Search results for: neural interface
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3186

Search results for: neural interface

306 An Analytical Systematic Design Approach to Evaluate Ballistic Performance of Armour Grade AA7075 Aluminium Alloy Using Friction Stir Processing

Authors: Lahari Ramya Pa, Sudhakar Ib, Madhu Vc, Madhusudhan Reddy Gd, Srinivasa Rao E.

Abstract:

Selection of suitable armor materials for defense applications is very crucial with respect to increasing mobility of the systems as well as maintaining safety. Therefore, determining the material with the lowest possible areal density that resists the predefined threat successfully is required in armor design studies. A number of light metal and alloys are come in to forefront especially to substitute the armour grade steels. AA5083 aluminium alloy which fit in to the military standards imposed by USA army is foremost nonferrous alloy to consider for possible replacement of steel to increase the mobility of armour vehicles and enhance fuel economy. Growing need of AA5083 aluminium alloy paves a way to develop supplement aluminium alloys maintaining the military standards. It has been witnessed that AA 2xxx aluminium alloy, AA6xxx aluminium alloy and AA7xxx aluminium alloy are the potential material to supplement AA5083 aluminium alloy. Among those cited aluminium series alloys AA7xxx aluminium alloy (heat treatable) possesses high strength and can compete with armour grade steels. Earlier investigations revealed that layering of AA7xxx aluminium alloy can prevent spalling of rear portion of armour during ballistic impacts. Hence, present investigation deals with fabrication of hard layer (made of boron carbide) i.e. layer on AA 7075 aluminium alloy using friction stir processing with an intention of blunting the projectile in the initial impact and backing tough portion(AA7xxx aluminium alloy) to dissipate residual kinetic energy. An analytical approach has been adopted to unfold the ballistic performance of projectile. Penetration of projectile inside the armour has been resolved by considering by strain energy model analysis. Perforation shearing areas i.e. interface of projectile and armour is taken in to account for evaluation of penetration inside the armour. Fabricated surface composites (targets) were tested as per the military standard (JIS.0108.01) in a ballistic testing tunnel at Defence Metallurgical Research Laboratory (DMRL), Hyderabad in standardized testing conditions. Analytical results were well validated with experimental obtained one.

Keywords: AA7075 aluminium alloy, friction stir processing, boron carbide, ballistic performance, target

Procedia PDF Downloads 331
305 Design of a Backlight Hyperspectral Imaging System for Enhancing Image Quality in Artificial Vision Food Packaging Online Inspections

Authors: Ferran Paulí Pla, Pere Palacín Farré, Albert Fornells Herrera, Pol Toldrà Fernández

Abstract:

Poor image acquisition is limiting the promising growth of industrial vision in food control. In recent years, the food industry has witnessed a significant increase in the implementation of automation in quality control through artificial vision, a trend that continues to grow. During the packaging process, some defects may appear, compromising the proper sealing of the products and diminishing their shelf life, sanitary conditions and overall properties. While failure to detect a defective product leads to major losses, food producers also aim to minimize over-rejection to avoid unnecessary waste. Thus, accuracy in the evaluation of the products is crucial, and, given the large production volumes, even small improvements have a significant impact. Recently, efforts have been focused on maximizing the performance of classification neural networks; nevertheless, their performance is limited by the quality of the input data. Monochrome linear backlight systems are most commonly used for online inspections of food packaging thermo-sealing zones. These simple acquisition systems fit the high cadence of the production lines imposed by the market demand. Nevertheless, they provide a limited amount of data, which negatively impacts classification algorithm training. A desired situation would be one where data quality is maximized in terms of obtaining the key information to detect defects while maintaining a fast working pace. This work presents a backlight hyperspectral imaging system designed and implemented replicating an industrial environment to better understand the relationship between visual data quality and spectral illumination range for a variety of packed food products. Furthermore, results led to the identification of advantageous spectral bands that significantly enhance image quality, providing clearer detection of defects.

Keywords: artificial vision, food packaging, hyperspectral imaging, image acquisition, quality control

Procedia PDF Downloads 23
304 Biofilm Text Classifiers Developed Using Natural Language Processing and Unsupervised Learning Approach

Authors: Kanika Gupta, Ashok Kumar

Abstract:

Biofilms are dense, highly hydrated cell clusters that are irreversibly attached to a substratum, to an interface or to each other, and are embedded in a self-produced gelatinous matrix composed of extracellular polymeric substances. Research in biofilm field has become very significant, as biofilm has shown high mechanical resilience and resistance to antibiotic treatment and constituted as a significant problem in both healthcare and other industry related to microorganisms. The massive information both stated and hidden in the biofilm literature are growing exponentially therefore it is not possible for researchers and practitioners to automatically extract and relate information from different written resources. So, the current work proposes and discusses the use of text mining techniques for the extraction of information from biofilm literature corpora containing 34306 documents. It is very difficult and expensive to obtain annotated material for biomedical literature as the literature is unstructured i.e. free-text. Therefore, we considered unsupervised approach, where no annotated training is necessary and using this approach we developed a system that will classify the text on the basis of growth and development, drug effects, radiation effects, classification and physiology of biofilms. For this, a two-step structure was used where the first step is to extract keywords from the biofilm literature using a metathesaurus and standard natural language processing tools like Rapid Miner_v5.3 and the second step is to discover relations between the genes extracted from the whole set of biofilm literature using pubmed.mineR_v1.0.11. We used unsupervised approach, which is the machine learning task of inferring a function to describe hidden structure from 'unlabeled' data, in the above-extracted datasets to develop classifiers using WinPython-64 bit_v3.5.4.0Qt5 and R studio_v0.99.467 packages which will automatically classify the text by using the mentioned sets. The developed classifiers were tested on a large data set of biofilm literature which showed that the unsupervised approach proposed is promising as well as suited for a semi-automatic labeling of the extracted relations. The entire information was stored in the relational database which was hosted locally on the server. The generated biofilm vocabulary and genes relations will be significant for researchers dealing with biofilm research, making their search easy and efficient as the keywords and genes could be directly mapped with the documents used for database development.

