Search results for: electronic learning platform
7542 Roles Currently Played by Educational Middle Leaders
Authors: Elaine Marta Pereira Aaltonen
Abstract:
Effective school leadership materialised in educational settings through the high standard professional performance of senior and middle leaders, has increasingly become an education policy priority around the world due to a wide recognition that schools need knowledgeable, skilled, and committed leaders, along with great teachers, in order to ensure outstanding education at all levels of schooling. The scope of this paper is the work of middle leaders, whose direct influence on teachers and classroom teaching, thus, on student learning outcomes, is a key component for successful school systems. It particularly aims at sharing some of the findings obtained through an academic study recently carried out by the same researcher, which was focused on enhancing understanding about aspects related to the professional performance of educational middle leaders, applied to the context of the lower elementary school division of a private mainstream school located in Brazil. The master´s dissertation findings included identifying the roles performed by a team of educational middle leaders throughout the year of 2021, as well as gaining insights on their perceptions about the roles performed, both through an electronic questionnaire and individual face-to-face interviews. Not only the roles of the middle leaders who participated in the research have been identified through the qualitative case study undertaken, but additional research finding lying within the sphere of the categorisation of such roles, based upon coherent domains of practice, has possibly been made. Hence, the main purpose of this paper is to outline the findings concerning the current roles played by educational middle leaders.Keywords: roles, middle leaders, educational leadership, school leadership, and management
Procedia PDF Downloads 1117541 A Recommender System for Job Seekers to Show up Companies Based on Their Psychometric Preferences and Company Sentiment Scores
Authors: A. Ashraff
Abstract:
The increasing importance of the web as a medium for electronic and business transactions has served as a catalyst or rather a driving force for the introduction and implementation of recommender systems. Recommender Systems play a major role in processing and analyzing thousands of data rows or reviews and help humans make a purchase decision of a product or service. It also has the ability to predict whether a particular user would rate a product or service based on the user’s profile behavioral pattern. At present, Recommender Systems are being used extensively in every domain known to us. They are said to be ubiquitous. However, in the field of recruitment, it’s not being utilized exclusively. Recent statistics show an increase in staff turnover, which has negatively impacted the organization as well as the employee. The reasons being company culture, working flexibility (work from home opportunity), no learning advancements, and pay scale. Further investigations revealed that there are lacking guidance or support, which helps a job seeker find the company that will suit him best, and though there’s information available about companies, job seekers can’t read all the reviews by themselves and get an analytical decision. In this paper, we propose an approach to study the available review data on IT companies (score their reviews based on user review sentiments) and gather information on job seekers, which includes their Psychometric evaluations. Then presents the job seeker with useful information or rather outputs on which company is most suitable for the job seeker. The theoretical approach, Algorithmic approach and the importance of such a system will be discussed in this paper.Keywords: psychometric tests, recommender systems, sentiment analysis, hybrid recommender systems
Procedia PDF Downloads 1117540 Assessment of E-Readiness in Libraries of Public Sector Universities Khyber Pakhtunkhwa-Pakistan
Authors: Saeed Ullah Jan
Abstract:
This study has examined the e-readiness in libraries of public sector universities in Khyber Pakhtunkhwa. Efforts were made to evaluate the availability of human resources, electronic infrastructure, and network services and programs in the public sector university libraries. The population of the study was the twenty-seven public sector university libraries of Khyber Pakhtunkhwa. A quantitative approach was adopted, and a questionnaire-based survey was conducted to collect data from the librarian/in charge of public sector university libraries. The collected data were analyzed using Statistical Package for Social Sciences version 22 (SPSS). The mean score of the knowledge component interpreted magnitudes below three which indicates that the respondents are poorly or moderately satisfied regards knowledge of libraries. The satisfaction level of the respondents about the other components, such as electronic infrastructure, network services and programs, and enhancers of the networked world, was rated as average or below. The study suggested that major aspects of existing public-sector university libraries require significant transformation. For this purpose, the government should provide all the required resources and facilities to meet the population's informational and recreational demands. The Information Communication Technology (ICT) infrastructure of public university libraries needs improvement in terms of the availability of computer equipment, databases, network servers, multimedia projectors, digital cameras, uninterruptible power supply, scanners, and backup devices such as hard discs and Digital Video Disc/Compact Disc.Keywords: ICT-libraries, e-readiness-libraries, e-readiness-university libraries, e-readiness-Pakistan
Procedia PDF Downloads 947539 Designing a Learning Table and Game Cards for Preschoolers for Disaster Risk Reduction (DRR) on Earthquake
Authors: Mehrnoosh Mirzaei
Abstract:
