allowing a more accurate understanding of the processes occurring in a living organism.

Keywords: absorption, cadmium, engineered nanomaterials, lead

Procedia PDF Downloads 68
487 Legal Considerations in Fashion Modeling: Protecting Models' Rights and Ensuring Ethical Practices

Authors: Fatemeh Noori

Abstract:

The fashion industry is a dynamic and ever-evolving realm that continuously shapes societal perceptions of beauty and style. Within this industry, fashion modeling plays a crucial role, acting as the visual representation of brands and designers. However, behind the glamorous façade lies a complex web of legal considerations that govern the rights, responsibilities, and ethical practices within the field. This paper aims to explore the legal landscape surrounding fashion modeling, shedding light on key issues such as contract law, intellectual property, labor rights, and the increasing importance of ethical considerations in the industry. Fashion modeling involves the collaboration of various stakeholders, including models, designers, agencies, and photographers. To ensure a fair and transparent working environment, it is imperative to establish a comprehensive legal framework that addresses the rights and obligations of each party involved. One of the primary legal considerations in fashion modeling is the contractual relationship between models and agencies. Contracts define the terms of engagement, including payment, working conditions, and the scope of services. This section will delve into the essential elements of modeling contracts, the negotiation process, and the importance of clarity to avoid disputes. Models are not just individuals showcasing clothing; they are integral to the creation and dissemination of artistic and commercial content. Intellectual property rights, including image rights and the use of a model's likeness, are critical aspects of the legal landscape. This section will explore the protection of models' image rights, the use of their likeness in advertising, and the potential for unauthorized use. Models, like any other professionals, are entitled to fair and ethical treatment. This section will address issues such as working conditions, hours, and the responsibility of agencies and designers to prioritize the well-being of models. Additionally, it will explore the global movement toward inclusivity, diversity, and the promotion of positive body image within the industry. The fashion industry has faced scrutiny for perpetuating harmful standards of beauty and fostering a culture of exploitation. This section will discuss the ethical responsibilities of all stakeholders, including the promotion of diversity, the prevention of exploitation, and the role of models as influencers for positive change. In conclusion, the legal considerations in fashion modeling are multifaceted, requiring a comprehensive approach to protect the rights of models and ensure ethical practices within the industry. By understanding and addressing these legal aspects, the fashion industry can create a more transparent, fair, and inclusive environment for all stakeholders involved in the art of modeling.

Keywords: fashion modeling contracts, image rights in modeling, labor rights for models, ethical practices in fashion, diversity and inclusivity in modeling

Procedia PDF Downloads 43
486 CO₂ Recovery from Biogas and Successful Upgrading to Food-Grade Quality: A Case Study

Authors: Elisa Esposito, Johannes C. Jansen, Loredana Dellamuzia, Ugo Moretti, Lidietta Giorno

Abstract:

The reduction of CO₂ emission into the atmosphere as a result of human activity is one of the most important environmental challenges to face in the next decennia. Emission of CO₂, related to the use of fossil fuels, is believed to be one of the main causes of global warming and climate change. In this scenario, the production of biomethane from organic waste, as a renewable energy source, is one of the most promising strategies to reduce fossil fuel consumption and greenhouse gas emission. Unfortunately, biogas upgrading still produces the greenhouse gas CO₂ as a waste product. Therefore, this work presents a case study on biogas upgrading, aimed at the simultaneous purification of methane and CO₂ via different steps, including CO₂/methane separation by polymeric membranes. The original objective of the project was the biogas upgrading to distribution grid quality methane, but the innovative aspect of this case study is the further purification of the captured CO₂, transforming it from a useless by-product to a pure gas with food-grade quality, suitable for commercial application in the food and beverage industry. The study was performed on a pilot plant constructed by Tecno Project Industriale Srl (TPI) Italy. This is a model of one of the largest biogas production and purification plants. The full-scale anaerobic digestion plant (Montello Spa, North Italy), has a digestive capacity of 400.000 ton of biomass/year and can treat 6.250 m3/hour of biogas from FORSU (organic fraction of solid urban waste). The entire upgrading process consists of a number of purifications steps: 1. Dehydration of the raw biogas by condensation. 2. Removal of trace impurities such as H₂S via absorption. 3.Separation of CO₂ and methane via a membrane separation process. 4. Removal of trace impurities from CO₂. The gas separation with polymeric membranes guarantees complete simultaneous removal of microorganisms. The chemical purity of the different process streams was analysed by a certified laboratory and was compared with the guidelines of the European Industrial Gases Association and the International Society of Beverage Technologists (EIGA/ISBT) for CO₂ used in the food industry. The microbiological purity was compared with the limit values defined in the European Collaborative Action. With a purity of 96-99 vol%, the purified methane respects the legal requirements for the household network. At the same time, the CO₂ reaches a purity of > 98.1% before, and 99.9% after the final distillation process. According to the EIGA/ISBT guidelines, the CO₂ proves to be chemically and microbiologically sufficiently pure to be suitable for food-grade applications.