Keywords: biofilms literature, classifiers development, text mining, unsupervised learning approach, unstructured data, relational database

Procedia PDF Downloads 172
303 Crime Prevention with Artificial Intelligence

Authors: Mehrnoosh Abouzari, Shahrokh Sahraei

Abstract:

Today, with the increase in quantity and quality and variety of crimes, the discussion of crime prevention has faced a serious challenge that human resources alone and with traditional methods will not be effective. One of the developments in the modern world is the presence of artificial intelligence in various fields, including criminal law. In fact, the use of artificial intelligence in criminal investigations and fighting crime is a necessity in today's world. The use of artificial intelligence is far beyond and even separate from other technologies in the struggle against crime. Second, its application in criminal science is different from the discussion of prevention and it comes to the prediction of crime. Crime prevention in terms of the three factors of the offender, the offender and the victim, following a change in the conditions of the three factors, based on the perception of the criminal being wise, and therefore increasing the cost and risk of crime for him in order to desist from delinquency or to make the victim aware of self-care and possibility of exposing him to danger or making it difficult to commit crimes. While the presence of artificial intelligence in the field of combating crime and social damage and dangers, like an all-seeing eye, regardless of time and place, it sees the future and predicts the occurrence of a possible crime, thus prevent the occurrence of crimes. The purpose of this article is to collect and analyze the studies conducted on the use of artificial intelligence in predicting and preventing crime. How capable is this technology in predicting crime and preventing it? The results have shown that the artificial intelligence technologies in use are capable of predicting and preventing crime and can find patterns in the data set. find large ones in a much more efficient way than humans. In crime prediction and prevention, the term artificial intelligence can be used to refer to the increasing use of technologies that apply algorithms to large sets of data to assist or replace police. The use of artificial intelligence in our debate is in predicting and preventing crime, including predicting the time and place of future criminal activities, effective identification of patterns and accurate prediction of future behavior through data mining, machine learning and deep learning, and data analysis, and also the use of neural networks. Because the knowledge of criminologists can provide insight into risk factors for criminal behavior, among other issues, computer scientists can match this knowledge with the datasets that artificial intelligence uses to inform them.

Keywords: artificial intelligence, criminology, crime, prevention, prediction

Procedia PDF Downloads 77
302 21st Century Business Dynamics: Acting Local and Thinking Global through Extensive Business Reporting Language (XBRL)

Authors: Samuel Faboyede, Obiamaka Nwobu, Samuel Fakile, Dickson Mukoro

Abstract:

In the present dynamic business environment of corporate governance and regulations, financial reporting is an inevitable and extremely significant process for every business enterprise. Several financial elements such as Annual Reports, Quarterly Reports, ad-hoc filing, and other statutory/regulatory reports provide vital information to the investors and regulators, and establish trust and rapport between the internal and external stakeholders of an organization. Investors today are very demanding, and emphasize greatly on authenticity, accuracy, and reliability of financial data. For many companies, the Internet plays a key role in communicating business information, internally to management and externally to stakeholders. Despite high prominence being attached to external reporting, it is disconnected in most companies, who generate their external financial documents manually, resulting in high degree of errors and prolonged cycle times. Chief Executive Officers and Chief Financial Officers are increasingly susceptible to endorsing error-laden reports, late filing of reports, and non-compliance with regulatory acts. There is a lack of common platform to manage the sensitive information – internally and externally – in financial reports. The Internet financial reporting language known as eXtensible Business Reporting Language (XBRL) continues to develop in the face of challenges and has now reached the point where much of its promised benefits are available. This paper looks at the emergence of this revolutionary twenty-first century language of digital reporting. It posits that today, the world is on the brink of an Internet revolution that will redefine the ‘business reporting’ paradigm. The new Internet technology, eXtensible Business Reporting Language (XBRL), is already being deployed and used across the world. It finds that XBRL is an eXtensible Markup Language (XML) based information format that places self-describing tags around discrete pieces of business information. Once tags are assigned, it is possible to extract only desired information, rather than having to download or print an entire document. XBRL is platform-independent and it will work on any current or recent-year operating system, or any computer and interface with virtually any software. The paper concludes that corporate stakeholders and the government cannot afford to ignore the XBRL. It therefore recommends that all must act locally and think globally now via the adoption of XBRL that is changing the face of worldwide business reporting.

