Search results for: particle-tracking model
13876 The Analysis of Emergency Shutdown Valves Torque Data in Terms of Its Use as a Health Indicator for System Prognostics
Authors: Ewa M. Laskowska, Jorn Vatn
Abstract:
Industry 4.0 focuses on digital optimization of industrial processes. The idea is to use extracted data in order to build a decision support model enabling use of those data for real time decision making. In terms of predictive maintenance, the desired decision support tool would be a model enabling prognostics of system's health based on the current condition of considered equipment. Within area of system prognostics and health management, a commonly used health indicator is Remaining Useful Lifetime (RUL) of a system. Because the RUL is a random variable, it has to be estimated based on available health indicators. Health indicators can be of different types and come from different sources. They can be process variables, equipment performance variables, data related to number of experienced failures, etc. The aim of this study is the analysis of performance variables of emergency shutdown valves (ESV) used in oil and gas industry. ESV is inspected periodically, and at each inspection torque and time of valve operation are registered. The data will be analyzed by means of machine learning or statistical analysis. The purpose is to investigate whether the available data could be used as a health indicator for a prognostic purpose. The second objective is to examine what is the most efficient way to incorporate the data into predictive model. The idea is to check whether the data can be applied in form of explanatory variables in Markov process or whether other stochastic processes would be a more convenient to build an RUL model based on the information coming from registered data.Keywords: emergency shutdown valves, health indicator, prognostics, remaining useful lifetime, RUL
Procedia PDF Downloads 9113875 Ecosystem Modeling along the Western Bay of Bengal
Authors: A. D. Rao, Sachiko Mohanty, R. Gayathri, V. Ranga Rao
Abstract:
Modeling on coupled physical and biogeochemical processes of coastal waters is vital to identify the primary production status under different natural and anthropogenic conditions. About 7, 500 km length of Indian coastline is occupied with number of semi enclosed coastal bodies such as estuaries, inlets, bays, lagoons, and other near shore, offshore shelf waters, etc. This coastline is also rich in wide varieties of ecosystem flora and fauna. Directly/indirectly extensive domestic and industrial sewage enter into these coastal water bodies affecting the ecosystem character and create environment problems such as water quality degradation, hypoxia, anoxia, harmful algal blooms, etc. lead to decline in fishery and other related biological production. The present study is focused on the southeast coast of India, starting from Pulicat to Gulf of Mannar, which is rich in marine diversity such as lagoon, mangrove and coral ecosystem. Three dimensional Massachusetts Institute of Technology general circulation model (MITgcm) along with Darwin biogeochemical module is configured for the western Bay of Bengal (BoB) to study the biogeochemistry over this region. The biogeochemical module resolves the cycling of carbon, phosphorous, nitrogen, silica, iron and oxygen through inorganic, living, dissolved and particulate organic phases. The model domain extends from 4°N-16.5°N and 77°E-86°E with a horizontal resolution of 1 km. The bathymetry is derived from General Bathymetric Chart of the Oceans (GEBCO), which has a resolution of 30 sec. The model is initialized by using the temperature, salinity filed from the World Ocean Atlas (WOA2013) of National Oceanographic Data Centre with a resolution of 0.25°. The model is forced by the surface wind stress from ASCAT and the photosynthetically active radiation from the MODIS-Aqua satellite. Seasonal climatology of nutrients (phosphate, nitrate and silicate) for the southwest BoB region are prepared using available National Institute of Oceanography (NIO) in-situ data sets and compared with the WOA2013 seasonal climatology data. The model simulations with the two different initial conditions viz., WOA2013 and the generated NIO climatology, showed evident changes in the concentration and the evolution of the nutrients in the study region. It is observed that the availability of nutrients is more in NIO data compared to WOA in the model domain. The model simulated primary productivity is compared with the spatially distributed satellite derived chlorophyll data and at various locations with the in-situ data. The seasonal variability of the model simulated primary productivity is also studied.Keywords: Bay of Bengal, Massachusetts Institute of Technology general circulation model, MITgcm, biogeochemistry, primary productivity
Procedia PDF Downloads 14113874 Assessment of Climate Change Impacts on the Hydrology of Upper Guder Catchment, Upper Blue Nile
Authors: Fikru Fentaw Abera
Abstract:
Climate changes alter regional hydrologic conditions and results in a variety of impacts on water resource systems. Such hydrologic changes will affect almost every aspect of human well-being. The goal of this paper is to assess the impact of climate change on the hydrology of Upper Guder catchment located in northwest of Ethiopia. The GCM derived scenarios (HadCM3 A2a & B2a SRES emission scenarios) experiments were used for the climate projection. The statistical downscaling model (SDSM) was used to generate future possible local meteorological variables in the study area. The down-scaled data were then used as input to the soil and water assessment tool (SWAT) model to simulate the corresponding future stream flow regime in Upper Guder catchment of the Abay River Basin. A semi distributed hydrological model, SWAT was developed and Generalized Likelihood Uncertainty Estimation (GLUE) was utilized for uncertainty analysis. GLUE is linked with SWAT in the Calibration and Uncertainty