Search results for: quest based learning
29427 Studies on the Teaching Pedagogy and Effectiveness for the Multi-Channel Storytelling for Social Media, Cinema, Game, and Streaming Platform: Case Studies of Squid Game
Authors: Chan Ka Lok Sobel
Abstract:
The rapid evolution of digital media platforms has given rise to new forms of narrative engagement, particularly through multi-channel storytelling. This research focuses on exploring the teaching pedagogy and effectiveness of multi-channel storytelling for social media, cinema, games, and streaming platforms. The study employs case studies of the popular series "Squid Game" to investigate the diverse pedagogical approaches and strategies used in teaching multi-channel storytelling. Through qualitative research methods, including interviews, surveys, and content analysis, the research assesses the effectiveness of these approaches in terms of student engagement, knowledge acquisition, critical thinking skills, and the development of digital literacy. The findings contribute to understanding best practices for incorporating multi-channel storytelling into educational contexts and enhancing learning outcomes in the digital media landscape.Keywords: digital literacy, game-based learning, artificial intelligence, animation production, educational technology
Procedia PDF Downloads 11429426 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging
Procedia PDF Downloads 8729425 Determining a Bilingualism Index: Evidence From Lebanese Control Bilinguals
Authors: Rania Kassir, Christophe Dos Santos, Halim Abboud, Olivier Godefroy
Abstract:
The ability to communicate in at least two different languages is shared by a growing number of humans. Recently, many researchers have been studying the elderly bilingual population around the world in neuroscience, and yet, until today there’s no accurate nor universal measure or methodology used to examine bilingualism across these studies which constitute a real challenge for results generalization. This study contributes to the quest of a multidimensional bilingualism index and language proficiency literature by investigating a new bilingualism index from a reliable subjective questionnaire the Language Experience and Proficiency Questionnaire (LEAP-Q), multi-linguistic tests, and a diverse bilingual population all featured in one analysis and one index. One hundred Lebanese subjects aged between 55 and 92 years old divided into three different bilingualism subgroups (Arabic prominent, balanced, and French prominent) were recruited and underwent the LEAP-Q with a set of linguistic and cognitive tests. The analysis of the collected data led to the creation of a robust bilingualism index from speaking and oral understanding scores that underline specifically bilingualism subtype according to cutoffs scored. The practice implications of this index, particularly its use within bilingual populations, are addressed in the conclusion of this work.Keywords: bilingualism, language dominance, bilingualism index, balanced bilingualism, Arabic first language, Lebanese, Arabic-French bilingualism
Procedia PDF Downloads 12929424 Deep Learning-Based Approach to Automatic Abstractive Summarization of Patent Documents
Authors: Sakshi V. Tantak, Vishap K. Malik, Neelanjney Pilarisetty
Abstract:
A patent is an exclusive right granted for an invention. It can be a product or a process that provides an innovative method of doing something, or offers a new technical perspective or solution to a problem. A patent can be obtained by making the technical information and details about the invention publicly available. The patent owner has exclusive rights to prevent or stop anyone from using the patented invention for commercial uses. Any commercial usage, distribution, import or export of a patented invention or product requires the patent owner’s consent. It has been observed that the central and important parts of patents are scripted in idiosyncratic and complex linguistic structures that can be difficult to read, comprehend or interpret for the masses. The abstracts of these patents tend to obfuscate the precise nature of the patent instead of clarifying it via direct and simple linguistic constructs. This makes it necessary to have an efficient access to this knowledge via concise and transparent summaries. However, as mentioned above, due to complex and repetitive linguistic constructs and extremely long sentences, common extraction-oriented automatic text summarization methods should not be expected to show a remarkable performance when applied to patent documents. Other, more content-oriented or abstractive summarization techniques are able to perform much better and generate more concise summaries. This paper proposes an efficient summarization system for patents using artificial intelligence, natural language processing and deep learning techniques to condense the knowledge and essential information from a patent document into a single summary that is easier to understand without any redundant formatting and difficult jargon.Keywords: abstractive summarization, deep learning, natural language Processing, patent document