Keywords: XBRL, financial reporting, internet, internal and external reports

Procedia PDF Downloads 288
301 Short Life Cycle Time Series Forecasting

Authors: Shalaka Kadam, Dinesh Apte, Sagar Mainkar

Abstract:

The life cycle of products is becoming shorter and shorter due to increased competition in market, shorter product development time and increased product diversity. Short life cycles are normal in retail industry, style business, entertainment media, and telecom and semiconductor industry. The subject of accurate forecasting for demand of short lifecycle products is of special enthusiasm for many researchers and organizations. Due to short life cycle of products the amount of historical data that is available for forecasting is very minimal or even absent when new or modified products are launched in market. The companies dealing with such products want to increase the accuracy in demand forecasting so that they can utilize the full potential of the market at the same time do not oversupply. This provides the challenge to develop a forecasting model that can forecast accurately while handling large variations in data and consider the complex relationships between various parameters of data. Many statistical models have been proposed in literature for forecasting time series data. Traditional time series forecasting models do not work well for short life cycles due to lack of historical data. Also artificial neural networks (ANN) models are very time consuming to perform forecasting. We have studied the existing models that are used for forecasting and their limitations. This work proposes an effective and powerful forecasting approach for short life cycle time series forecasting. We have proposed an approach which takes into consideration different scenarios related to data availability for short lifecycle products. We then suggest a methodology which combines statistical analysis with structured judgement. Also the defined approach can be applied across domains. We then describe the method of creating a profile from analogous products. This profile can then be used for forecasting products with historical data of analogous products. We have designed an application which combines data, analytics and domain knowledge using point-and-click technology. The forecasting results generated are compared using MAPE, MSE and RMSE error scores. Conclusion: Based on the results it is observed that no one approach is sufficient for short life-cycle forecasting and we need to combine two or more approaches for achieving the desired accuracy.

Keywords: forecast, short life cycle product, structured judgement, time series

Procedia PDF Downloads 359
300 Coupling of Microfluidic Droplet Systems with ESI-MS Detection for Reaction Optimization

Authors: Julia R. Beulig, Stefan Ohla, Detlev Belder

Abstract:

In contrast to off-line analytical methods, lab-on-a-chip technology delivers direct information about the observed reaction. Therefore, microfluidic devices make an important scientific contribution, e.g. in the field of synthetic chemistry. Herein, the rapid generation of analytical data can be applied for the optimization of chemical reactions. These microfluidic devices enable a fast change of reaction conditions as well as a resource saving method of operation. In the presented work, we focus on the investigation of multiphase regimes, more specifically on a biphasic microfluidic droplet systems. Here, every single droplet is a reaction container with customized conditions. The biggest challenge is the rapid qualitative and quantitative readout of information as most detection techniques for droplet systems are non-specific, time-consuming or too slow. An exception is the electrospray mass spectrometry (ESI-MS). The combination of a reaction screening platform with a rapid and specific detection method is an important step in droplet-based microfluidics. In this work, we present a novel approach for synthesis optimization on the nanoliter scale with direct ESI-MS detection. The development of a droplet-based microfluidic device, which enables the modification of different parameters while simultaneously monitoring the effect on the reaction within a single run, is shown. By common soft- and photolithographic techniques a polydimethylsiloxane (PDMS) microfluidic chip with different functionalities is developed. As an interface for the MS detection, we use a steel capillary for ESI and improve the spray stability with a Teflon siphon tubing, which is inserted underneath the steel capillary. By optimizing the flow rates, it is possible to screen parameters of various reactions, this is exemplarity shown by a Domino Knoevenagel Hetero-Diels-Alder reaction. Different starting materials, catalyst concentrations and solvent compositions are investigated. Due to the high repetition rate of the droplet production, each set of reaction condition is examined hundreds of times. As a result, of the investigation, we receive possible reagents, the ideal water-methanol ratio of the solvent and the most effective catalyst concentration. The developed system can help to determine important information about the optimal parameters of a reaction within a short time. With this novel tool, we make an important step on the field of combining droplet-based microfluidics with organic reaction screening.

Keywords: droplet, mass spectrometry, microfluidics, organic reaction, screening

Procedia PDF Downloads 301
299 Tuning of Indirect Exchange Coupling in FePt/Al₂O₃/Fe₃Pt System

Authors: Rajan Goyal, S. Lamba, S. Annapoorni

Abstract:

The indirect exchange coupled system consists of two ferromagnetic layers separated by non-magnetic spacer layer. The type of exchange coupling may be either ferro or anti-ferro depending on the thickness of the spacer layer. In the present work, the strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt has been investigated by varying the thickness of the spacer layer Al₂O₃. The FePt/Al₂O₃/Fe₃Pt trilayer structure is fabricated on Si <100> single crystal substrate using sputtering technique. The thickness of FePt and Fe₃Pt is fixed at 60 nm and 2 nm respectively. The thickness of spacer layer Al₂O₃ was varied from 0 to 16 nm. The normalized hysteresis loops recorded at room temperature both in the in-plane and out of plane configuration reveals that the orientation of easy axis lies along the plane of the film. It is observed that the hysteresis loop for ts=0 nm does not exhibit any knee around H=0 indicating that the hard FePt layer and soft Fe₃Pt layer are strongly exchange coupled. However, the insertion of Al₂O₃ spacer layer of thickness ts = 0.7 nm results in appearance of a minor knee around H=0 suggesting the weakening of exchange coupling between FePt and Fe₃Pt. The disappearance of knee in hysteresis loop with further increase in thickness of the spacer layer up to 8 nm predicts the co-existence of ferromagnetic (FM) and antiferromagnetic (AFM) exchange interaction between FePt and Fe₃Pt. In addition to this, the out of plane hysteresis loop also shows an asymmetry around H=0. The exchange field Hex = (Hc↑-HC↓)/2, where Hc↑ and Hc↓ are the coercivity estimated from lower and upper branch of hysteresis loop, increases from ~ 150 Oe to ~ 700 Oe respectively. This behavior may be attributed to the uncompensated moments in the hard FePt layer and soft Fe₃Pt layer at the interface. A better insight into the variation in indirect exchange coupling has been investigated using recoil curves. It is observed that the almost closed recoil curves are obtained for ts= 0 nm up to a reverse field of ~ 5 kOe. On the other hand, the appearance of appreciable open recoil curves at lower reverse field ~ 4 kOe for ts = 0.7 nm indicates that uncoupled soft phase undergoes irreversible magnetization reversal at lower reverse field suggesting the weakening of exchange coupling. The openness of recoil curves decreases with increase in thickness of the spacer layer up to 8 nm. This behavior may be attributed to the competition between FM and AFM exchange interactions. The FM exchange coupling between FePt and Fe₃Pt due to porous nature of Al₂O₃ decreases much slower than the weak AFM coupling due to interaction between Fe ions of FePt and Fe₃Pt via O ions of Al₂O₃. The hysteresis loop has been simulated using Monte Carlo based on Metropolis algorithm to investigate the variation in strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt trilayer system.