Keywords: biogas, CO₂ separation, CO2 utilization, CO₂ food grade

Procedia PDF Downloads 186
485 Insights into Child Malnutrition Dynamics with the Lens of Women’s Empowerment in India

Authors: Bharti Singh, Shri K. Singh

Abstract:

Child malnutrition is a multifaceted issue that transcends geographical boundaries. Malnutrition not only stunts physical growth but also leads to a spectrum of morbidities and child mortality. It is one of the leading causes of death (~50 %) among children under age five. Despite economic progress and advancements in healthcare, child malnutrition remains a formidable challenge for India. The objective is to investigate the impact of women's empowerment on child nutrition outcomes in India from 2006 to 2021. A composite index of women's empowerment was constructed using Confirmatory Factor Analysis (CFA), a rigorous technique that validates the measurement model by assessing how well-observed variables represent latent constructs. This approach ensures the reliability and validity of the empowerment index. Secondly, kernel density plots were utilised to visualise the distribution of key nutritional indicators, such as stunting, wasting, and overweight. These plots offer insights into the shape and spread of data distributions, aiding in understanding the prevalence and severity of malnutrition. Thirdly, linear polynomial graphs were employed to analyse how nutritional parameters evolved with the child's age. This technique enables the visualisation of trends and patterns over time, allowing for a deeper understanding of nutritional dynamics during different stages of childhood. Lastly, multilevel analysis was conducted to identify vulnerable levels, including State-level, PSU-level, and household-level factors impacting undernutrition. This approach accounts for hierarchical data structures and allows for the examination of factors at multiple levels, providing a comprehensive understanding of the determinants of child malnutrition. Overall, the utilisation of these statistical methodologies enhances the transparency and replicability of the study by providing clear and robust analytical frameworks for data analysis and interpretation. Our study reveals that NFHS-4 and NFHS-5 exhibit an equal density of severely stunted cases. NFHS-5 indicates a limited decline in wasting among children aged five, while the density of severely wasted children remains consistent across NFHS-3, 4, and 5. In 2019-21, women with higher empowerment had a lower risk of their children being undernourished (Regression coefficient= -0.10***; Confidence Interval [-0.18, -0.04]). Gender dynamics also play a significant role, with male children exhibiting a higher susceptibility to undernourishment. Multilevel analysis suggests household-level vulnerability (intra-class correlation=0.21), highlighting the need to address child undernutrition at the household level.

Keywords: child nutrition, India, NFHS, women’s empowerment

Procedia PDF Downloads 15
484 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack

Authors: Varun Agarwal

Abstract:

Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.

Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images

Procedia PDF Downloads 107
483 Exploring Instructional Designs on the Socio-Scientific Issues-Based Learning Method in Respect to STEM Education for Measuring Reasonable Ethics on Electromagnetic Wave through Science Attitudes toward Physics

Authors: Adisorn Banhan, Toansakul Santiboon, Prasong Saihong

Abstract:

Using the Socio-Scientific Issues-Based Learning Method is to compare of the blended instruction of STEM education with a sample consisted of 84 students in 2 classes at the 11th grade level in Sarakham Pittayakhom School. The 2-instructional models were managed of five instructional lesson plans in the context of electronic wave issue. These research procedures were designed of each instructional method through two groups, the 40-experimental student group was designed for the instructional STEM education (STEMe) and 40-controlling student group was administered with the Socio-Scientific Issues-Based Learning (SSIBL) methods. Associations between students’ learning achievements of each instructional method and their science attitudes of their predictions to their exploring activities toward physics with the STEMe and SSIBL methods were compared. The Measuring Reasonable Ethics Test (MRET) was assessed students’ reasonable ethics with the STEMe and SSIBL instructional design methods on two each group. Using the pretest and posttest technique to monitor and evaluate students’ performances of their reasonable ethics on electromagnetic wave issue in the STEMe and SSIBL instructional classes were examined. Students were observed and gained experience with the phenomena being studied with the Socio-Scientific Issues-Based Learning method Model. To support with the STEM that it was not just teaching about Science, Technology, Engineering, and Mathematics; it is a culture that needs to be cultivated to help create a problem solving, creative, critical thinking workforce for tomorrow in physics. Students’ attitudes were assessed with the Test Of Physics-Related Attitude (TOPRA) modified from the original Test Of Science-Related Attitude (TOSRA). Comparisons between students’ learning achievements of their different instructional methods on the STEMe and SSIBL were analyzed. Associations between students’ performances the STEMe and SSIBL instructional design methods of their reasonable ethics and their science attitudes toward physics were associated. These findings have found that the efficiency of the SSIBL and the STEMe innovations were based on criteria of the IOC value higher than evidence as 80/80 standard level. Statistically significant of students’ learning achievements to their later outcomes on the controlling and experimental groups with the SSIBL and STEMe were differentiated between students’ learning achievements at the .05 level. To compare between students’ reasonable ethics with the SSIBL and STEMe of students’ responses to their instructional activities in the STEMe is higher than the SSIBL instructional methods. Associations between students’ later learning achievements with the SSIBL and STEMe, the predictive efficiency values of the R2 indicate that 67% and 75% for the SSIBL, and indicate that 74% and 81% for the STEMe of the variances were attributable to their developing reasonable ethics and science attitudes toward physics, consequently.

Keywords: socio-scientific issues-based learning method, STEM education, science attitudes, measurement, reasonable ethics, physics classes

Procedia PDF Downloads 260
482 Design, Simulation and Construction of 2.4GHz Microstrip Patch Antenna for Improved Wi-Fi Reception

Authors: Gabriel Ugalahi, Dominic S. Nyitamen

Abstract:

This project seeks to improve Wi-Fi reception by utilizing the properties of directional microstrip patch antennae. Where there is a dense population of Wi-Fi signal, several signal sources transmitting on the same frequency band and indeed channel constitutes interference to each other. The time it takes for request to be received, resolved and response given between a user and the resource provider is increased considerably. By deploying a directional patch antenna with a narrow bandwidth, the range of frequency received is reduced and should help in limiting the reception of signal from unwanted sources. A rectangular microstrip patch antenna (RMPA) is designed to operate at the Industrial Scientific and Medical (ISM) band (2.4GHz) commonly used in Wi-Fi network deployment. The dimensions of the antenna are calculated and these dimensions are used to generate a model on Advanced Design System (ADS), a microwave simulator. Simulation results are then analyzed and necessary optimization is carried out to further enhance the radiation quality so as to achieve desired results. Impedance matching at 50Ω is also obtained by using the inset feed method. Final antenna dimensions obtained after simulation and optimization are then used to implement practical construction on an FR-4 double sided copper clad printed circuit board (PCB) through a chemical etching process using ferric chloride (Fe2Cl). Simulation results show an RMPA operating at a centre frequency of 2.4GHz with a bandwidth of 40MHz. A voltage standing wave ratio (VSWR) of 1.0725 is recorded on a return loss of -29.112dB at input port showing an appreciable match in impedance to a source of 50Ω. In addition, a gain of 3.23dBi and directivity of 6.4dBi is observed during far-field analysis. On deployment, signal reception from wireless devices is improved due to antenna gain. A test source with a received signal strength indication (RSSI) of -80dBm without antenna installed on the receiver was improved to an RSSI of -61dBm. In addition, the directional radiation property of the RMPA prioritizes signals by pointing in the direction of a preferred signal source thus, reducing interference from undesired signal sources. This was observed during testing as rotation of the antenna on its axis resulted to the gain of signal in-front of the patch and fading of signals away from the front.