Children are among the most vulnerable at the occurrence of natural disasters such as earthquakes. Most of the management and measures which are considered for both before and during an earthquake are neither suitable nor efficient for this age group and cannot be applied. On the other hand, due to their age, it is hard to educate and train children to learn and understand the concept of earthquake risk mitigation as matters like earthquake prevention and safe places during an earthquake are not easily perceived. To our knowledge, children’s awareness of such concepts via their own world with the help of games is the best training method in this case. In this article, the researcher has tried to consider the child an active element before and during the earthquake. With training, provided by adults before the incidence of an earthquake, the child has the ability to learn disaster risk reduction (DRR). The focus of this research is on learning risk reduction behavior and regarding children as an individual element. The information of this article has been gathered from library resources, observations and the drawings of 10 children aged 5 whose subject was their conceptual definition of an earthquake who were asked to illustrate their conceptual definition of an earthquake; the results of 20 questionnaires filled in by preschoolers along with information gathered by interviewing them. The design of the suitable educational game, appropriate for the needs of this age group, has been made based on the theory of design with help of the user and the priority of children’s learning needs. The final result is a package of a game which is comprised of a learning table and matching cards showing sign marks for safe and unsafe places which introduce the safe behaviors and safe locations before and during the earthquake. These educational games can be used both in group contexts in kindergartens and on an individual basis at home, and they help in earthquake risk reduction.Keywords: disaster education, earthquake sign marks, learning table, matching card, risk reduction behavior
Procedia PDF Downloads 2627538 Impact of Schools' Open and Semi-Open Spaces on Student's Studying Behavior
Authors: Chaithanya Pothuganti
Abstract:
Open and semi-open spaces in educational buildings like corridors, mid landings, seating spaces, lobby, courtyards are traditionally have been the places of social communion and interaction which helps in promoting the knowledge, performance, activeness, and motivation in students. Factors like availability of land, commercialization, of educational facilities, especially in e-techno and smart schools, led to closed classrooms to accommodate students thereby lack quality open and semi-open spaces. This insufficient attention towards open space design which is a means of informal learning misses an opportunity to encourage the student’s skill development, behavior and learning skills. The core objective of this paper is to find the level of impact on student learning behavior and to identify the suitable proportions and configuration of spaces that shape the schools. In order to achieve this, different types of open spaces in schools and their impact on student’s performance in various existing models are analysed using case studies to draw some design principles. The study is limited to indoor open spaces like corridors, break out spaces and courtyards. The expected outcome of the paper is to suggest better design considerations for the development of semi-open and open spaces which functions as an element for informal learnings. Its focus is to provide further thinking on designing and development of open spaces in educational buildings.Keywords: configuration of spaces and proportions, informal learning, open spaces, schools, student’s behavior
Procedia PDF Downloads 3117537 The Formation of Motivational Sphere for Learning Activity under Conditions of Change of One of Its Leading Components
Authors: M. Rodionov, Z. Dedovets
Abstract:
This article discusses ways to implement a differentiated approach to developing academic motivation for mathematical studies which relies on defining the primary structural characteristics of motivation. The following characteristics are considered: features of realization of cognitive activity, meaning-making characteristics, level of generalization and consistency of knowledge acquired by personal experience. The assessment of the present level of individual student understanding of each component of academic motivation is the basis for defining the relevant educational strategy for its further development.Keywords: learning activity, mathematics, motivation, student
Procedia PDF Downloads 4217536 Enhancing Pedagogical Practices in Online Arabic Language Instruction: Challenges, Opportunities, and Strategies
Authors: Salah Algabli
Abstract:
As online learning takes center stage; Arabic language instructors face the imperative to adapt their practices for the digital realm. This study investigates the experiences of online Arabic instructors to unveil the pedagogical opportunities and challenges this format presents. Utilizing a transcendental phenomenological approach with 15 diverse participants, the research shines a light on the unique realities of online language teaching at the university level, specifically in the United States. The study proposes theoretical and practical solutions to maximize the benefits of online language learning while mitigating its challenges. Recommendations cater to instructors, researchers, and program coordinators, paving the way for enhancing the quality of online Arabic language education. The findings highlight the need for pedagogical approaches tailored to the online environment, ultimately shaping a future where both instructors and learners thrive in this digital landscape.Keywords: online Arabic language learning, pedagogical opportunities and challenges, online Arabic teachers, online language instruction, digital pedagogy
Procedia PDF Downloads 677535 A Virtual Reality Cybersecurity Training Knowledge-Based Ontology
Authors: Shaila Rana, Wasim Alhamdani
Abstract:
Effective cybersecurity learning relies on an engaging, interactive, and entertaining activity that fosters positive learning outcomes. VR cybersecurity training may promote these aforementioned variables. However, a methodological approach and framework have not yet been created to allow trainers and educators to employ VR cybersecurity training methods to promote positive learning outcomes to the author’s best knowledge. Thus, this paper aims to create an approach that cybersecurity trainers can follow to create a VR cybersecurity training module. This methodology utilizes concepts from other cybersecurity training frameworks, such as NICE and CyTrONE. Other cybersecurity training frameworks do not incorporate the use of VR. VR training proposes unique challenges that cannot be addressed in current cybersecurity training frameworks. Subsequently, this ontology utilizes concepts unique to developing VR training to create a relevant methodology for creating VR cybersecurity training modules. The outcome of this research is to create a methodology that is relevant and useful for designing VR cybersecurity training modules.Keywords: virtual reality cybersecurity training, VR cybersecurity training, traditional cybersecurity training, ontology