Keywords: indirect exchange coupling, MH loop, Monte Carlo simulation, recoil curve

Procedia PDF Downloads 190
298 Optical Assessment of Marginal Sealing Performance around Restorations Using Swept-Source Optical Coherence Tomography

Authors: Rima Zakzouk, Yasushi Shimada, Yasunori Sumi, Junji Tagami

Abstract:

Background and purpose: The resin composite has become the main material for the restorations of caries in recent years due to aesthetic characteristics, especially with the development of the adhesive techniques. The quality of adhesion to tooth structures is depending on an exchange process between inorganic tooth material and synthetic resin and a micromechanical retention promoted by resin infiltration in partially demineralized dentin. Optical coherence tomography (OCT) is a noninvasive diagnostic method for obtaining cross-sectional images that produce high-resolution of the biological tissue at the micron scale. The aim of this study was to evaluate the gap formation at adhesive/tooth interface of two-step self-etch adhesives that are preceded with or without phosphoric acid pre-etching in different regions of teeth using SS-OCT. Materials and methods: Round tapered cavities (2×2 mm) were prepared in cervical part of bovine incisors teeth and divided into 2 groups (n=10): first group self-etch adhesive (Clearfil SE Bond) was applied for SE group and second group treated with acid etching before applying the self-etch adhesive for PA group. Subsequently, both groups were restored with Estelite Flow Quick Flowable Composite Resin and observed under OCT. Following 5000 thermal cycles, the same section was obtained again for each cavity using OCT at 1310-nm wavelength. Scanning was repeated after two months to monitor the gap progress. Then the gap length was measured using image analysis software, and the statistics analysis were done between both groups using SPSS software. After that, the cavities were sectioned and observed under Confocal Laser Scanning Microscope (CLSM) to confirm the result of OCT. Results: Gaps formed at the bottom of the cavity was longer than the gap formed at the margin and dento-enamel junction in both groups. On the other hand, pre-etching treatment led to damage the DEJ regions creating longer gap. After 2 months the results showed almost progress in the gap length significantly at the bottom regions in both groups. In conclusions, phosphoric acid etching treatment did not reduce the gap lrngth in most regions of the cavity. Significance: The bottom region of tooth was more exposed to gap formation than margin and DEJ regions, The DEJ damaged with phosphoric acid treatment.

Keywords: optical coherence tomography, self-etch adhesives, bottom, dento enamel junction

Procedia PDF Downloads 227
297 Kinetic, Equilibrium and Thermodynamic Studies of the Adsorption of Crystal Violet Dye Using Groundnut Hulls

Authors: Olumuyiwa Ayoola Kokapi, Olugbenga Solomon Bello

Abstract:

Dyes are organic compounds with complex aromatic molecular structure that resulted in fast colour on a substance. Dye effluent found in wastewater generated from the dyeing industries is one of the greatest contributors to water pollution. Groundnut hull (GH) is an agricultural material that constitutes waste in the environment. Environmental contamination by hazardous organic chemicals is an urgent problem, which is partially solved through adsorption technologies. The choice of groundnut hull was promised on the understanding that some materials of agricultural origin have shown potentials to act as Adsorbate for hazardous organic chemicals. The aim of this research is to evaluate the potential of groundnut hull to adsorb Crystal violet dye through kinetic, isotherm and thermodynamic studies. The prepared groundnut hulls was characterized using Brunauer, Emmett and Teller (BET), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Operational parameters such as contact time, initial dye concentration, pH, and effect of temperature were studied. Equilibrium time for the adsorption process was attained in 80 minutes. Adsorption isotherms used to test the adsorption data were Langmuir and Freundlich isotherms model. Thermodynamic parameters such as ∆G°, ∆H°, and ∆S° of the adsorption processes were determined. The results showed that the uptake of dye by groundnut hulls occurred at a faster rate, corresponding to an increase in adsorption capacity at equilibrium time of 80 min from 0.78 to 4.45 mg/g and 0.77 to 4.45mg/g with an increase in the initial dye concentration from 10 to 50 mg/L for pH 3.0 and 8.0 respectively. High regression values obtained for pseudo-second-order kinetic model, sum of square error (SSE%) values along with strong agreement between experimental and calculated values of qe proved that pseudo second-order kinetic model fitted more than pseudo first-order kinetic model. The result of Langmuir and Freundlich model showed that the adsorption data fit the Langmuir model more than the Freundlich model. Thermodynamic study demonstrated the feasibility, spontaneous and endothermic nature of the adsorption process due to negative values of free energy change (∆G) at all temperatures and positive value of enthalpy change (∆H) respectively. The positive values of ∆S showed that there was increased disorderliness and randomness at the solid/solution interface of crystal violet dye and groundnut hulls. The present investigation showed that, groundnut hulls (GH) is a good low-cost alternative adsorbent for the removal of Crystal Violet (CV) dye from aqueous solution.