Procedia PDF Downloads 12329423 The Optimal Order Policy for the Newsvendor Model under Worker Learning
Authors: Sunantha Teyarachakul
Abstract:
We consider the worker-learning Newsvendor Model, under the case of lost-sales for unmet demand, with the research objective of proposing the cost-minimization order policy and lot size, scheduled to arrive at the beginning of the selling-period. In general, the New Vendor Model is used to find the optimal order quantity for the perishable items such as fashionable products or those with seasonal demand or short-life cycles. Technically, it is used when the product demand is stochastic and available for the single selling-season, and when there is only a one time opportunity for the vendor to purchase, with possibly of long ordering lead-times. Our work differs from the classical Newsvendor Model in that we incorporate the human factor (specifically worker learning) and its influence over the costs of processing units into the model. We describe this by using the well-known Wright’s Learning Curve. Most of the assumptions of the classical New Vendor Model are still maintained in our work, such as the constant per-unit cost of leftover and shortage, the zero initial inventory, as well as the continuous time. Our problem is challenging in the way that the best order quantity in the classical model, which is balancing the over-stocking and under-stocking costs, is no longer optimal. Specifically, when adding the cost-saving from worker learning to such expected total cost, the convexity of the cost function will likely not be maintained. This has called for a new way in determining the optimal order policy. In response to such challenges, we found a number of characteristics related to the expected cost function and its derivatives, which we then used in formulating the optimal ordering policy. Examples of such characteristics are; the optimal order quantity exists and is unique if the demand follows a Uniform Distribution; if the demand follows the Beta Distribution with some specific properties of its parameters, the second derivative of the expected cost function has at most two roots; and there exists the specific level of lot size that satisfies the first order condition. Our research results could be helpful for analysis of supply chain coordination and of the periodic review system for similar problems.Keywords: inventory management, Newsvendor model, order policy, worker learning
Procedia PDF Downloads 41629422 Accounting for Cryptocurrency: Urgent Need for an Accounting Standard
Authors: Fatima Ali Abbass, Hassan Ibrahim Rkein
Abstract:
The number of entities worldwide that currently accept digital currency as payment is increasing; however, digital currency still is not widely accepted as a medium of exchange, nor they represent legal tender. At the same time, this makes accounting for cryptocurrency, as cash (Currency) is not possible under IAS 7 and IAS 32, Cryptocurrency also cannot be accounted for as Financial Assets at fair value through profit or loss under IFRS 9. Therefore, this paper studies the possible means to account for Cryptocurrency, since, as of today, there is not yet an accounting standard that deals with cryptocurrency. The request to have a specific accounting standard is increasing from top accounting firms and from professional accounting bodies. This study uses a mixture of qualitative and quantitative analysis in its quest to explore the best possible way to account for cryptocurrency. Interviews and surveys were conducted targeting accounting professionals. This study highlighted the deficiencies in the current way of accounting for Cryptocurrency as intangible Assets with an indefinite life. The deficiency becomes well highlighted, as the asset will then be subject to impairment, where under GAAP, only depreciation in the value of the intangible asset is recognized. On the other hand, appreciation in the value of the asset is ignored, and this prohibits the reporting entity from showing the true value of the cryptocurrency asset. This research highlights the gap that arises due to using accounting standards that are not specific for Cryptocurrency and this study confirmed that there is an urgent need to call upon the accounting standards setters (IASB and FASB) to issue accounting standards specifically for Cryptocurrency.Keywords: cryptocurrency, accounting, IFRS, GAAP, classification, measurement
Procedia PDF Downloads 9629421 How can Introducing Omani Literature in Foreign Language Classrooms Influence students' Motivation in Learning the Language?