Procedia PDF Downloads 2947534 Teaching Children with Autism Spectrum Disorder Using Virtual Reality: Exploratory Study
Authors: Abdiwahab Guled
Abstract:
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that emanates from a broad range of conditions, which affect the communication skills, social skills. It causes restrictive and repetitive behaviors to individuals. The number of children with ASD is an increasing prevalence around the world. Virtual reality (VR) is an assistive technology, which puts the learner in an immersive learning environment. It allows the learner to interact with that environment in a seemingly real or physical way using special electronic equipment, such as headsets. This exploratory study examines the potential benefits that VR may provide to improving the communication skills of children with ASD. Educating a child with ASD is challenging because access to services, resources, and support for autistic children is inadequate. Therefore, this study intends to investigate the challenges of teaching children with ASD and how VR might help teachers to improve the communication skills of these children with ASD. Online research and literature review were used as a method to gather previously published studies to identify the research gap and provide the groundwork for future studies. Results show that VR offers potential benefits to improving the communication skills of children with ASD but there is a gap in our understanding of the functionalities of all the features of VR technology and how we can utilize it to improve the communication skills of children with ASD. Communication is a broad subject and it is impossible for one study to evidently define the speech challenges of autistic children and provide an irrefutable solution. Therefore, this study proposes further research to dissect how can VR be used to improve the different communication challenges that impede the everyday functioning of autistic children.Keywords: Autism spectrum disorder (ASD), autistic, Asperger, Disorder-Not Otherwise Specified (PDD-NOS), virtual reality (VR).
Procedia PDF Downloads 1197533 International E-Learning for Assuring Ergonomic Working Conditions of Orthopaedic Surgeons: First Research Outcomes from Train4OrthoMIS
Authors: J. Bartnicka, J. A. Piedrabuena, R. Portilla, L. Moyano - Cuevas, J. B. Pagador, P. Augat, J. Tokarczyk, F. M. Sánchez Margallo
Abstract:
Orthopaedic surgeries are characterized by a high degree of complexity. This is reflected by four main groups of resources: 1) surgical team which is consisted of people with different competencies, educational backgrounds and positions; 2) information and knowledge about medical and technical aspects of surgery; 3) medical equipment including surgical tools and materials; 4) space infrastructure which is important from an operating room layout point of view. These all components must be integrated and build a homogeneous organism for achieving an efficient and ergonomically correct surgical workflow. Taking this as a background, there was formulated a concept of international project, called “Online Vocational Training course on ergonomics for orthopaedic Minimally Invasive” (Train4OrthoMIS), which aim is to develop an e-learning tool available in 4 languages (English, Spanish, Polish and German). In the article, there is presented the first project research outcomes focused on three aspects: 1) ergonomic needs of surgeons who work in hospitals around different European countries, 2) the concept of structure of e-learning course, 3) the definition of tools and methods for knowledge assessment adjusted to users’ expectation. The methodology was based on the expert panels and two types of surveys: 1) on training needs, 2) on evaluation and self-assessment preferences. The major findings of the study allowed describing the subjects of four training modules and learning sessions. According to peoples’ opinion there were defined most expected test methods which are single choice test and right after quizzes: “True or False” and “Link elements”. The first project outcomes confirmed the necessity of creating a universal training tool for orthopaedic surgeons regardless of the country in which they work. Because of limited time that surgeons have, the e-learning course should be strictly adjusted to their expectation in order to be useful.Keywords: international e-learning, ergonomics, orthopaedic surgery, Train4OrthoMIS
Procedia PDF Downloads 1867532 Machine Learning for Targeting of Conditional Cash Transfers: Improving the Effectiveness of Proxy Means Tests to Identify Future School Dropouts and the Poor
Authors: Cristian Crespo
Abstract:
Conditional cash transfers (CCTs) have been targeted towards the poor. Thus, their targeting assessments check whether these schemes have been allocated to low-income households or individuals. However, CCTs have more than one goal and target group. An additional goal of CCTs is to increase school enrolment. Hence, students at risk of dropping out of school also are a target group. This paper analyses whether one of the most common targeting mechanisms of CCTs, a proxy means test (PMT), is suitable to identify the poor and future school dropouts. The PMT is compared with alternative approaches that use the outputs of a predictive model of school dropout. This model was built using machine learning algorithms and rich administrative datasets from Chile. The paper shows that using machine learning outputs in conjunction with the PMT increases targeting effectiveness by identifying more students who are either poor or future dropouts. This joint targeting approach increases effectiveness in different scenarios except when the social valuation of the two target groups largely differs. In these cases, the most likely optimal approach is to solely adopt the targeting mechanism designed to find the highly valued group.Keywords: conditional cash transfers, machine learning, poverty, proxy means tests, school dropout prediction, targeting
Procedia PDF Downloads 2067531 A Comparative Study on the Use of Learning Resources in Learning Biochemistry by MBBS Students at Ras Al Khaimah Medical and Health Sciences University, UAE