Keywords: advanced design system (ADS), inset feed, received signal strength indicator (RSSI), rectangular microstrip patch antenna (RMPA), voltage standing wave ratio (VSWR), wireless fidelity (Wi-Fi)

Procedia PDF Downloads 193
481 Computational Homogenization of Thin Walled Structures: On the Influence of the Global vs Local Applied Plane Stress Condition

Authors: M. Beusink, E. W. C. Coenen

Abstract:

The increased application of novel structural materials, such as high grade asphalt, concrete and laminated composites, has sparked the need for a better understanding of the often complex, non-linear mechanical behavior of such materials. The effective macroscopic mechanical response is generally dependent on the applied load path. Moreover, it is also significantly influenced by the microstructure of the material, e.g. embedded fibers, voids and/or grain morphology. At present, multiscale techniques are widely adopted to assess micro-macro interactions in a numerically efficient way. Computational homogenization techniques have been successfully applied over a wide range of engineering cases, e.g. cases involving first order and second order continua, thin shells and cohesive zone models. Most of these homogenization methods rely on Representative Volume Elements (RVE), which model the relevant microstructural details in a confined volume. Imposed through kinematical constraints or boundary conditions, a RVE can be subjected to a microscopic load sequence. This provides the RVE's effective stress-strain response, which can serve as constitutive input for macroscale analyses. Simultaneously, such a study of a RVE gives insight into fine scale phenomena such as microstructural damage and its evolution. It has been reported by several authors that the type of boundary conditions applied to the RVE affect the resulting homogenized stress-strain response. As a consequence, dedicated boundary conditions have been proposed to appropriately deal with this concern. For the specific case of a planar assumption for the analyzed structure, e.g. plane strain, axisymmetric or plane stress, this assumption needs to be addressed consistently in all considered scales. Although in many multiscale studies a planar condition has been employed, the related impact on the multiscale solution has not been explicitly investigated. This work therefore focuses on the influence of the planar assumption for multiscale modeling. In particular the plane stress case is highlighted, by proposing three different implementation strategies which are compatible with a first-order computational homogenization framework. The first method consists of applying classical plane stress theory at the microscale, whereas with the second method a generalized plane stress condition is assumed at the RVE level. For the third method, the plane stress condition is applied at the macroscale by requiring that the resulting macroscopic out-of-plane forces are equal to zero. These strategies are assessed through a numerical study of a thin walled structure and the resulting effective macroscale stress-strain response is compared. It is shown that there is a clear influence of the length scale at which the planar condition is applied.

Keywords: first-order computational homogenization, planar analysis, multiscale, microstrucutures

Procedia PDF Downloads 207
480 Exploring Neural Responses to Urban Spaces in Older People Using Mobile EEG

Authors: Chris Neale, Jenny Roe, Peter Aspinall, Sara Tilley, Steve Cinderby, Panos Mavros, Richard Coyne, Neil Thin, Catharine Ward Thompson

Abstract:

This research directly assesses older people’s neural activation in response to walking through a changing urban environment, as measured by electroencephalography (EEG). As the global urban population is predicted to grow, there is a need to understand the role that the urban environment may play on the health of its older inhabitants. There is a large body of evidence suggesting green space has a beneficial restorative effect, but this effect remains largely understudied in both older people and by using a neuroimaging assessment. For this study, participants aged 65 years and over were required to walk between a busy urban built environment and a green urban environment, in a counterbalanced design, wearing an Emotiv EEG headset to record real-time neural responses to place. Here we report on the outputs for these responses derived from both the proprietary Affectiv Suite software, which creates emotional parameters with a real time value assigned to them, as well as the raw EEG output focusing on alpha and beta changes, associated with changes in relaxation and attention respectively. Each walk lasted around fifteen minutes and was undertaken at the natural walking pace of the participant. The two walking environments were compared using a form of high dimensional correlated component regression (CCR) on difference data between the urban busy and urban green spaces. For the Emotiv parameters, results showed that levels of ‘engagement’ increased in the urban green space (with a subsequent decrease in the urban busy built space) whereas levels of ‘excitement’ increased in the urban busy environment (with a subsequent decrease in the urban green space). In the raw data, low beta (13 – 19 Hz) increased in the urban busy space with a subsequent decrease shown in the green space, similar to the pattern shown with the ‘excitement’ result. Alpha activity (9 – 13 Hz) shows a correlation with low beta, but not with dependent change in the regression model. This suggests that alpha is acting as a suppressor variable. These results suggest that there are neural signatures associated with the experience of urban spaces which may reflect the age of the cohort or the spatiality of the settings themselves. These are shown both in the outputs of the proprietary software as well as the raw EEG output. Built busy urban spaces appear to induce neural activity associated with vigilance and low level stress, while this effect is ameliorated in the urban green space, potentially suggesting a beneficial effect on attentional capacity in urban green space in this participant group. The interaction between low beta and alpha requires further investigation, in particular the role of alpha in this relationship.

Keywords: ageing, EEG, green space, urban space

Procedia PDF Downloads 201
479 A Case Study on Quantitatively and Qualitatively Increasing Student Output by Using Available Word Processing Applications to Teach Reluctant Elementary School-Age Writers

Authors: Vivienne Cameron

Abstract:

Background: Between 2010 and 2017, teachers in a suburban public school district struggled to get students to consistently produce adequate writing samples as measured by the Pennsylvania state writing rubric for measuring focus, content, organization, style, and conventions. A common thread in all of the data was the need to develop stamina in the student writers. Method: All of the teachers used the traditional writing process model (prewrite, draft, revise, edit, final copy) during writing instruction. One teacher taught the writing process using word processing and incentivizing with publication instead of the traditional pencil/paper/grading method. Students did not have instruction in typing/keyboarding. The teacher submitted resulting student work to real-life contests, magazines, and publishers. Results: Students in the test group increased both the quantity and quality of their writing over a seven month period as measured by the Pennsylvania state writing rubric. Reluctant writers, as well as students with autism spectrum disorder, benefited from this approach. This outcome was repeated consistently over a five-year period. Interpretation: Removing the burden of pencil and paper allowed students to participate in the writing process more fully. Writing with pencil and paper is physically tiring. Students are discouraged when they submit a draft and are instructed to use the Add, Remove, Move, Substitute (ARMS) method to revise their papers. Each successive version becomes shorter. Allowing students to type their papers frees them to quickly and easily make changes. The result is longer writing pieces in shorter time frames, allowing the teacher to spend more time working on individual needs. With this additional time, the teacher can concentrate on teaching focus, content, organization, style, conventions, and audience. S/he also has a larger body of works from which to work on whole group instruction such as developing effective leads. The teacher submitted the resulting student work to contests, magazines, and publishers. Although time-consuming, the submission process was an invaluable lesson for teaching about audience and tone. All students in the test sample had work accepted for publication. Students became highly motivated to succeed when their work was accepted for publication. This motivation applied to special needs students, regular education students, and gifted students.

Keywords: elementary-age students, reluctant writers, teaching strategies, writing process

Procedia PDF Downloads 145