Authors: Ibtisam Mohammed Al-Quraini
Abstract:
This paper examines how introducing Omani literature in foreign language classrooms can influence the students' motivation in learning the language. The data was collected through the questionnaire which was administered to two samples (A and B) of the participants. Sample A was comprised of 30 female students from English department who are specialist in English literature in college of Arts and Social Science. Sample B in contrast was comprised of 10 female students who their major is English from college of Education. Results show that each genre in literature has different influence on the students' motivation in learning the language which proves that literacy texts are powerful. Generally, Omani English teachers tend to avoid teaching literature because they think that it is a difficult method to use in teaching field. However, the advantages and the influences of teaching poetries, short stories, and plays are discussed. Recommendations for current research and further research are also discussed at the end.Keywords: education, foreign language, English, Omani literature, poetry, story, play
Procedia PDF Downloads 39029420 Predictive Models of Ruin Probability in Retirement Withdrawal Strategies
Authors: Yuanjin Liu
Abstract:
Retirement withdrawal strategies are very important to minimize the probability of ruin in retirement. The ruin probability is modeled as a function of initial withdrawal age, gender, asset allocation, inflation rate, and initial withdrawal rate. The ruin probability is obtained based on the 2019 period life table for the Social Security, IRS Required Minimum Distribution (RMD) Worksheets, US historical bond and equity returns, and inflation rates using simulation. Several popular machine learning algorithms of the generalized additive model, random forest, support vector machine, extreme gradient boosting, and artificial neural network are built. The model validation and selection are based on the test errors using hyperparameter tuning and train-test split. The optimal model is recommended for retirees to monitor the ruin probability. The optimal withdrawal strategy can be obtained based on the optimal predictive model.Keywords: ruin probability, retirement withdrawal strategies, predictive models, optimal model
Procedia PDF Downloads 7429419 Using iPads and Tablets in Language Teaching and Learning Process
Authors: Ece Sarigul
Abstract:
It is an undeniable fact that, teachers need new strategies to communicate with students of the next generation and to shape enticing educational experiences for them. Many schools have launched iPad/ Tablets initiatives in an effort to enhance student learning. Despite their rapid adoption, the extent to which iPads / Tablets increase student engagement and learning is not well understood. This presentation aims to examine the use of iPads and Tablets in primary and high schools in Turkey as well as in the world to increase academic achievement through promotion of higher order thinking skills. In addition to explaining the ideas of school teachers and students who use the specific iPads or Tablets , various applications in schools and their use will be discussed and demonstrated in this study. The specific” iPads or Tablets” applications discussed in this presentation can be incorporated into the curriculum to assist in developing transformative practices and programs to meet the needs of a diverse student population. In the conclusion section of the presentation, there will be some suggestions for teachers about the effective use of technological devices in the classroom. This study can help educators understand better how students are currently using iPads and Tablets and shape future use.Keywords: ipads, language teaching, tablets, technology
Procedia PDF Downloads 25429418 Hamlet as the Predecessor of Existentialism - A Study of Quintessential Expression of Existential Pondering
Authors: Phani Kiran, Prabodha Manas Yarlagadda
Abstract:
This paper attempts to treat Shakespeare’s tragic hero, Hamlet as an existential hero who faces many dilemmas in the process of taking revenge for his father’s murder. Hamlet can be considered as a predecessor of existentialism, and Shakespeare, as a pioneer, focused on some serious existential issues in the play much before they were fully developed in 20th century. Hamlet's internal struggles reflect existential themes such as alienation, despair, and the quest for authenticity. Hamlet’s famous soliloquy, "To be, or not to be," is a quintessential expression of existential ponderings, contemplating the choice between life and death and the uncertainty of what lies beyond. Hamlet grapples with existential questions like the purpose and meaninglessness of life, the nature of morality, the inevitability of death, and the existence of an afterlife. He doubts the authenticity of appearance and the reliability of his own perceptions, highlighting the inherent ambiguity and uncertainty of existence. Overall, "Hamlet" aligns with existential philosophy by exploring the complexities of human existence, the search for meaning, and the individual's struggle to find their place in an inherently uncertain and perplexing world. The character of Hamlet and the play's exploration of existential themes continue to resonate with audiences and provoke contemplation on the nature of life and the human experience.Keywords: to be or not to be, death, dilemmas, illusion and reality
Procedia PDF Downloads 6729417 Evidence-Based Practices in Education: A General Review of the Literature on Elementary Classroom Setting
Authors: Carolina S. Correia, Thalita V. Thomé, Andersen Boniolo, Dhayana I. Veiga
Abstract:
Evidence-based practices (EBP) in education is a set of principles and practices used to raise educational policy, it involves the integration of professional expertise in education with the best empirical evidence in making decisions about how to deliver instruction. The purpose of this presentation is to describe and characterize studies about EBP in education in elementary classroom setting. Data here presented is part of an ongoing systematic review research. Articles were searched and selected from four academic databases: ProQuest, Scielo, Science Direct and Capes. The search terms were evidence-based practices or program effectiveness, and education or teaching or teaching practices or teaching methods. Articles were included according to the following criteria: The studies were explicitly described as evidence-based or discussed the most effective practices in education, they discussed teaching practices in classroom context in elementary school level. Document excerpts were extracted and recorded in Excel, organized by reference, descriptors, abstract, purpose, setting, participants, type of teaching practice, study design and main results. The total amount of articles selected were 1.185, 569 articles from Proquest Research Library; 216 from CAPES; 251 from ScienceDirect and 149 from Scielo Library. The potentially relevant references were 178, from which duplicates were removed. The final number of articles analyzed was 140. From 140 articles, are 47 theoretical studies and 93 empirical articles. The following research design methods were identified: longitudinal intervention study, cluster-randomized trial, meta-analysis and pretest-posttest studies. From 140 articles, 103 studies were about regular school teaching and 37 were on special education teaching practices. In several studies, used as teaching method: active learning, content acquisition podcast (CAP), precision teaching (PT), mediated reading practice, speech therapist programs and peer-assisted learning strategies (PALS). The countries of origin of the studies were United States of America, United Kingdom, Panama, Sweden, Scotland, South Korea, Argentina, Chile, New Zealand and Brunei. The present study in is an ongoing project, so some representative findings will be discussed, providing further acknowledgment on the best teaching practices in elementary classroom setting.Keywords: best practices, children, evidence-based education, elementary school, teaching methods
Procedia PDF Downloads 33429416 Vibration-Based Data-Driven Model for Road Health Monitoring
Authors: Guru Prakash, Revanth Dugalam
Abstract:
A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.Keywords: SVM, data-driven, road health monitoring, pot-hole
Procedia PDF Downloads 8629415 The Cultural Adaptation of a Social and Emotional Learning Program for an Intervention in Saudi Arabia’s Preschools
Authors: Malak Alqaydhi
Abstract:
A problem in the Saudi Arabia education system is that there is a lack of curriculum- based Social, emotional learning (SEL) teaching practices with the pedagogical concept of SEL yet to be practiced in the Kingdom of Saudi Arabia (KSA). Furthermore, voices of teachers and parents have not been captured regarding the use of SEL, particularly in preschools. The importance of this research is to help determine, with the input of teachers and mothers of preschoolers, the efficacy of a culturally adapted SEL program. The purpose of this research is to determine the most appropriate SEL intervention method to appropriately apply in the cultural context of the Saudi preschool classroom setting. The study will use a mixed method exploratory sequential research design, applying qualitative and quantitative approaches including semi-structured interviews with teachers and parents of preschoolers and an experimental research approach. The research will proceed in four phases beginning with a series of interviews with Saudi preschool teachers and mothers, whose voices and perceptions will help guide the second phase of selection and adaptation of a suitable SEL preschool program. The third phase will be the implementation of the intervention by the researcher in the preschool classroom environment, which will be facilitated by the researcher’s cultural proficiency and practical experience in Saudi Arabia. The fourth and final phase will be an evaluation to assess the effectiveness of the trialled SEL among the preschool student participants. The significance of this research stems from its contribution to knowledge about SEL in culturally appropriate Saudi preschools and the opportunity to support initiatives for Saudi early childhood educators to consider implementing SEL programs. The findings from the study may be useful to inform the Saudi Ministry of Education and its curriculum designers about SEL programs, which could be beneficial to trial more widely in the Saudi preschool curriculum.Keywords: social emotional learning, preschool children, saudi Arabia, child behavior
Procedia PDF Downloads 15729414 Motivation and Self-Concept in Language Learning: An Exploratory Study of English Language Learners
Authors: A. van Staden, M. M. Coetzee
Abstract:
Despite numerous efforts to increase the literacy level of South African learners, for example, through the implementation of educational policies such as the Revised National Curriculum statement, advocating mother-tongue instruction (during a child's formative years), in reality, the majority of South African children are still being educated in a second language (in most cases English). Moreover, despite the fact that a significant percentage of our country's budget is spent on the education sector and that both policy makers and educationalists have emphasized the importance of learning English in this globalized world, the poor overall academic performance and English literacy level of a large number of school leavers are still a major concern. As we move forward in an attempt to comprehend the nuances of English language and literacy development in our country, it is imperative to explore both extrinsic and intrinsic factors that contribute or impede the effective development of English as a second language. In the present study, the researchers set out to investigate how intrinsic factors such as motivation and self-concept contribute to or affect English language learning amongst high school learners in South Africa. Emanating from the above the main research question that guided this research is the following: Is there a significant relationship between high school learners' self-concept, motivation, and English second language performances? In order to investigate this hypothesis, this study utilized quantitative research methodology to investigate the interplay of self-concept and motivation in English language learning. For this purpose, we sampled 201 high school learners from various schools in South Africa. Methods of data gathering inter alia included the following: A biographical questionnaire; the Academic Motivational Scale and the Piers-Harris Self-Concept Scale. Pearson Product Moment Correlation Analyses yielded significant correlations between L2 learners' motivation and their English language proficiency, including demonstrating positive correlations between L2 learners' self-concept and their achievements in English. Accordingly, researchers have argued that the learning context, in which students learn English as a second language, has a crucial influence on students' motivational levels. This emphasizes the important role the teacher has to play in creating learning environments that will enhance L2 learners' motivation and improve their self-concepts.Keywords: motivation, self-concept, language learning, English second language learners (L2)
Procedia PDF Downloads 26829413 Automatic Lead Qualification with Opinion Mining in Customer Relationship Management Projects
Authors: Victor Radich, Tania Basso, Regina Moraes
Abstract:
Lead qualification is one of the main procedures in Customer Relationship Management (CRM) projects. Its main goal is to identify potential consumers who have the ideal characteristics to establish a profitable and long-term relationship with a certain organization. Social networks can be an important source of data for identifying and qualifying leads since interest in specific products or services can be identified from the users’ expressed feelings of (dis)satisfaction. In this context, this work proposes the use of machine learning techniques and sentiment analysis as an extra step in the lead qualification process in order to improve it. In addition to machine learning models, sentiment analysis or opinion mining can be used to understand the evaluation that the user makes of a particular service, product, or brand. The results obtained so far have shown that it is possible to extract data from social networks and combine the techniques for a more complete classification.Keywords: lead qualification, sentiment analysis, opinion mining, machine learning, CRM, lead scoring
Procedia PDF Downloads 8529412 Multimodal Direct Neural Network Positron Emission Tomography Reconstruction
Authors: William Whiteley, Jens Gregor
Abstract:
In recent developments of direct neural network based positron emission tomography (PET) reconstruction, two prominent architectures have emerged for converting measurement data into images: 1) networks that contain fully-connected layers; and 2) networks that primarily use a convolutional encoder-decoder architecture. In this paper, we present a multi-modal direct PET reconstruction method called MDPET, which is a hybrid approach that combines the advantages of both types of networks. MDPET processes raw data in the form of sinograms and histo-images in concert with attenuation maps to produce high quality multi-slice PET images (e.g., 8x440x440). MDPET is trained on a large whole-body patient data set and evaluated both quantitatively and qualitatively against target images reconstructed with the standard PET reconstruction benchmark of iterative ordered subsets expectation maximization. The results show that MDPET outperforms the best previously published direct neural network methods in measures of bias, signal-to-noise ratio, mean absolute error, and structural similarity.Keywords: deep learning, image reconstruction, machine learning, neural network, positron emission tomography
Procedia PDF Downloads 11129411 Glocalization of Journalism and Mass Communication Education: Best Practices from an International Collaboration on Curriculum Development
Authors: Bellarmine Ezumah, Michael Mawa
Abstract:
Glocalization is often defined as the practice of conducting business according to both local and global considerations – this epitomizes the curriculum co-development collaboration between a journalism and mass communications professor from a university in the United States and the Uganda Martyrs University in Uganda where a brand new journalism and mass communications program was recently co-developed. This paper presents the experiences and research result of this initiative which was funded through the Institute of International Education (IIE) under the umbrella of the Carnegie African Diaspora Fellowship Program (CADFP). Vital international and national concerns were addressed. On a global level, scholars have questioned and criticized the general Western-module ingrained in journalism and mass communication curriculum and proposed a decolonization of journalism curricula. Another major criticism