Authors: B. K. Manjunatha Goud, Aruna Chanu Oinam
Abstract:
The undergraduate medical curriculum is oriented towards training the students to undertake the responsibilities of a physician. During the training period, adequate emphasis is placed on inculcating logical and scientific habits of thought; clarity of expression and independence of judgment; and ability to collect and analyze information and to correlate them. At Ras Al Khaimah Medical and Health Sciences University (RAKMHSU), Biochemistry a basic medical science subject is taught in the 1st year of 5 years medical course with vertical interdisciplinary interaction with all subjects, which needs to be taught and learned adequately by the students to be related to clinical case or clinical problem in medicine and future diagnostics so that they can practice confidently and skillfully in the community. Based on these facts study was done to know the extent of usage of library resources by the students and the impact of study materials on their preparation for examination. It was a comparative cross sectional study included 100 and 80 1st and 2nd-year students who had successfully completed Biochemistry course. The purpose of the study was explained to all students [participants]. Information was collected on a pre-designed, pre-tested and self-administered questionnaire. The questionnaire was validated by the senior faculties and pre tested on students who were not involved in the study. The study results showed that 80.30% and 93.15% of 1st and 2nd year students have the clear idea of course outline given in course handout or study guide. We also found a statistically significant number of students agreed that they were benefited from the practical session and writing notes in the class hour. A high percentage of students [50% and 62.02%] disagreed that that reading only the handouts is enough for their examination as compared to other students. The study also showed that only 35% and 41% of students visited the library on daily basis for the learning process, around 65% of students were using lecture notes and text books as a tool for learning and to understand the subject and 45% and 53% of students used the library resources (recommended text books) compared to online sources before the examinations. The results presented here show that students perceived that e-learning resources like power point presentations along with text book reading using SQ4R technique had made a positive impact on various aspects of their learning in Biochemistry. The use of library by students has overall positive impact on learning process especially in medical field enhances the outcome, and medical students are better equipped to treat the patient. But it’s also true that use of library use has been in decline which will impact the knowledge aspects and outcome. In conclusion, a student has to be taught how to use the library as learning tool apart from lecture handouts.Keywords: medical education, learning resources, study guide, biochemistry
Procedia PDF Downloads 1807530 Academic Staff Perspective of Adoption of Augmented Reality in Teaching Practice to Support Students Learning Remotely in a Crisis Time in Higher
Authors: Ebtisam Alqahtani
Abstract:
The purpose of this study is to investigate academic staff perspectives on using Augmented Reality in teaching practice to support students learning remotely during the COVID pandemic. the study adopted the DTPB theoretical model to guide the identification of key potential factors that could motivate academic staff to use or not use AR in teaching practices. A mixing method design was adopted for a better understanding of the study problem. A survey was completed by 851 academic staff, and this was followed by interviews with 20 academic staff. Statistical analyses were used to assess the survey data, and thematic analysis was used to assess the interview data. The study finding indicates that 75% of academic staff were aware of AR as a pedagogical tool, and they agreed on the potential benefits of AR in teaching and learning practices. However, 36% of academic staff use it in teaching and learning practice, and most of them agree with most of the potential barriers to adopting AR in educational environments. In addition, the study results indicate that 91% of them are planning to use it in the future. The most important factors that motivated them to use it in the future are the COVID pandemic factor, hedonic motivation factor, and academic staff attitude factor. The perceptions of academic staff differed according to the universities they attended, the faculties they worked in, and their gender. This study offers further empirical support for the DTPB model, as well as recommendations to help higher education implement technology in its educational environment based on the findings of the study. It is unprecedented the study the necessity of the use of AR technologies in the time of Covid-19. Therefore, the contribution is both theoretical and practiceKeywords: higher education, academic staff, AR technology as pedological tools, teaching and learning practice, benefits of AR, barriers of adopting AR, and motivating factors to adopt AR
Procedia PDF Downloads 1327529 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management
Authors: Thewodros K. Geberemariam
Abstract:
The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space
Procedia PDF Downloads 1567528 Factors Affecting and Impeding Teachers’ Use of Learning Management System in Kingdom of Saudi Arabia Universities
Authors: Omran Alharbi, Victor Lally
Abstract:
The advantages of the adoption of new technology such as learning management systems (LMSs) in education and teaching methods have been widely recognised. This has led a large number of universities to integrate this type of technology into their daily learning and teaching activities in order to facilitate the education process for both learners and teachers. On the other hand, in some developing countries such as Saudi Arabia, educators have seldom used this technology. As a result, this study was conducted in order to investigate the factors that impede teachers’ use of technology (LMSs) in their teaching in Saudi Arabian institutions. This study used a qualitative approach. Eight participants were invited to take part in this study, and they were asked to give their opinions about the most significant factors that prevented them from integrating technology into their daily activities. The results revealed that a lack of LMS skills, interest in and knowledge about the LMS among teachers were the most significant factors impeding them from using technology in their lessons. The participants suggested that incentive training should be provided to reduce these challenges.Keywords: LMS, factors, KSA, teachers