Keywords: adsorption, crystal violet dye, groundnut halls, kinetics

Procedia PDF Downloads 377
296 University Students' Perspectives on a Mindfulness-Based App for Weight, Weight Related Behaviors, and Stress: A Qualitative Focus Group Study

Authors: Lynnette Lyzwinski, Liam Caffery, Matthew Bambling, Sisira Edirippulige

Abstract:

Introduction: A novel method of delivering mindfulness interventions for populations at risk of weight gain and stress-related eating, in particular, college students, is through mHealth. While there have been qualitative studies on mHealth for weight loss, there has not been a study on mHealth for weight loss using mindfulness that has explored student perspectives on a student centred mindfulness app and mindfulness-based text messages for eating and stress. Student perspective data will provide valuable information for creating a specific purpose weight management app and mindfulness-based text messages (for the Mindfulness App study). Methods: A qualitative focus group study was undertaken at St Lucia campus at the University of Queensland in March 2017. Students over the age of 18 were eligible to participate. Interviews were audiotaped and transcribed. One week following the focus group, students were sent sample mindfulness-based text messages based on their responses. Students provided written feedback via email. Data were analysed using N Vivo software. Results: The key themes in a future mindfulness-based app are a simple design interface, a focus on education/practical tips, and real-life practical exercises. Social media should be avoided. Key themes surrounding barriers include the perceived difficulty of mindfulness and a lack of proper guidance or knowledge. The mindfulness-based text messages were received positively. Key themes were creating messages with practical tips about how to be mindful and how to integrate mindful reflection of both one’s body and environment while on campus. Other themes including creating positive, inspirational messages. There was lack of agreement on the ideal timing for messages. Discussion: This is the first study that explored student perspectives on a mindfulness-app and mindfulness-based text messages for stress and weight management as a pre-trial study for the Mindfulness App trial for stress, lifestyle, and weight in students. It is important to consider maximizing the potential facilitators of use and minimize potential identified barriers when developing and designing a future mHealth mindfulness-based intervention tailored to the student consumer. Conclusion: Future mHealth studies may consider integrating mindfulness-based text messages in their interventions for weight and stress as this is a novel feature that appears to be acceptable for participants. The results of this focus group provide the basis to develop content for a specific purpose student app for weight management.

Keywords: mindfulness, college students, mHealth, weight loss

Procedia PDF Downloads 199
295 Volunteered Geographic Information Coupled with Wildfire Fire Progression Maps: A Spatial and Temporal Tool for Incident Storytelling

Authors: Cassandra Hansen, Paul Doherty, Chris Ferner, German Whitley, Holly Torpey

Abstract:

Wildfire is a natural and inevitable occurrence, yet changing climatic conditions have increased the severity, frequency, and risk to human populations in the wildland/urban interface (WUI) of the Western United States. Rapid dissemination of accurate wildfire information is critical to both the Incident Management Team (IMT) and the affected community. With the advent of increasingly sophisticated information systems, GIS can now be used as a web platform for sharing geographic information in new and innovative ways, such as virtual story map applications. Crowdsourced information can be extraordinarily useful when coupled with authoritative information. Information abounds in the form of social media, emergency alerts, radio, and news outlets, yet many of these resources lack a spatial component when first distributed. In this study, we describe how twenty-eight volunteer GIS professionals across nine Geographic Area Coordination Centers (GACC) sourced, curated, and distributed Volunteered Geographic Information (VGI) from authoritative social media accounts focused on disseminating information about wildfires and public safety. The combination of fire progression maps with VGI incident information helps answer three critical questions about an incident, such as: where the first started. How and why the fire behaved in an extreme manner and how we can learn from the fire incident's story to respond and prepare for future fires in this area. By adding a spatial component to that shared information, this team has been able to visualize shared information about wildfire starts in an interactive map that answers three critical questions in a more intuitive way. Additionally, long-term social and technical impacts on communities are examined in relation to situational awareness of the disaster through map layers and agency links, the number of views in a particular region of a disaster, community involvement and sharing of this critical resource. Combined with a GIS platform and disaster VGI applications, this workflow and information become invaluable to communities within the WUI and bring spatial awareness for disaster preparedness, response, mitigation, and recovery. This study highlights progression maps as the ultimate storytelling mechanism through incident case studies and demonstrates the impact of VGI and sophisticated applied cartographic methodology make this an indispensable resource for authoritative information sharing.