is the concept of western-based educators transplanting their curriculum verbatim to other regions of the world without paying greater attention to the local needs. To address these two global concerns, an extensive assessment of local needs was conducted prior to the conceptualization of the new program. The assessment of needs adopted a participatory action model and captured the knowledge and narratives of both internal and external stakeholders. This involved review of pertinent documents including the nation’s constitution, governmental briefs, and promulgations, interviews with governmental officials, media and journalism educators, media practitioners, students, and benchmarking the curriculum of other tertiary institutions in the nation. Information gathered through this process served as blueprint and frame of reference for all design decisions. In the area of local needs, four key factors were addressed. First, the realization that most media personnel in Uganda are both academically and professionally unqualified. Second, the practitioners with academic training were found lacking in experience. Third, the current curricula offered at several tertiary institutions are not comprehensive and lack local relevance. The project addressed these problems thus: first, the program was designed to cater to both traditional and non-traditional students offering opportunities for unqualified media practitioners to get their formal training through evening and weekender programs. Secondly, the challenge of inexperienced graduates was mitigated by designing the program to adopt the experiential learning approach which many refer to as the ‘Teaching Hospital Model’. This entails integrating practice to theory - similar to the way medical students engage in hands-on practice under the supervision of a mentor. The university drew a Memorandum of Understanding (MoU) with reputable media houses for students and faculty to use their studios for hands-on experience and for seasoned media practitioners to guest-teach some courses. With the convergence functions of media industry today, graduates should be trained to have adequate knowledge of other disciplines; therefore, the curriculum integrated cognate courses that would render graduates versatile. Ultimately, this research serves as a template for African colleges and universities to follow in their quest to glocalize their curricula. While the general concept of journalism may remain western, journalism curriculum developers in Africa through extensive assessment of needs, and focusing on those needs and other societal particularities, can adjust the western module to fit their local needs.Keywords: curriculum co-development, glocalization of journalism education, international journalism, needs assessment
Procedia PDF Downloads 12929410 Synthesis of 2-Aminoisocoumarinoselenazoles via Transition Metal-Free Alkylation and Ru(II)-Catalyzed [4+2] Alkyne Annulation
Authors: Sunil Kumar, Sandip Dhole, Deepak Salunke, Chung-ming Sun
Abstract:
Heterocycles bearing nitrogen, oxygen, and selenium are present in innumerable biologically active compounds. For instance, coumarin containing dicoumarol acts as naturally occurring anticoagulant. 2-Acylamido selenazole works as Store-Operated Calcium (SOC) channel regulator. Therefore, due to biologically significance of selenazole and coumarin and our quest to develop efficient methodologies for the synthesis of complex heterocycles, the trisubstituted angular isocoumarinoselenazole synthesis was proposed and achieved by starting from nitrobenzoic acid derivative, available commercially. Synthetic procedure involves three steps: i) the construction of 2-aminobenzoselenazoles, ii) their regioselective N-alkylation at position-2 and iii) alkyne insertion via Ru catalyzed C-H activation. Transition metal free synthesis of benzoselenazoles was successfully brought about by the addition/elimination reaction via intramolecular C-Se bond formation. In the next step, N-alkylation of selenazole furnished two regioisomers. Both the isomers exhibited different reactivity towards [4+2] alkyne annulation reaction. The fusion of α-pyrone ring on the benzo[1,3-d]selenazole skeleton was achieved via Ru(II)-catalyzed C-H activation and alkyne insertion. As evident from mechanism, the selenazole 'N' plays an important role for the experiential selectivity.Keywords: alkylation, alkyne insertion, coumarin, selenazole
Procedia PDF Downloads 12629409 Effects of Mobile Assisted Language Learning on Madrassa Students’ ESL Learning
Authors: Muhammad Mooneeb Ali
Abstract:
Institutions, where religious knowledge is given are known as madrassas. They also give formal education along with religious education. This study will be a pioneer to explore if MALL can be beneficial for madrassa students or not in formal educational situations. For investigation, an experimental study was planned in Punjab where the sample size was 100 students, 10 each from 10 different madrassas of Punjab, who are studying at the intermediate level (i.e., 11th grade). The madrassas were chosen through a convenient sampling method, whereas the learners were chosen by a simple random sampling method. A pretest was conducted, and on the basis of the results, the learners were divided into two equal groups (experimental and controlled). After two months of treatment, a posttest was conducted, and the results of both groups were compared. The results indicated that the performance of the experimental group was significantly better than the control one. This indicates that MALL elevates the performance of Madrassa students.Keywords: english language learners, madrassa students, formal education, mobile assisted language learning (MALL), Pakistan.