Procedia PDF Downloads 1337527 Simscape Library for Large-Signal Physical Network Modeling of Inertial Microelectromechanical Devices
Authors: S. Srinivasan, E. Cretu
Abstract:
The information flow (e.g. block-diagram or signal flow graph) paradigm for the design and simulation of Microelectromechanical (MEMS)-based systems allows to model MEMS devices using causal transfer functions easily, and interface them with electronic subsystems for fast system-level explorations of design alternatives and optimization. Nevertheless, the physical bi-directional coupling between different energy domains is not easily captured in causal signal flow modeling. Moreover, models of fundamental components acting as building blocks (e.g. gap-varying MEMS capacitor structures) depend not only on the component, but also on the specific excitation mode (e.g. voltage or charge-actuation). In contrast, the energy flow modeling paradigm in terms of generalized across-through variables offers an acausal perspective, separating clearly the physical model from the boundary conditions. This promotes reusability and the use of primitive physical models for assembling MEMS devices from primitive structures, based on the interconnection topology in generalized circuits. The physical modeling capabilities of Simscape have been used in the present work in order to develop a MEMS library containing parameterized fundamental building blocks (area and gap-varying MEMS capacitors, nonlinear springs, displacement stoppers, etc.) for the design, simulation and optimization of MEMS inertial sensors. The models capture both the nonlinear electromechanical interactions and geometrical nonlinearities and can be used for both small and large signal analyses, including the numerical computation of pull-in voltages (stability loss). Simscape behavioral modeling language was used for the implementation of reduced-order macro models, that present the advantage of a seamless interface with Simulink blocks, for creating hybrid information/energy flow system models. Test bench simulations of the library models compare favorably with both analytical results and with more in-depth finite element simulations performed in ANSYS. Separate MEMS-electronic integration tests were done on closed-loop MEMS accelerometers, where Simscape was used for modeling the MEMS device and Simulink for the electronic subsystem.Keywords: across-through variables, electromechanical coupling, energy flow, information flow, Matlab/Simulink, MEMS, nonlinear, pull-in instability, reduced order macro models, Simscape
Procedia PDF Downloads 1427526 A Study of EFL Learners with Different Goal Orientations in Response to Cognitive Diagnostic Reading Feedback
Authors: Yuxuan Tang
Abstract:
Cognitive diagnostic assessment has received much attention in second language education, and assessment for it can provide pedagogically useful feedback for language learners. However, there is a lack of research on how students interpret and use cognitive diagnostic feedback. Thus the present study aims to adopt a mixed-method approach mainly to explore the relationship between the goal-orientation and students' response to cognitive diagnostic feedback. Almost 200 Chinese undergraduates from two universities in Xi'an, China, will be invited to do a cognitive diagnostic reading test, and each student will receive specialized cognitive diagnostic feedback, comprising of students' reading attributes mastery level generated by applying a well-selected cognitive diagnostic model, students' perceived reading ability assessed by a self-assessing questionnaire and students’ level position in the whole class. And a goal-orientation questionnaire and a self-generated questionnaire on the perception of feedback will be given to students the moment they receive feedback. In addition, interviews of students will be conducted on their future plans to see whether they have awareness of carrying out studying plans. The study aims to find a new perspective towards how students use and interpret cognitive diagnostic feedback in terms of their different goal-orientation (self-based, task-based, and other-based goals) by applying the newest goal orientation model, which is an important construct of motivation in psychology, seldom researched under language learning area. And the study is expected to provide evidence on how diagnostic feedback promotes students' learning under the educational belief of assessment for learning. Practically speaking, according to the personalized diagnostic feedback, students can take remedial self-learning more purposefully, and teachers can target students' weaknesses to adjust teaching methods and carry out tailored teaching.Keywords: assessment for learning, cognitive diagnostic assessment, goal-orientation, personalized feedback
Procedia PDF Downloads 1387525 LIS Students’ Experience of Online Learning During Covid-19
Authors: Larasati Zuhro, Ida F Priyanto
Abstract:
Background: In March 2020, Indonesia started to be affected by Covid-19, and the number of victims increased slowly but surely until finally, the highest number of victims reached the highest—about 50,000 persons—for the daily cases in the middle of 2021. Like other institutions, schools and universities were suddenly closed in March 2020, and students had to change their ways of studying from face-to-face to online. This sudden changed affected students and faculty, including LIS students and faculty because they never experienced online classes in Indonesia due to the previous regulation that academic and school activities were all conducted onsite. For almost two years, school and academic activities were held online. This indeed has affected the way students learned and faculty delivered their courses. This raises the question of whether students are now ready for their new learning activities due to the covid-19 disruption. Objectives: this study was conducted to find out the impact of covid-19 pandemic on the LIS learning process and the effectiveness of online classes for students of LIS in Indonesia. Methodology: This was qualitative research conducted among LIS students at UIN Sunan Kalijaga, Yogyakarta, Indonesia. The population are students who were studying