Program known as SWAT-CUP. Three benchmark periods simulated for this study were 2020s, 2050s and 2080s. The time series generated by GCM of HadCM3 A2a and B2a and Statistical Downscaling Model (SDSM) indicate a significant increasing trend in maximum and minimum temperature values and a slight increasing trend in precipitation for both A2a and B2a emission scenarios in both Gedo and Tikur Inch stations for all three bench mark periods. The hydrologic impact analysis made with the downscaled temperature and precipitation time series as input to the hydrological model SWAT suggested for both A2a and B2a emission scenarios. The model output shows that there may be an annual increase in flow volume up to 35% for both emission scenarios in three benchmark periods in the future. All seasons show an increase in flow volume for both A2a and B2a emission scenarios for all time horizons. Potential evapotranspiration in the catchment also will increase annually on average 3-15% for the 2020s and 7-25% for the 2050s and 2080s for both A2a and B2a emissions scenarios.Keywords: climate change, Guder sub-basin, GCM, SDSM, SWAT, SWAT-CUP, GLUE
Procedia PDF Downloads 36413873 Non-Linear Finite Element Investigation on the Behavior of CFRP Strengthened Steel Square HSS Columns under Eccentric Loading
Authors: Tasnuba Binte Jamal, Khan Mahmud Amanat
Abstract:
Carbon Fiber-Reinforced Polymer (CFRP) composite materials have proven to have valuable properties and suitability to be used in the construction of new buildings and in upgrading the existing ones due to its effectiveness, ease of implementation and many more. In the present study, a numerical finite element investigation has been conducted using ANSYS 18.1 to study the behavior of square HSS AISC sections under eccentric compressive loading strengthened with CFRP materials. A three-dimensional finite element model for square HSS section using shell element was developed. Application of CFRP strengthening was incorporated in the finite element model by adding an additional layer of shell elements. Both material and geometric nonlinearities were incorporated in the model. The developed finite element model was applied to simulate experimental studies done by past researchers and it was found that good agreement exists between the current analysis and past experimental results, which established the acceptability and validity of the developed finite element model to carry out further investigation. Study was then focused on some selected non-compact AISC square HSS columns and the effects of number of CFRP layers, amount of eccentricities and cross-sectional geometry on the strength gain of those columns were observed. Load was applied at a distance equal to the column dimension and twice that of column dimension. It was observed that CFRP strengthening is comparatively effective for smaller eccentricities. For medium sized sections, strengthening tends to be effective at smaller eccentricities as well. For relatively large AISC square HSS columns, with increasing number of CFRP layers (from 1 to 3 layers) the gain in strength is approximately 1 to 38% to that of unstrengthened section for smaller eccentricities and slenderness ratio ranging from 27 to 54. For medium sized square HSS sections, effectiveness of CFRP strengthening increases approximately by about 12 to 162%. The findings of the present study provide a better understanding of the behavior of HSS sections strengthened with CFRP subjected to eccentric compressive load.Keywords: CFRP strengthening, eccentricity, finite element model, square hollow section
Procedia PDF Downloads 14413872 Optimal Maintenance Clustering for Rail Track Components Subject to Possession Capacity Constraints
Authors: Cuong D. Dao, Rob J.I. Basten, Andreas Hartmann
Abstract:
This paper studies the optimal maintenance planning of preventive maintenance and renewal activities for components in a single railway track when the available time for maintenance is limited. The rail-track system consists of several types of components, such as rail, ballast, and switches with different preventive maintenance and renewal intervals. To perform maintenance or renewal on the track, a train free period for maintenance, called a possession, is required. Since a major possession directly affects the regular train schedule, maintenance and renewal activities are clustered as much as possible. In a highly dense and utilized railway network, the possession time on the track is critical since the demand for train operations is very high and a long possession has a severe impact on the regular train schedule. We present an optimization model and investigate the maintenance schedules with and without the possession capacity constraint. In addition, we also integrate the social-economic cost related to the effects of the maintenance time to the variable possession cost into the optimization model. A numerical example is provided to illustrate the model.Keywords: rail-track components, maintenance, optimal clustering, possession capacity
Procedia PDF Downloads 26213871 The 2017 Shanghai Model Breaking Stalemate in Chinese Education Reform: A Discussion of China’s Scheduled Experiment in Access to Higher Education Between 2017 and 2020
Authors: Ping Chou, Xiaoyan Zhou
Abstract:
Domestically and internationally, the Chinese education has long been criticized for being test-oriented, and in spite of efforts made by the Chinese government, it remains hard to find a solution. This paper intends to look at the situation in a comparatively objective manner and discuss the significance of the Shanghai Model as a newly-scheduled experiment for education reform. As a breakthrough, in addition to comprehensive inner-quality evaluation, a small but important step is to be taken in shifting focus of attention back to students by giving them more freedom in selecting certain courses for aptitude tests for college admission. As the first author of the paper has studied and taught both in Chinese and American colleges and universities, comparisons are made when the situation becomes relevant. The official solution for test-oriented education is to make students well-rounded but the writers of this paper believe that it is even more important to make the system well-rounded so it can accept a spectrum of diverse individuals with different potential.Keywords: college admission, education reform, Shanghai model, test-oriented education