Procedia PDF Downloads 7129408 A Survey of Recognizing of Daily Living Activities in Multi-User Smart Home Environments
Authors: Kulsoom S. Bughio, Naeem K. Janjua, Gordana Dermody, Leslie F. Sikos, Shamsul Islam
Abstract:
The advancement in information and communication technologies (ICT) and wireless sensor networks have played a pivotal role in the design and development of real-time healthcare solutions, mainly targeting the elderly living in health-assistive smart homes. Such smart homes are equipped with sensor technologies to detect and record activities of daily living (ADL). This survey reviews and evaluates existing approaches and techniques based on real-time sensor-based modeling and reasoning in single-user and multi-user environments. It classifies the approaches into three main categories: learning-based, knowledge-based, and hybrid, and evaluates how they handle temporal relations, granularity, and uncertainty. The survey also highlights open challenges across various disciplines (including computer and information sciences and health sciences) to encourage interdisciplinary research for the detection and recognition of ADLs and discusses future directions.Keywords: daily living activities, smart homes, single-user environment, multi-user environment
Procedia PDF Downloads 14129407 A Three-modal Authentication Method for Industrial Robots
Authors: Luo Jiaoyang, Yu Hongyang
Abstract:
In this paper, we explore a method that can be used in the working scene of intelligent industrial robots to confirm the identity information of operators to ensure that the robot executes instructions in a sufficiently safe environment. This approach uses three information modalities, namely visible light, depth, and sound. We explored a variety of fusion modes for the three modalities and finally used the joint feature learning method to improve the performance of the model in the case of noise compared with the single-modal case, making the maximum noise in the experiment. It can also maintain an accuracy rate of more than 90%.Keywords: multimodal, kinect, machine learning, distance image
Procedia PDF Downloads 7929406 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions
Authors: Erva Akin
Abstract:
– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.Keywords: artificial intelligence, copyright, data governance, machine learning
Procedia PDF Downloads 8329405 Learning Materials of Atmospheric Pressure Plasma Process: Application in Wrinkle-Resistant Finishing of Cotton Fabric
Authors: C. W. Kan
Abstract:
Cotton fibre is a commonly-used natural fibre because of its good fibre strength, high moisture absorption behaviour and minimal static problems. However, one of the main drawbacks of cotton fibre is wrinkling after washing, which is recently overcome by wrinkle-resistant treatment. 1,2,3,4-butanetetracarboxylic acid (BTCA) could improve the wrinkle-resistant properties of cotton fibre. Although the BTCA process is an effective method for wrinkle resistant application of cotton fabrics, reduced fabric strength was observed after treatment. Therefore, this paper would explore the use of atmospheric pressure plasma treatment under different discharge powers as a pretreatment process to enhance the application of BTCA process on cotton fabric without generating adverse effect. The aim of this study is to provide learning information to the users to know how the atmospheric pressure plasma treatment can be incorporated in textile finishing process with positive impact.Keywords: learning materials, atmospheric pressure plasma treatment, cotton, wrinkle-resistant, BTCA
Procedia PDF Downloads 30529404 Exploring the Impact of Corruption on Human Rights in Cameroon: The Quest for Sustainable Solutions
Authors: Eugene Muambeh Muntoh
Abstract:
Corruption has a destructive effect on State institutions and on the capacity of States to respect, protect and fulfil human rights, particularly of those persons and groups in situation of vulnerability and marginalization. In Cameroon, corruption pose a major challenge as it divert public revenues and cripple public budgets that should provide healthcare, housing, education, and other essential services. Corruption has undermined the States’ ability to meet the minimum core obligations and pre-existing legal obligations to maximize all available resources to respect, protect and fulfil Economic, Social and Cultural Rights. This study therefore makes use of the qualitative research design, ranging from interviews, observations and content analysis of vital documents to provide evidence and associations between corruption and human rights concerns in Cameroon. The study made use of research material from both primary and secondary sources. Findings from the study reveals that the impact of corruption in Cameroon is especially pronounced regarding economic, social and cultural rights. In most cases, the right to be treated equally is violated, for example, when someone is requested to pay a bribe to obtain a public service. There is an urgent need for sustainable measures to counter corruption in order to protect and promote human rights.Keywords: corruption, governance, human rights, law
Procedia PDF Downloads 8829403 Using Peer Instruction in Physics of Waves for Pre-Service Science Teacher
Authors: Sumalee Tientongdee
Abstract:
In this study, it was aimed to investigate Physics achievement of the pre-service science teacher studying in general science program at Suan Sunandha Rajabhat University, Bangkok, Thailand. The program has provided the new curriculum that focuses on 21st-century skills development. Active learning approaches are used to teach in all subjects. One of the active learning approaches Peer Instruction, or PI was used in this study to teach physics of waves as a compulsory course. It was conducted in the second semester from January to May of 2017. The concept test was given to evaluate pre-service science teachers’ understanding in concept of waves. Problem-solving assessment form was used to evaluate their problem-solving skill. The results indicated that after they had learned through Peer Instruction in physics of waves course, their concepts in physics of waves was significantly higher at 0.05 confident levels. Their problem-solving skill from the whole class was at the highest level. Based on the group interview on the opinions of using Peer Instruction in Physics class, they mostly felt that it was very useful and helping them understand more about physics, especially for female students.Keywords: peer instruction, physics of waves, pre-service science teacher, Suan Sunandha Rajabhat university