for masters’program during covid-19 pandemic. Results: The study showed that students were ready with the online classes because they are familiar with the technology. However, the Internet and technology infrastructure do not always support the process of learning. Students mention slow WIFI is one factor that causes them not being able to study optimally. They usually compensate themselves by visiting a public library, a café, or any other places to get WIFI network. Noises come from the people surrounding them while they are studying online.Some students could not concentrate well when attending the online classes as they studied at home, and their families sometimes talk to other family members, or they asked the students while they are attending the online classes. The noise also came when they studied in a café. Another issue is that the classes were held in shorter time than that in the face-to-face. Students said they still enjoyed the onsite classes instead of online, although they do not mind to have hybrid model of learning. Conclusion: Pandemic of Covid-19 has changed the way students of LIS in Indonesia learn. They have experienced a process of migrating the way they learn from onsite to online. They also adapted their learning with the condition of internet access speed, infrastructure, and the environment. They expect to have hybrid classes in the future.Keywords: learning, LIS students, pandemic, covid-19
Procedia PDF Downloads 1337524 Student Attribute and the Effectiveness of Classroom Response System in Teaching Economics
Authors: Raymond Li
Abstract:
In this project a web-based classroom response system (CRS) was used in the teaching an intermediate level economics course. This system allows the instructor to post a question on the screen and students to answer questions using their own electronic mobile devices. The questions and the results summarizing student responses can be shown to students simultaneously and the instructor can make timely feedback to students in class. CRS gives students a chance to respond to the instructor’s question privately, encouraging students who might not typically speak up in class to express their thoughts and opinions. There is a vast literature on the advantages and challenges of using CRS. However, empirical evidence on the student attributes that increase the effectiveness of CRS in improving student learning outcomes is sparse. The purpose of this project is to (1) find out if the use of CRS is beneficial to students taking economics, and (2) discover key student attributes that will likely make CRS more effective. Students’ performance in examinations and an end-of-semester questionnaire were used to assess the effectiveness of CRS in this project. Comparing the examination scores of the CRS treatment group and control group, the treatment group performed considerably better and statistically significant differences were found basing on paired t-tests on the differences. According to the questionnaire results, around 75% of the students in the treatment group generally agreed that CRS allowed them to express their views more freely. We also observed that students who prefer to use instant messaging rather than making conversations are generally more positive towards CRS. The use of CRS also benefits the instructor – students’ rating of the instructor in the teaching evaluation was significantly higher for the CRS treatment group.Keywords: education technology, classroom response system, student attributes, economics education
Procedia PDF Downloads 1307523 Transforming Integrative Maker Education for STEM Learning
Authors: Virginia Chambers, Kamryn York, Mark Marnich
Abstract:
T.I.M.E. for STEM (Transforming Integrative Maker Education for STEM learning) focuses on improving the quality and effectiveness of STEM education for pre-service teachers through a focus on the integration of maker space pedagogy. This National Science Foundation-funded project primarily focuses on undergraduate pre-service teaching students majoring in elementary education. The study contributes to the knowledge about teaching and learning by developing, implementing, and assessing faculty development, interactive instruction, and STEM lesson plan development. This project offers a valuable opportunity to improve STEM thinking skills by formally integrating STEM concepts throughout the pre-service teacher curriculum using an interdisciplinary approach. T.I.M.E. for STEM utilizes a maker space laboratory at Point Park University in Pittsburgh, PA, USA. However, the project design is such that other institutions of higher education can replicate the program with or without a physical maker space lab as the project’s findings and “maker mindset” are employed. Utilizing qualitative research methodology, the project investigates the following research question: What do pre-service teachers (education students) and faculty members identify as areas of pedagogical growth in STEM learning and teaching in a makerspace environment? This research highlights the impact of makerspace pedagogy on improving STEM education learning outcomes through an interdisciplinary constructivist approach. The project is expected to have a multiplier effect as it impacts STEM disciplinary and higher education faculty, pre-service teachers, and teacher preparation programs at other universities that benefit from what is learned at Point Park University. Ultimately, the future elementary students of the well-prepared pre-service teachers steeped in maker pedagogy and STEM content will have the potential to develop higher-level thinking skills and improve their mathematics and scientific achievement, which are essential for the 21st century STEM workforce.Keywords: maker education, STEM learning, teacher education, elementary education
Procedia PDF Downloads 1177522 Focusing on Effective Translation Teaching in the Classroom: A Case Study
Authors: Zhi Huang
Abstract:
This study follows on from previous survey and focus group research exploring the effective teaching process in a translation classroom in Australian universities through case study method. The data analysis draws on social constructivist theory in translation teaching and focuses on teaching process aiming to discover how effective translation teachers conduct teaching in the classroom. The results suggest that effective teaching requires the teacher to have ability in four aspects: classroom management, classroom pedagogy, classroom communication, and teacher roles. Effective translation teachers are able to control the whole learning process, facilitate students in independent learning, guide students to be more critical about translation, giving both positive and negative feedback for students to reflect on their own, and being supportive, patient and encouraging to students for better classroom communication and learning outcomes. This study can be applied to other teachers in translation so that they can reflect on their own teaching in their education contexts and strive for being a more qualified translation teacher and achieving teaching effectiveness.Keywords: case study, classroom observation, classroom teaching, effective translation teaching, teacher effectiveness
Procedia PDF Downloads 4277521 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey
Authors: Hayriye Anıl, Görkem Kar
Abstract:
In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting
Procedia PDF Downloads 1147520 Tuning the Emission Colour of Phenothiazine by Introduction of Withdrawing Electron Groups
Authors: Andrei Bejan, Luminita Marin, Dalila Belei
Abstract:
Phenothiazine with electron-rich nitrogen and sulfur heteroatoms has a high electron-donating ability which promotes a good conjugation and therefore low band-gap with consequences upon charge carrier mobility improving and shifting of light emission in visible domain. Moreover, its non-planar butterfly conformation inhibits molecular aggregation and thus preserves quite well the fluorescence quantum yield in solid state compared to solution. Therefore phenothiazine and its derivatives are promising hole transport materials for use in organic electronic and optoelectronic devices as light emitting diodes, photovoltaic cells, integrated circuit sensors or driving circuits for large area display devices. The objective of this paper was to obtain a series of new phenothiazine derivatives by introduction of different electron withdrawing substituents as formyl, carboxyl and cyanoacryl units in order to create a push pull system which has potential to improve the electronic and optical properties. Bromine atom was used as electrono-donor moiety to extend furthermore the existing conjugation. The understudy compounds were structural characterized by FTIR and 1H-NMR spectroscopy and single crystal X-ray diffraction. Besides, the single crystal X-ray diffraction brought information regarding the supramolecular architecture of the compounds. Photophysical properties were monitored by UV-vis and photoluminescence spectroscopy, while the electrochemical behavior was established by cyclic voltammetry. The absorption maxima of the studied compounds vary in a large range (322-455 nm), reflecting the different electronic delocalization degree, depending by the substituent nature. In a similar manner, the emission spectra reveal different color of emitted light, a red shift being evident for the groups with higher electron withdrawing ability. The emitted light is pure and saturated for the compounds containing strong withdrawing formyl or cyanoacryl units and reach the highest quantum yield of 71% for the compound containing bromine and cyanoacrilic units. Electrochemical study show reversible oxidative and reduction processes for all the compounds and a close correlation of the HOMO-LUMO band gap with substituent nature. All these findings suggest the obtained compounds as promising materials for optoelectronic devices.Keywords: electrochemical properties, phenothiazine derivatives, photoluminescence, quantum yield
Procedia PDF Downloads 3327519 SNR Classification Using Multiple CNNs
Authors: Thinh Ngo, Paul Rad, Brian Kelley
Abstract:
Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.Keywords: classification, CNN, deep learning, prediction, SNR
Procedia PDF Downloads 1377518 Real-Time Course Recommendation System for Online Learning Platforms
Authors: benabbess anja
Abstract:
This research presents the design and implementation of a real-time course recommendation system for online learning platforms, leveraging user competencies and expertise levels. The system begins by extracting and classifying the complexity levels of courses from Udemy datasets using semantic enrichment techniques and resources such as WordNet and BERT. A predictive model assigns complexity levels to each course, adding columns that represent the course category, sub-category, and complexity level to the existing dataset. Simultaneously, user profiles are constructed through questionnaires capturing their skills, sub-skills, and proficiency levels. The recommendation process involves generating embeddings with BERT, followed by calculating cosine similarity between user profiles and courses. Courses are ranked based on their relevance, with the BERT model delivering the most accurate results. To enable real-time recommendations, Apache Kafka is integrated to track user interactions (clicks, comments, time spent, completed courses, feedback) and update user profiles. The embeddings are regenerated, and similarities with courses are recalculated to reflect users' evolving needs and behaviors, incorporating a progressive weighting of interactions for more personalized suggestions. This approach ensures dynamic and real-time course recommendations tailored to user progress and engagement, providing a more personalized and effective learning experience. This system aims to improve user engagement and optimize learning paths by offering courses that precisely match users' needs and current skill levels.Keywords: recommendation system, online learning, real-time, user skills, expertise level, personalized recommendations, dynamic suggestions
Procedia PDF Downloads 127517 Applications of Big Data in Education
Authors: Faisal Kalota
Abstract:
Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners’ needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in education. Additionally, it discusses some of the concerns related to Big Data and current research trends. While Big Data can provide big benefits, it is important that institutions understand their own needs, infrastructure, resources, and limitation before jumping on the Big Data bandwagon.Keywords: big data, learning analytics, analytics, big data in education, Hadoop
Procedia PDF Downloads 4327516 Active Learning in Engineering Courses Using Excel Spreadsheet
Authors: Promothes Saha
Abstract:
Recently, transportation engineering industry members at the study university showed concern that students lacked the skills needed to solve real-world engineering problems using spreadsheet data analysis. In response to the concerns shown by industry members, this study investigated how to engage students in a better way by incorporating spreadsheet analysis during class - also, help them learn the course topics. Helping students link theoretical knowledge to real-world problems can be a challenge. In this effort, in-class activities and worksheets were redesigned to integrate with Excel to solve example problems using built-in tools including cell referencing, equations, data analysis tool pack, solver tool, conditional formatting, charts, etc. The effectiveness of this technique was investigated using students’ evaluations of the course, enrollment data, and students’ comments. Based on the data of those criteria, it is evident that the spreadsheet activities may increase student learning.Keywords: civil, engineering, active learning, transportation
Procedia PDF Downloads 1407515 Curriculum Based Measurement and Precision Teaching in Writing Empowerment Enhancement: Results from an Italian Learning Center
Authors: I. Pelizzoni, C. Cavallini, I. Salvaderi, F. Cavallini
Abstract:
We present the improvement in writing skills obtained by 94 participants (aged between six and 10 years) with special educational needs through a writing enhancement program based on fluency principles. The study was planned and conducted with a single-subject experimental plan for each of the participants, in order to confirm the results in the literature. These results were obtained using precision teaching (PT) methodology to increase the number of written graphemes per minute in the pre- and post-test, by curriculum based measurement (CBM). Results indicated an increase in the number of written graphemes for all participants. The average overall duration of the intervention is 144 minutes in five months of treatment. These considerations have been analyzed taking account of the complexity of the implementation of measurement systems in real operational contexts (an Italian learning center) and important aspects of replicability and cost-effectiveness of such interventions.Keywords: curriculum based measurement, precision teaching, writing skill, Italian learning center
Procedia PDF Downloads 1327514 Teaching Method for a Classroom of Students at Different Language Proficiency Levels: Content and Language Integrated Learning in a Japanese Culture Classroom
Authors: Yukiko Fujiwara
Abstract:
As a language learning methodology, Content and Language Integrated Learning (CLIL) has become increasingly prevalent in Japan. Most CLIL classroom practice and its research are conducted in EFL fields. However, much less research has been done in the Japanese language learning setting. Therefore, there are still many issues to work out using CLIL in the Japanese language teaching (JLT) setting. it is expected that more research will be conducted on both authentically and academically. Under such circumstances, this is one of the few classroom-based CLIL researches experiments in JLT and aims to find an effective course design for a class with students at different proficiency levels. The class was called ‘Japanese culture A’. This class was offered as one of the elective classes for International exchange students at a Japanese university. The Japanese proficiency level of the class was above the Japanese Language Proficiency Test Level N3. Since the CLIL approach places importance on ‘authenticity’, the class was designed with materials and activities; such as books, magazines, a film and TV show and a field trip to Kyoto. On the field trip, students experienced making traditional Japanese desserts, by receiving guidance directly from a Japanese artisan. Through the course, designated task sheets were used so the teacher could get feedback from each student to grasp what the class proficiency gap was. After reading an article on Japanese culture, students were asked to write down the words they did not understand and what they thought they needed to learn. It helped both students and teachers to set learning goals and work together for it. Using questionnaires and interviews with students, this research examined whether the attempt was effective or not. Essays they wrote in class were also analyzed. The results from the students were positive. They were motivated by learning authentic, natural Japanese, and they thrived setting their own personal goals. Some students were motivated to learn Japanese by studying the language and others were motivated by studying the cultural context. Most of them said they learned better this way; by setting their own Japanese language and culture goals. These results will provide teachers with new insight towards designing class materials and activities that support students in a multilevel CLIL class.Keywords: authenticity, CLIL, Japanese language and culture, multilevel class
Procedia PDF Downloads 2547513 AI-Driven Forecasting Models for Anticipating Oil Market Trends and Demand
Authors: Gaurav Kumar Sinha
Abstract:
The volatility of the oil market, influenced by geopolitical, economic, and environmental factors, presents significant challenges for stakeholders in predicting trends and demand. This article explores the application of artificial intelligence (AI) in developing robust forecasting models to anticipate changes in the oil market more accurately. We delve into various AI techniques, including machine learning, deep learning, and time series analysis, that have been adapted to analyze historical data and current market conditions to forecast future trends. The study evaluates the effectiveness of these models in capturing complex patterns and dependencies in market data, which traditional forecasting methods often miss. Additionally, the paper discusses the integration of external variables such as political events, economic policies, and technological advancements that influence oil prices and demand. By leveraging AI, stakeholders can achieve a more nuanced understanding of market dynamics, enabling better strategic planning and risk management. The article concludes with a discussion on the potential of AI-driven models in enhancing the predictive accuracy of oil market forecasts and their implications for global economic planning and strategic resource allocation.Keywords: AI forecasting, oil market trends, machine learning, deep learning, time series analysis, predictive analytics, economic factors, geopolitical influence, technological advancements, strategic planning
Procedia PDF Downloads 39