Procedia PDF Downloads 33813870 Brain Connectome of Glia, Axons, and Neurons: Cognitive Model of Analogy
Authors: Ozgu Hafizoglu
Abstract:
An analogy is an essential tool of human cognition that enables connecting diffuse and diverse systems with physical, behavioral, principal relations that are essential to learning, discovery, and innovation. The Cognitive Model of Analogy (CMA) leads and creates patterns of pathways to transfer information within and between domains in science, just as happens in the brain. The connectome of the brain shows how the brain operates with mental leaps between domains and mental hops within domains and the way how analogical reasoning mechanism operates. This paper demonstrates the CMA as an evolutionary approach to science, technology, and life. The model puts forward the challenges of deep uncertainty about the future, emphasizing the need for flexibility of the system in order to enable reasoning methodology to adapt to changing conditions in the new era, especially post-pandemic. In this paper, we will reveal how to draw an analogy to scientific research to discover new systems that reveal the fractal schema of analogical reasoning within and between the systems like within and between the brain regions. Distinct phases of the problem-solving processes are divided thusly: stimulus, encoding, mapping, inference, and response. Based on the brain research so far, the system is revealed to be relevant to brain activation considering each of these phases with an emphasis on achieving a better visualization of the brain’s mechanism in macro context; brain and spinal cord, and micro context: glia and neurons, relative to matching conditions of analogical reasoning and relational information, encoding, mapping, inference and response processes, and verification of perceptual responses in four-term analogical reasoning. Finally, we will relate all these terminologies with these mental leaps, mental maps, mental hops, and mental loops to make the mental model of CMA clear.Keywords: analogy, analogical reasoning, brain connectome, cognitive model, neurons and glia, mental leaps, mental hops, mental loops
Procedia PDF Downloads 16513869 Student Loan Debt among Students with Disabilities
Authors: Kaycee Bills
Abstract:
This study will determine if students with disabilities have higher student loan debt payments than other student populations. The hypothesis was that students with disabilities would have significantly higher student loan debt payments than other students due to the length of time they spend in school. Using the Bachelorette and Beyond Study Wave 2015/017 dataset, quantitative methods were employed. These data analysis methods included linear regression and a correlation matrix. Due to the exploratory nature of the study, the significance levels for the overall model and each variable were set at .05. The correlation matrix demonstrated that students with certain types of disabilities are more likely to fall under higher student loan payment brackets than students without disabilities. These results also varied among the different types of disabilities. The result of the overall linear regression model was statistically significant (p = .04). Despite the overall model being statistically significant, the majority of the significance values for the different types of disabilities were null. However, several other variables had statistically significant results, such as veterans, people of minority races, and people who attended private schools. Implications for how this impacts the economy, capitalism, and financial wellbeing of various students are discussed.Keywords: disability, student loan debt, higher education, social work
Procedia PDF Downloads 16813868 Aggregate Production Planning Framework in a Multi-Product Factory: A Case Study
Authors: Ignatio Madanhire, Charles Mbohwa
Abstract:
This study looks at the best model of aggregate planning activity in an industrial entity and uses the trial and error method on spreadsheets to solve aggregate production planning problems. Also linear programming model is introduced to optimize the aggregate production planning problem. Application of the models in a furniture production firm is evaluated to demonstrate that practical and beneficial solutions can be obtained from the models. Finally some benchmarking of other furniture manufacturing industries was undertaken to assess relevance and level of use in other furniture firmsKeywords: aggregate production planning, trial and error, linear programming, furniture industry
Procedia PDF Downloads 55613867 The Framework of System Safety for Multi Human-in-The-Loop System
Authors: Hideyuki Shintani, Ichiro Koshijima
Abstract:
In Cyber Physical System (CPS), if there are a large number of persons in the process, a role of person in CPS might be different comparing with the one-man system. It is also necessary to consider how Human-in-The-Loop Cyber Physical Systems (HiTLCPS) ensure safety of each person in the loop process. In this paper, the authors discuss a system safety framework with an illustrative example with STAMP model to clarify what point for safety should be considered and what role of person in the should have.Keywords: cyber-physical-system, human-in-the-loop, safety, STAMP model
Procedia PDF Downloads 32513866 The Increasing of Perception of Consumers’ Awareness about Sustainability Brands during Pandemic: A Multi Mediation Model
Authors: Silvia Platania, Martina Morando, Giuseppe Santisi
Abstract:
Introduction: In the last thirty years, there is constant talk of sustainable consumption and a "transition" of consumer lifestyles towards greater awareness of consumer choices (United Nation, 1992). The 2019 coronavirus (COVID-19) epidemic that has hit the world population since 2020 has had significant consequences in all areas of people's lives; individuals have been forced to change their behaviors, to redefine their owngoals, priorities, practices, and lifestyles, to rebuild themselves in the new situation dictated by the pandemic. Method(Participants and procedure ): The data were collected through an online survey; moreover, we used convenience sampling from the general population. The participants were 669 Italians consumers (Female= 514, 76.8%; Male=155, 23.2%) that choice sustainability brands, aged between 18 and 65 years (Mₐ𝓰ₑ = 35.45; Standard Deviation, SD = 9.51).(Measure ): The following measures were used: The Muncy–Vitell Consumer Ethics Scale; Attitude Toward Business Scale; Perceived Consumer Effectiveness Scale; Consumers Perception on Sustainable Brand Attitudes. Results: Preliminary analyses were conducted to test our model. Pearson's bivariate correlation between variables shows that all variables of our model correlate significantly and positively, PCE with CPSBA (r = .56, p <.001). Furthermore, a CFA, according to Harman's single-factor test, was used to diagnose the extent to which common-method variance was a problem. A comparison between the hypothesised model and a model with one factor (with all items loading on a unique factor) revealed that the former provided a better fit for the data in all the CFA fit measures [χ² [6, n = 669] = 7.228, p = 0.024, χ² / df = 1.20, RMSEA = 0.07 (CI = 0.051-0.067), CFI = 0.95, GFI = 0.95, SRMR = 0.04, AIC = 66.501; BIC = 132,150). Next, amulti mediation was conducted to test our hypotheses. The results show that there is a direct effect of PCE on ethical consumption behavior (β = .38) and on ATB (β = .23); furthermore, there is a direct effect on the CPSBA outcome (β = .34). In addition, there is a mediating effect by ATB (C.I. =. 022-.119, 95% interval confidence) and by CES (C.I. =. 136-.328, 95% interval confidence). Conclusion: The spread of the COVID-19 pandemic has affected consumer consumption styles and has led to an increase in online shopping and purchases of sustainable products. Several theoretical and practical considerations emerge from the results of the study.Keywords: decision making, sustainability, pandemic, multimediation model
Procedia PDF Downloads 11013865 VideoAssist: A Labelling Assistant to Increase Efficiency in Annotating Video-Based Fire Dataset Using a Foundation Model
Authors: Keyur Joshi, Philip Dietrich, Tjark Windisch, Markus König
Abstract:
In the field of surveillance-based fire detection, the volume of incoming data is increasing rapidly. However, the labeling of a large industrial dataset is costly due to the high annotation costs associated with current state-of-the-art methods, which often require bounding boxes or segmentation masks for model training. This paper introduces VideoAssist, a video annotation solution that utilizes a video-based foundation model to annotate entire videos with minimal effort, requiring the labeling of bounding boxes for only a few keyframes. To the best of our knowledge, VideoAssist is the first method to significantly reduce the effort required for labeling fire detection videos. The approach offers bounding box and segmentation annotations for the video dataset with minimal manual effort. Results demonstrate that the performance of labels annotated by VideoAssist is comparable to those annotated by humans, indicating the potential applicability of this approach in fire detection scenarios.Keywords: fire detection, label annotation, foundation models, object detection, segmentation
Procedia PDF Downloads 613864 Buddhist Cognitive Behavioral Therapy to Address Depression Among Elderly Population: Multi-cultural Model of Buddhist Based Cognitive Behavioral Therapy to Address Depression Among Elderly Population
Authors: Ashoke Priyadarshana Premananda
Abstract:
As per the suggestions of previously conducted research in Counseling Psychology, the necessity of forming culture- friendly approaches has been strongly emphasized by a number of scholars in the field. In response to that, Multicultural-model of Buddhist Based Cognitive Behavioral Therapy (MMBCBT) has been formed as a culture-friendly therapeutic approach to address psychological disturbances (depression) in late adulthood. Elderly population in the world is on the rise by leaps and bounds, and forming a culture-based therapeutic model which is blended with Buddhist teachings has been the major objective of the study. Buddhist teachings and cultural applications, which were mapped onto Cognitive Behavioral Therapy (CBT) in the West, ultimately resulted in MMBCBT. Therefore, MMBCBT is a blend of cultural therapeutic techniques and the essence of certain Buddhist teachings extracted from five crucial suttas, which include CBT principles. In the process of mapping, MeghiyaSutta, GirimānandaSutta, SallekhaSutta, DvedhāvitakkaSutta, and Vitakka- SaṇṭhānaSutta have been taken into consideration mainly because of their cognitive behavioral content. The practical components of Vitakka- Saṇṭhānasutta (Aññanimittapabbaṃ) and Sallekhasutta (SallekhaPariyāya and CittuppādaPariyāya) have been used in the model while mindfulness of breathing was also carried out with the participants. Basically, multi-cultural therapeutic approaches of MMBCBT aim at modifying behavior (behavioral modification), whereas the rest is centered to the cognitive restructuring process. Therefore, MMBCBT is endowed with Behavioral Therapy (BT) and Cognitive Therapy(CT). In order to find out the validation of MMBCBT as a newly formed approach, it was then followed by mixed research (quantitative and qualitative research) with a sample selected from the elderly population following the purposive sampling technique. 