Keywords: storytelling, wildfire progression maps, volunteered geographic information, spatial and temporal

Procedia PDF Downloads 179
294 Cricket Injury Surveillence by Mobile Application Technology on Smartphones

Authors: Najeebullah Soomro, Habib Noorbhai, Mariam Soomro, Ross Sanders

Abstract:

The demands on cricketers are increasing with more matches being played in a shorter period of time with a greater intensity. A ten year report on injury incidence for Australian elite cricketers between the 2000- 2011 seasons revealed an injury incidence rate of 17.4%.1. In the 2009–10 season, 24 % of Australian fast bowlers missed matches through injury. 1 Injury rates are even higher in junior cricketers with an injury incidence of 25% or 2.9 injuries per 100 player hours reported. 2 Traditionally, injury surveillance has relied on the use of paper based forms or complex computer software. 3,4 This makes injury reporting laborious for the staff involved. The purpose of this presentation is to describe a smartphone based mobile application as a means of improving injury surveillance in cricket. Methods: The researchers developed CricPredict mobile App for the Android platforms, the world’s most widely used smartphone platform. It uses Qt SDK (Software Development Kit) as IDE (Integrated Development Environment). C++ was used as the programming language with the Qt framework, which provides us with cross-platform abilities that will allow this app to be ported to other operating systems (iOS, Mac, Windows) in the future. The wireframes (graphic user interface) were developed using Justinmind Prototyper Pro Edition Version (Ver. 6.1.0). CricPredict enables recording of injury and training status conveniently and immediately. When an injury is reported automated follow-up questions include site of injury, nature of injury, mechanism of injury, initial treatment, referral and action taken after injury. Direct communication with the player then enables assessment of severity and diagnosis. CricPredict also allows the coach to maintain and track each player’s attendance at matches and training session. Workload data can also be recorded by either the player or coach by recording the number of balls bowled or played in a day. This is helpful in formulating injury rates and time lost due to injuries. All the data are stored at a secured password protected data server. Outcomes and Significance: Use of CricPredit offers a simple, user friendly tool for the coaching or medical staff associated with teams to predict, record and report injuries. This system will assist teams to capture injury data with ease thus allowing better understanding of injuries associated with cricket and potentially optimize the performance of such cricketers.

Keywords: injury, cricket, surveillance, smartphones, mobile

Procedia PDF Downloads 459
293 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence

Authors: Mohammed Al Sulaimani, Hamad Al Manhi

Abstract:

With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.

Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems

Procedia PDF Downloads 34
292 Data and Model-based Metamodels for Prediction of Performance of Extended Hollo-Bolt Connections

Authors: M. Cabrera, W. Tizani, J. Ninic, F. Wang

Abstract:

Open section beam to concrete-filled tubular column structures has been increasingly utilized in construction over the past few decades due to their enhanced structural performance, as well as economic and architectural advantages. However, the use of this configuration in construction is limited due to the difficulties in connecting the structural members as there is no access to the inner part of the tube to install standard bolts. Blind-bolted systems are a relatively new approach to overcome this limitation as they only require access to one side of the tubular section to tighten the bolt. The performance of these connections in concrete-filled steel tubular sections remains uncharacterized due to the complex interactions between concrete, bolt, and steel section. Over the last years, research in structural performance has moved to a more sophisticated and efficient approach consisting of machine learning algorithms to generate metamodels. This method reduces the need for developing complex, and computationally expensive finite element models, optimizing the search for desirable design variables. Metamodels generated by a data fusion approach use numerical and experimental results by combining multiple models to capture the dependency between the simulation design variables and connection performance, learning the relations between different design parameters and predicting a given output. Fully characterizing this connection will transform high-rise and multistorey construction by means of the introduction of design guidance for moment-resisting blind-bolted connections, which is currently unavailable. This paper presents a review of the steps taken to develop metamodels generated by means of artificial neural network algorithms which predict the connection stress and stiffness based on the design parameters when using Extended Hollo-Bolt blind bolts. It also provides consideration of the failure modes and mechanisms that contribute to the deformability as well as the feasibility of achieving blind-bolted rigid connections when using the blind fastener.

Keywords: blind-bolted connections, concrete-filled tubular structures, finite element analysis, metamodeling

Procedia PDF Downloads 158
291 The Integration of Prosecutorial Discretion in the Anti-Money Laundering Regime in Nigeria: A Focus on Politically Exposed Persons

Authors: Chineduum Okpala

Abstract:

Nigeria, since her independence, has been engulfed in financial crimes of different forms. From embezzlement and conversion of public funds by public servants to stealing, contract inflation, and money laundering. Money laundering in Nigeria, particularly by political exposed persons, has been an issue of concern since independence. Corruption has been endemic, and Nigeria needs to integrate pro-active measures to show to the international community that it is ready to move against this vice. This paper discusses the negative effect of corruption and its effect on prosecutorial discretion. It also takes cognisance of the policy and aims of the anti-money laundering (AML) policy as enacted in Nigeria. It also takes as valid the assumption that the effective application of the rule of law will improve the efficacy of the Nigerian regime. In this regard, the perspective is internal to the Nigerian regime and its internal policy discourse which also reflect its policy discourse at international level. This paper takes notice of the typology of money laundering (ML) offences that most affect Nigeria, which hinges on corruption and abuse of office by a specific type of person, politically exposed persons (PEP). This typology of money laundering offence appears to be the most prevalent in developing nations like Nigeria. The application of essential principles of law provides an opportunity for the internalisation of the rule of law in the anti-money laundering regime in Nigeria, which could aid the successful prosecution of politically exposed persons on money laundering offences. The rule of law and how well the Nigerian legal system manages to deal with the interface between high level politics and the criminal justice system in Nigeria cannot be understood from internal sources but must be developed as a genuine but critical account informed by perspectives external to the Nigerian regime. If the efficacy of the regime is to be assessed in view of notorious failures of the regime, an external assessment is needed. Hence the paper discusses the need to integrate the essential principles of law in the application of prosecutorial discretion in the anti-money laundering regime in Nigeria, particularly with politically exposed persons. The paper highlights jurisdiction where prosecutorial discretion is integrated into the anti-money laundering regime in accordance to the rule of law which forms a basis for comparative analysis of the success of the anti-money laundering regime in Nigeria. This paper discusses why the application of prosecutorial discretion should not be used as a tool to extricate or avail the rich and powerful in the society from justice. The paper aims to argue that the successful prosecution of politically exposed persons, will raise the confidence of the citizens and the international community in the anti-money laundering regime in Nigeria.