Procedia PDF Downloads 34629402 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization
Authors: Soheila Sadeghi
Abstract:
Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction
Procedia PDF Downloads 6029401 Use of Concept Maps as a Tool for Evaluating Students' Understanding of Science
Authors: Aregamalage Sujeewa Vijayanthi Polgampala, Fang Huang
Abstract:
This study explores the genesis and development of concept mapping as a useful tool for science education and its effectiveness as technique for teaching and learning and evaluation for secondary science in schools and the role played by National College of Education science teachers. Concept maps, when carefully employed and executed serves as an integral part of teaching method and measure of effectiveness of teaching and tool for evaluation. Research has shown that science concept maps can have positive influence on student learning and motivation. The success of concept maps played in an instruction class depends on the type of theme selected, the development of learning outcomes, and the flexibility of instruction in providing library unit that is equipped with multimedia equipment where learners can interact. The study was restricted to 6 male and 9 female respondents' teachers in third-year internship pre service science teachers in Gampaha district Sri Lanka. Data were collected through 15 item questionnaire provided to learners and in depth interviews and class observations of 18 science classes. The two generated hypotheses for the study were rejected, while the results revealed that significant difference exists between factors influencing teachers' choice of concept maps, its usefulness and problems hindering the effectiveness of concept maps for teaching and learning process of secondary science in schools. It was examined that concept maps can be used as an effective measure to evaluate students understanding of concepts and misconceptions. Even the teacher trainees could not identify, key concept is on top, and subordinate concepts fall below. It is recommended that pre service science teacher trainees should be provided a thorough training using it as an evaluation instrument.Keywords: concept maps, evaluation, learning science, misconceptions
Procedia PDF Downloads 27429400 Improvements in Double Q-Learning for Anomalous Radiation Source Searching
Authors: Bo-Bin Xiaoa, Chia-Yi Liua
Abstract:
In the task of searching for anomalous radiation sources, personnel holding radiation detectors to search for radiation sources may be exposed to unnecessary radiation risk, and automated search using machines becomes a required project. The research uses various sophisticated algorithms, which are double Q learning, dueling network, and NoisyNet, of deep reinforcement learning to search for radiation sources. The simulation environment, which is a 10*10 grid and one shielding wall setting in it, improves the development of the AI model by training 1 million episodes. In each episode of training, the radiation source position, the radiation source intensity, agent position, shielding wall position, and shielding wall length are all set randomly. The three algorithms are applied to run AI model training in four environments where the training shielding wall is a full-shielding wall, a lead wall, a concrete wall, and a lead wall or a concrete wall appearing randomly. The 12 best performance AI models are selected by observing the reward value during the training period and are evaluated by comparing these AI models with the gradient search algorithm. The results show that the performance of the AI model, no matter which one algorithm, is far better than the gradient search algorithm. In addition, the simulation environment becomes more complex, the AI model which applied Double DQN combined Dueling and NosiyNet algorithm performs better.Keywords: double Q learning, dueling network, NoisyNet, source searching
Procedia PDF Downloads 11329399 Deep Reinforcement Learning for Optimal Decision-Making in Supply Chains
Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol
Abstract:
We propose the use of reinforcement learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making makes it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and statistical analysis of the results. We study the generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.Keywords: inventory management, reinforcement learning, supply chain optimization, uncertainty
Procedia PDF Downloads 10729398 Artificial Intelligence Methods for Returns Expectations in Financial Markets
Authors: Yosra Mefteh Rekik, Younes Boujelbene
Abstract:
We introduce in this paper a new conceptual model representing the stock market dynamics. This model is essentially based on cognitive behavior of the intelligence investors. In order to validate our model, we build an artificial stock market simulation based on agent-oriented methodologies. The proposed simulator is composed of market supervisor agent essentially responsible for executing transactions via an order book and various kinds of investor agents depending to their profile. The purpose of this simulation is to understand the influence of psychological character of an investor and its neighborhood on its decision-making and their impact on the market in terms of price fluctuations. Therefore, the difficulty of the prediction is due to several features: the complexity, the non-linearity and the dynamism of the financial market system, as well as the investor psychology. The Artificial Neural Networks learning mechanism take on the role of traders, who from their futures return expectations and place orders based on their expectations. The results of intensive analysis indicate that the existence of agents having heterogeneous beliefs and preferences has provided a better understanding of price dynamics in the financial market.Keywords: artificial intelligence methods, artificial stock market, behavioral modeling, multi-agent based simulation
Procedia PDF Downloads 445