40 individuals were selected from three elderly homes as per the purposive sampling technique. Elderly people identified to be depressed via Geriatric Depression Scale underwent MMBCBT for two weeks continuously while action research was being conducted simultaneously. Additionally, a Focus Group interview was carried out to support the action research. As per the research findings, people who identified depressed prior to the exposure to MMBCBT were found to be showing positive changes after they were exposed to the model. “Paired Sample t test” showed that the Multicultural Model of Buddhist based Cognitive Behavioral Therapy reduced depression of elderly people (The mean value (x̄) of the sample (level of depression) before the model was 10.7 whereas the mean value after the model was 7.5.). Most importantly, MMBCBT has been found to be effectively used with people from all walks of life despite religious diversities.Keywords: buddhist psychotherapy, cognitive behavioral therapy in buddhism, counseling in cultural context, gerontology, and buddhism
Procedia PDF Downloads 10813863 A Cosmic Time Dilation Model for the Week of Creation
Authors: Kwok W. Cheung
Abstract:
A scientific interpretation of creation reconciling the beliefs of six literal days of creation and a 13.7-billion-year-old universe currently perceived by most modern cosmologists is proposed. We hypothesize that the reference timeframe of God’s creation is associated with some cosmic time different from the earth's time. We show that the scale factor of earth time to cosmic time can be determined by the solution of the Friedmann equations. Based on this scale factor and some basic assumptions, we derive a Cosmic Time Dilation model that harmonizes the literal meaning of creation days and scientific discoveries with remarkable accuracy.Keywords: cosmological expansion, time dilation, creation, genesis, relativity, Big Bang, biblical hermeneutics
Procedia PDF Downloads 9113862 Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads
Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill
Abstract:
Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc⁄d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20° as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios.Keywords: slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), pull-out capacity
Procedia PDF Downloads 34313861 High Frequency Memristor-Based BFSK and 8QAM Demodulators
Authors: Nahla Elazab, Mohamed Aboudina, Ghada Ibrahim, Hossam Fahmy, Ahmed Khalil
Abstract:
This paper presents the developed memristor based demodulators for eight circular Quadrature Amplitude Modulation (QAM) and Binary Frequency Shift Keying (BFSK) operating at relatively high frequency. In our implementations, the experimental-based ‘nonlinear’ dopant drift model is adopted along with the proposed circuits providing incorporation of all known non-idealities of practically realized memristor and gaining high operation frequency. The suggested designs leverage the distinctive characteristics of the memristor device, definitely, its changeable average memristance versus the frequency, phase and amplitude of the periodic excitation input. The proposed demodulators feature small integration area, low power consumption, and easy implementation. Moreover, the proposed QAM demodulator precludes the requirement for the carrier recovery circuits. In doing so, the designs were validated by transient simulations using the nonlinear dopant drift memristor model. The simulations results show high agreement with the theory presented.Keywords: BFSK, demodulator, high frequency memristor applications, memristor based analog circuits, nonlinear dopant drift model, QAM
Procedia PDF Downloads 16713860 Simulation of Climatic Change Effects on the Potential Fishing Zones of Dorado Fish (Coryphaena hippurus L.) in the Colombian Pacific under Scenarios RCP Using CMIP5 Model
Authors: Adriana Martínez-Arias, John Josephraj Selvaraj, Luis Octavio González-Salcedo
Abstract:
In the Colombian Pacific, Dorado fish (Coryphaena hippurus L.) fisheries is of great commercial interest. However, its habitat and fisheries may be affected by climatic change especially by the actual increase in sea surface temperature. Hence, it is of interest to study the dynamics of these species fishing zones. In this study, we developed Artificial Neural Networks (ANN) models to predict Catch per Unit Effort (CPUE) as an indicator of species abundance. The model was based on four oceanographic variables (Chlorophyll a, Sea Surface Temperature, Sea Level Anomaly and Bathymetry) derived from satellite data. CPUE datasets for model training and cross-validation were obtained from logbooks of commercial fishing vessel. Sea surface Temperature for Colombian Pacific were projected under Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 using Coupled Model Intercomparison Project Phase 5 (CMIP5) and CPUE maps were created. Our results indicated that an increase in sea surface temperature reduces the potential fishing zones of this species in the Colombian Pacific. We conclude that ANN is a reliable tool for simulation of climate change effects on the potential fishing zones. This research opens a future agenda for other species that have been affected by climate change.Keywords: climatic change, artificial neural networks, dorado fish, CPUE
Procedia PDF Downloads 24313859 The Search of Anomalous Higgs Boson Couplings at the Large Hadron Electron Collider and Future Circular Electron Hadron Collider
Authors: Ilkay Turk Cakir, Murat Altinli, Zekeriya Uysal, Abdulkadir Senol, Olcay Bolukbasi Yalcinkaya, Ali Yilmaz
Abstract:
The Higgs boson was discovered by the ATLAS and CMS experimental groups in 2012 at the Large Hadron Collider (LHC). Production and decay properties of the Higgs boson, Standard Model (SM) couplings, and limits on effective scale of the Higgs boson’s couplings with other bosons are investigated at particle colliders. Deviations from SM estimates are parametrized by effective Lagrangian terms to investigate Higgs couplings. This is a model-independent method for describing the new physics. In this study, sensitivity to neutral gauge boson anomalous couplings with the Higgs boson is investigated using the parameters of the Large Hadron electron Collider (LHeC) and the Future Circular electron-hadron Collider (FCC-eh) with a model-independent approach. By using MadGraph5_aMC@NLO multi-purpose event generator with the parameters of LHeC and FCC-eh, the bounds on the anomalous Hγγ, HγZ and HZZ couplings in e− p → e− q H process are obtained. Detector simulations are also taken into account in the calculations.Keywords: anomalos couplings, FCC-eh, Higgs, Z boson
Procedia PDF Downloads 21013858 Material Flow Modeling in Friction Stir Welding of AA6061-T6 Alloy and Study of the Effect of Process Parameters
Authors: B. SahaRoy, T. Medhi, S. C. Saha
Abstract:
To understand the friction stir welding process, it is very important to know the nature of the material flow in and around the tool. The process is a combination of both thermal as well as mechanical work i.e it is a coupled thermo-mechanical process. Numerical simulations are very much essential in order to obtain a complete knowledge of the process as well as the physics underlying it. In the present work a model based approach is adopted in order to study material flow. A thermo-mechanical based CFD model is developed using a Finite Element package, Comsol Multiphysics. The fluid flow analysis is done. The model simultaneously predicts shear strain fields, shear strain rates and shear stress over the entire workpiece for the given conditions. The flow fields generated by the streamline plot give an idea of the material flow. The variation of dynamic viscosity, velocity field and shear strain fields with various welding parameters is studied. Finally the result obtained from the above mentioned conditions is discussed elaborately and concluded.Keywords: AA6061-T6, CFD modelling, friction stir welding, material flow
Procedia PDF Downloads 52113857 Analysis of Active Compounds in Thai Herbs by near Infrared Spectroscopy
Authors: Chaluntorn Vichasilp, Sutee Wangtueai
Abstract:
This study aims to develop a new method to detect active compounds in Thai herbs (1-deoxynojirimycin (DNJ) in mulberry leave, anthocyanin in Mao and curcumin in turmeric) using near infrared spectroscopy (NIRs). NIRs is non-destructive technique that rapid, non-chemical involved and low-cost determination. By NIRs and chemometrics technique, it was found that the DNJ prediction equation conducted with partial least square regression with cross-validation had low accuracy R2 (0.42) and SEP (31.87 mg/100g). On the other hand, the anthocyanin prediction equation showed moderate good results (R2 and SEP of 0.78 and 0.51 mg/g) with Multiplication scattering correction at wavelength of 2000-2200 nm. The high absorption could be observed at wavelength of 2047 nm and this model could be used as screening level. For curcumin prediction, the good result was obtained when applied original spectra with smoothing technique. The wavelength of 1400-2500 nm was created regression model with R2 (0.68) and SEP (0.17 mg/g). This model had high NIRs absorption at a wavelength of 1476, 1665, 1986 and 2395 nm, respectively. NIRs showed prospective technique for detection of some active compounds in Thai herbs.Keywords: anthocyanin, curcumin, 1-deoxynojirimycin (DNJ), near infrared spectroscopy (NIRs)
Procedia PDF Downloads 38213856 Green Hospitality Industry: An Experience Study with Game Theory in China
Authors: Min Wei
Abstract:
The green hotel provides the products/services consistent with the full utilization of resources, protecting the ecological environment conducive to customers’ requirements and health. In order to better develop the green hospitality industry, this paper applies the game theory to analyze the intrinsic relationship and balanced interests among the stakeholders including government, hotels, and tourists during green hospitality development. Based on the hypothesis in game theory, this paper tries to construct a linkage mechanism in stakeholders, by which a theoretical basis for the interests’ balance can be realized. By using game theory and constructing a game model including tourists, hotels and government, this paper analyzes the relationship of the various stakeholders involved in the green hospitality development, and subsequently proposes the development model of green hospitality industry. On the one hand, this paper applies game theory to construct a green hotel development model and provides a theoretical basis for the interest balance of stakeholders based on theoretical perspective. On the other hand, the current development of green hospitality industry is still in initial phase, and the outcome of this research tries to guide tourists to form a green awareness and to establish the concept of green consumption for hotel development, so that green hotel products/services are provided. In addition, this paper provides a basis for decision making in the relevant government departments so that the interests of all stakeholders are promoted and cooperative game between stakeholders is established, for which the sustainable development of green hotels is achieved. The findings indicate that the process of achieving green hospitality industry development is to maximize the whole interests of stakeholders.Keywords: green hospitality, game theory, stakeholders, development model
Procedia PDF Downloads 13113855 Importance of Solubility and Bubble Pressure Models to Predict Pressure of Nitrified Oil Based Drilling Fluid in Dual Gradient Drilling
Authors: Sajjad Negahban, Ruihe Wang, Baojiang Sun
Abstract:
Gas-lift dual gradient drilling is a solution for deepwater drilling challenges. As well, Continuous development of drilling technology leads to increase employment of mineral oil based drilling fluids and synthetic-based drilling fluids, which have adequate characteristics such as: high rate of penetration, lubricity, shale inhibition and low toxicity. The paper discusses utilization of nitrified mineral oil base drilling for deepwater drilling and for more accurate prediction of pressure in DGD at marine riser, solubility and bubble pressure were considered in steady state hydraulic model. The Standing bubble pressure and solubility correlations, and two models which were acquired from experimental determination were applied in hydraulic model. The effect of the black oil correlations, and new solubility and bubble pressure models was evaluated on the PVT parameters such as oil formation volume factor, density, viscosity, volumetric flow rate. Eventually, the consequent simulated pressure profile due to these models was presented.Keywords: solubility, bubble pressure, gas-lift dual gradient drilling, steady state hydraulic model
Procedia PDF Downloads 27513854 A Mobile Application for Analyzing and Forecasting Crime Using Autoregressive Integrated Moving Average with Artificial Neural Network
Authors: Gajaanuja Megalathan, Banuka Athuraliya
Abstract:
Crime is one of our society's most intimidating and threatening challenges. With the majority of the population residing in cities, many experts and data provided by local authorities suggest a rapid increase in the number of crimes committed in these cities in recent years. There has been an increasing graph in the crime rates. People living in Sri Lanka have the right to know the exact crime rates and the crime rates in the future of the place they are living in. Due to the current economic crisis, crime rates have spiked. There have been so many thefts and murders recorded within the last 6-10 months. Although there are many sources to find out, there is no solid way of searching and finding out the safety of the place. Due to all these reasons, there is a need for the public to feel safe when they are introduced to new places. Through this research, the author aims to develop a mobile application that will be a solution to this problem. It is mainly targeted at tourists, and people who recently relocated will gain advantage of this application. Moreover, the Arima Model combined with ANN is to be used to predict crime rates. From the past researchers' works, it is evidently clear that they haven’t used the Arima model combined with Artificial Neural Networks to forecast crimes.Keywords: arima model, ANN, crime prediction, data analysis
Procedia PDF Downloads 13113853 Isothermal Crystallization Kinetics of Lauric Acid Methyl Ester from DSC Measurements
Authors: Charine Faith H. Lagrimas, Rommel N. Galvan, Rizalinda L. de Leon
Abstract:
An ongoing study, methyl laurate to be used as a refrigerant in an HVAC system, requires the crystallization kinetics of the said substance. Step-wise and normal forms of Avrami model parameters were used to describe the isothermal crystallization kinetics of methyl laurate at different temperatures from Differential Scanning Calorimetry (DSC) measurements. At 3 °C, parameters showed that methyl laurate exhibits a secondary crystallization. The primary crystallization occurred with instantaneous nuclei and spherulitic growth; followed by a secondary instantaneous nucleation with a lower growth of dimensionality, rod-like. At 4 °C to 6 °C, the exotherms from DSC implied that the system was under the isokinetic range. The kinetics behavior is the same which is instantaneous nucleation with one-dimensional growth. The differences for the isokinetic range temperatures are the activation energies (directly proportional to T) and nucleation rates (inversely proportional to T). From the images obtained during the crystallization of methyl laurate using an optical microscope, it is confirmed that the nucleation and crystal growth modes obtained from the optical microscope are consistent with the parameters from Avrami model.Keywords: Avrami model, isothermal crystallization, lipids kinetics, methyl laurate
Procedia PDF Downloads 34213852 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation
Authors: Gyo Woo Lee, Man Young Kim
Abstract:
A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.Keywords: reheating furnace, steel slab, radiative heat transfer, WSGGM, emissivity, residence time
Procedia PDF Downloads 28713851 A Numerical Study of the Interaction between Residual Stress Profiles Induced by Quasi-Static Plastification
Authors: Guilherme F. Guimaraes, Alfredo R. De Faria, Ronnie R. Rego, Andre L. R. D'Oliveira
Abstract:
The development of methods for predicting manufacturing phenomena steadily grows due to their high potential to contribute to the component’s performance and durability. One of the most relevant phenomena in manufacturing is the residual stress state development through the manufacturing chain. In most cases, the residual stresses have their origin due to heterogenous plastifications produced by the processes. Although a few manufacturing processes have been successfully approached by numerical modeling, there is still a lack of understanding on how these processes' interactions will affect the final stress state. The objective of this work is to analyze the influence of previous stresses on the residual stress state induced by plastic deformation of a quasi-static indentation. The model consists of a simplified approach of shot peening, modeling four cases with variations in indenter size and force. This model was validated through topography, measured by optical 3D focus-variation, and residual stress, measured with the X-ray diffraction technique. The validated model was then exposed to several initial stress states, and the effect on the final residual stress was analyzed.Keywords: plasticity, residual stress, finite element method, manufacturing
Procedia PDF Downloads 20613850 An Effective Modification to Multiscale Elastic Network Model and Its Evaluation Based on Analyses of Protein Dynamics
Authors: Weikang Gong, Chunhua Li
Abstract:
Dynamics plays an essential role in function exertion of proteins. Elastic network model (ENM), a harmonic potential-based and cost-effective computational method, is a valuable and efficient tool for characterizing the intrinsic dynamical properties encoded in biomacromolecule structures and has been widely used to detect the large-amplitude collective motions of proteins. Gaussian network model (GNM) and anisotropic network model (ANM) are the two often-used ENM models. In recent years, many ENM variants have been proposed. Here, we propose a small but effective modification (denoted as modified mENM) to the multiscale ENM (mENM) where fitting weights of Kirchhoff/Hessian matrixes with the least square method (LSM) is modified since it neglects the details of pairwise interactions. Then we perform its comparisons with the original mENM, traditional ENM, and parameter-free ENM (pfENM) on reproducing dynamical properties for the six representative proteins whose molecular dynamics (MD) trajectories are available in http://mmb.pcb.ub.es/MoDEL/. In the results, for B-factor prediction, mENM achieves the best performance among the four ENM models. Additionally, it is noted that with the weights of the multiscale Kirchhoff/Hessian matrixes modified, interestingly, the modified mGNM/mANM still has a much better performance than the corresponding traditional ENM and pfENM models. As to dynamical cross-correlation map (DCCM) calculation, taking the data obtained from MD trajectories as the standard, mENM performs the worst while the results produced by the modified mENM and pfENM models are close to those from MD trajectories with the latter a little better than the former. Generally, ANMs perform better than the corresponding GNMs except for the mENM. Thus, pfANM and the modified mANM, especially the former, have an excellent performance in dynamical cross-correlation calculation. Compared with GNMs (except for mGNM), the corresponding ANMs can capture quite a number of positive correlations for the residue pairs nearly largest distances apart, which is maybe due to the anisotropy consideration in ANMs. Furtherly, encouragingly the modified mANM displays the best performance in capturing the functional motional modes, followed by pfANM and traditional ANM models, while mANM fails in all the cases. This suggests that the consideration of long-range interactions is critical for ANM models to produce protein functional motions. Based on the analyses, the modified mENM is a promising method in capturing multiple dynamical characteristics encoded in protein structures. This work is helpful for strengthening the understanding of the elastic network model and provides a valuable guide for researchers to utilize the model to explore protein dynamics.Keywords: elastic network model, ENM, multiscale ENM, molecular dynamics, parameter-free ENM, protein structure
Procedia PDF Downloads 12113849 Used MATLAB Code to Study the Vehicle Bridge Coupling Vibration Based On the Method of Newmark-β
Authors: Saidi Abdelkrim, Hamouine Abdelmadjid, Abdellatif Megnounif
Abstract:
The study of interaction between vehicles and bridge structures has become extremely important. Large deflections and vibration induced by heavy and high-speed vehicles affect significantly the safety and efficiency of bridge. The vibration of a bridge caused by passage of vehicles is one of the most imperative considerations in the design of a bridge as a common sort of transportation structure. A major goal of this study is to create a simplified model of a vehicle bridge system in MATLAB. The model will then be used to study the influence of parameters to vehicle-bridge vibrations.Keywords: vehicle-bridge interaction, Newmark-β, MATLAB code
Procedia PDF Downloads 61613848 A Semi-Markov Chain-Based Model for the Prediction of Deterioration of Concrete Bridges in Quebec
Authors: Eslam Mohammed Abdelkader, Mohamed Marzouk, Tarek Zayed
Abstract:
Infrastructure systems are crucial to every aspect of life on Earth. Existing Infrastructure is subjected to degradation while the demands are growing for a better infrastructure system in response to the high standards of safety, health, population growth, and environmental protection. Bridges play a crucial role in urban transportation networks. Moreover, they are subjected to high level of deterioration because of the variable traffic loading, extreme weather conditions, cycles of freeze and thaw, etc. The development of Bridge Management Systems (BMSs) has become a fundamental imperative nowadays especially in the large transportation networks due to the huge variance between the need for maintenance actions, and the available funds to perform such actions. Deterioration models represent a very important aspect for the effective use of BMSs. This paper presents a probabilistic time-based model that is capable of predicting the condition ratings of the concrete bridge decks along its service life. The deterioration process of the concrete bridge decks is modeled using semi-Markov process. One of the main challenges of the Markov Chain Decision Process (MCDP) is the construction of the transition probability matrix. Yet, the proposed model overcomes this issue by modeling the sojourn times based on some probability density functions. The sojourn times of each condition state are fitted to probability density functions based on some goodness of fit tests such as Kolmogorov-Smirnov test, Anderson Darling, and chi-squared test. The parameters of the probability density functions are obtained using maximum likelihood estimation (MLE). The condition ratings obtained from the Ministry of Transportation in Quebec (MTQ) are utilized as a database to construct the deterioration model. Finally, a comparison is conducted between the Markov Chain and semi-Markov chain to select the most feasible prediction model.Keywords: bridge management system, bridge decks, deterioration model, Semi-Markov chain, sojourn times, maximum likelihood estimation
Procedia PDF Downloads 21113847 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 92