Keywords: money laundering, politically exposed persons, corruption, Nigeria

Procedia PDF Downloads 132
290 Hand Motion Tracking as a Human Computer Interation for People with Cerebral Palsy

Authors: Ana Teixeira, Joao Orvalho

Abstract:

This paper describes experiments using Scratch games, to check the feasibility of employing cerebral palsy users gestures as an alternative of interaction with a computer carried out by students of Master Human Computer Interaction (HCI) of IPC Coimbra. The main focus of this work is to study the usability of a Web Camera as a motion tracking device to achieve a virtual human-computer interaction used by individuals with CP. An approach for Human-computer Interaction (HCI) is present, where individuals with cerebral palsy react and interact with a scratch game through the use of a webcam as an external interaction device. Motion tracking interaction is an emerging technology that is becoming more useful, effective and affordable. However, it raises new questions from the HCI viewpoint, for example, which environments are most suitable for interaction by users with disabilities. In our case, we put emphasis on the accessibility and usability aspects of such interaction devices to meet the special needs of people with disabilities, and specifically people with CP. Despite the fact that our work has just started, preliminary results show that, in general, computer vision interaction systems are very useful; in some cases, these systems are the only way by which some people can interact with a computer. The purpose of the experiments was to verify two hypothesis: 1) people with cerebral palsy can interact with a computer using their natural gestures, 2) scratch games can be a research tool in experiments with disabled young people. A game in Scratch with three levels is created to be played through the use of a webcam. This device permits the detection of certain key points of the user’s body, which allows to assume the head, arms and specially the hands as the most important aspects of recognition. Tests with 5 individuals of different age and gender were made throughout 3 days through periods of 30 minutes with each participant. For a more extensive and reliable statistical analysis, the number of both participants and repetitions in further investigations should be increased. However, already at this stage of research, it is possible to draw some conclusions. First, and the most important, is that simple scratch games on the computer can be a research tool that allows investigating the interaction with computer performed by young persons with CP using intentional gestures. Measurements performed with the assistance of games are attractive for young disabled users. The second important conclusion is that they are able to play scratch games using their gestures. Therefore, the proposed interaction method is promising for them as a human-computer interface. In the future, we plan to include the development of multimodal interfaces that combine various computer vision devices with other input devices improvements in the existing systems to accommodate more the special needs of individuals, in addition, to perform experiments on a larger number of participants.

Keywords: motion tracking, cerebral palsy, rehabilitation, HCI

Procedia PDF Downloads 235
289 Development of a Bi-National Thyroid Cancer Clinical Quality Registry

Authors: Liane J. Ioannou, Jonathan Serpell, Joanne Dean, Cino Bendinelli, Jenny Gough, Dean Lisewski, Julie Miller, Win Meyer-Rochow, Stan Sidhu, Duncan Topliss, David Walters, John Zalcberg, Susannah Ahern

Abstract:

Background: The occurrence of thyroid cancer is increasing throughout the developed world, including Australia and New Zealand, and since the 1990s has become the fastest increasing malignancy. Following the success of a number of institutional databases that monitor outcomes after thyroid surgery, the Australian and New Zealand Endocrine Surgeons (ANZES) agreed to auspice the development of a bi-national thyroid cancer registry. Objectives: To establish a bi-national population-based clinical quality registry with the aim of monitoring and improving the quality of care provided to patients diagnosed with thyroid cancer in Australia and New Zealand. Patients and Methods: The Australian and New Zealand Thyroid Cancer Registry (ANZTCR) captures clinical data for all patients, over the age of 18 years, diagnosed with thyroid cancer, confirmed by histopathology report, that have been diagnosed, assessed or treated at a contributing hospital. Data is collected by endocrine surgeons using a web-based interface, REDCap, primarily via direct data entry. Results: A multi-disciplinary Steering Committee was formed, and with operational support from Monash University the ANZTCR was established in early 2017. The pilot phase of the registry is currently operating in Victoria, New South Wales, Queensland, Western Australia and South Australia, with over 30 sites expected to come on board across Australia and New Zealand in 2018. A modified-Delphi process was undertaken to determine the key quality indicators to be reported by the registry, and a minimum dataset was developed comprising information regarding thyroid cancer diagnosis, pathology, surgery, and 30-day follow up. Conclusion: There are very few established thyroid cancer registries internationally, yet clinical quality registries have shown valuable outcomes and patient benefits in other cancers. The establishment of the ANZTCR provides the opportunity for Australia and New Zealand to further understand the current practice in the treatment of thyroid cancer and reasons for variation in outcomes. The engagement of endocrine surgeons in supporting this initiative is crucial. While the pilot registry has a focus on early clinical outcomes, it is anticipated that future collection of longer-term outcome data particularly for patients with the poor prognostic disease will add significant further value to the registry.

Keywords: thyroid cancer, clinical registry, population health, quality improvement

Procedia PDF Downloads 193
288 Dynamic Characterization of Shallow Aquifer Groundwater: A Lab-Scale Approach

Authors: Anthony Credoz, Nathalie Nief, Remy Hedacq, Salvador Jordana, Laurent Cazes

Abstract:

Groundwater monitoring is classically performed in a network of piezometers in industrial sites. Groundwater flow parameters, such as direction, sense and velocity, are deduced from indirect measurements between two or more piezometers. Groundwater sampling is generally done on the whole column of water inside each borehole to provide concentration values for each piezometer location. These flow and concentration values give a global ‘static’ image of potential plume of contaminants evolution in the shallow aquifer with huge uncertainties in time and space scales and mass discharge dynamic. TOTAL R&D Subsurface Environmental team is challenging this classical approach with an innovative dynamic way of characterization of shallow aquifer groundwater. The current study aims at optimizing the tools and methodologies for (i) a direct and multilevel measurement of groundwater velocities in each piezometer and, (ii) a calculation of potential flux of dissolved contaminant in the shallow aquifer. Lab-scale experiments have been designed to test commercial and R&D tools in a controlled sandbox. Multiphysics modeling were performed and took into account Darcy equation in porous media and Navier-Stockes equation in the borehole. The first step of the current study focused on groundwater flow at porous media/piezometer interface. Huge uncertainties from direct flow rate measurements in the borehole versus Darcy flow rate in the porous media were characterized during experiments and modeling. The structure and location of the tools in the borehole also impacted the results and uncertainties of velocity measurement. In parallel, direct-push tool was tested and presented more accurate results. The second step of the study focused on mass flux of dissolved contaminant in groundwater. Several active and passive commercial and R&D tools have been tested in sandbox and reactive transport modeling has been performed to validate the experiments at the lab-scale. Some tools will be selected and deployed in field assays to better assess the mass discharge of dissolved contaminants in an industrial site. The long-term subsurface environmental strategy is targeting an in-situ, real-time, remote and cost-effective monitoring of groundwater.

Keywords: dynamic characterization, groundwater flow, lab-scale, mass flux

Procedia PDF Downloads 167
287 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration

Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger

Abstract:

Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.

Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration

Procedia PDF Downloads 50
286 The First Trial of Transcranial Pulse Stimulation on Young Adolescents With Autism Spectrum Disorder in Hong Kong

Authors: Teris Cheung, Joyce Yuen Ting Lam, Kwan Hin Fong, Yuen Shan Ho, Tim Man Ho Li, Andy Choi-Yeung Tse, Cheng-Ta Li, Calvin Pak-Wing Cheng, Roland Beisteiner

Abstract:

Transcranial pulse stimulation (TPS) is a non-intrusive brain stimulation technology that has been proven effective in older adults with mild neurocognitive disorders and adults with major depressive disorder. Given these robust evidences, TPS might be an adjunct treatment options in neuropsychiatric disorders, for example, autism spectrum disorder (ASD) – which is a common neurodevelopmental disorder in children. This trial aimed to investigate the effects of TPS on right temporoparietal junction, a key node for social cognition for Autism Spectrum Disorder (ASD), and to examine the association between TPS, executive functions and social functions. Design: This trial adopted a two-armed (verum TPS group vs. sham TPS group), double-blinded, randomized, sham-controlled design. Sampling: 32 subjects aged between 12 and 17, diagnosed with ASD were recruited. All subjects were computerized randomized into either verum TPS group or the sham TPS group on a 1:1 ratio. All subjects undertook functional MRI before and after the TPS interventions. Intervention: Six 30-min TPS sessions were administered to subjects in 2 weeks’ time on alternate days assessing neural connectivity changes. Baseline measurements and post-TPS evaluation of the ASD symptoms, executive functions, and social functions were conducted. Participants were followed up at 2-weeks, at 1-month and 3-month, assessing the short-and long-term sustainability of the TPS intervention. Data analysis: Generalized Estimating Equations with repeated measures were used to analyze the group and time difference. Missing data were managed by multiple imputations. The level of significance was set at p < 0.05. To our best knowledge, this is the first study evaluating the efficacy and safety of TPS among adolescents with ASD in Hong Kong and nationwide. Results emerging from this study will develop insight on whether TPS can be used as an adjunct treatment on ASD in neuroscience and clinical psychiatry. Clinical Trial Registration: ClinicalTrials.gov, identifier: NCT05408793.

Keywords: adolescents, autism spectrum disorder, neuromodulation, rct, transcranial pulse stimulation

Procedia PDF Downloads 74
285 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows

Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham

Abstract:

In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.

Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis

Procedia PDF Downloads 66
284 Hybrid Model of Strategic and Contextual Leadership in Pluralistic Organizations- A Qualitative Multiple Case Study

Authors: Ergham Al Bachir

Abstract:

This study adopts strategic leadership (Upper Echelons) as the core theory and contextual leadership theory as the research lens. This research asks how the external context impacts strategic leadership effectiveness to achieve the outcomes in pluralistic organizations (PO). The study explores how the context influences the selection of CEOs, top management teams (TMT), and their leadership effectiveness. POs are characterized by the multiple objectives of their top management teams, divergent objectives, multiple strategies, and multiple governing authorities. The research question is explored by means of a qualitative multiple-case study focusing on healthcare, real estate, and financial services organizations. The data sources are semi-structured interviews, documents, and direct observations. The data analysis strategy is inductive and deploys thematic analysis and cross-case synthesis. The findings differentiate between national and international CEOs' delegation of authority and relationship with the Board of Directors. The findings identify the elements of the dynamic context that influence TMT and PO outcomes. The emergent hybrid strategic and contextual leadership framework shows how the different contextual factors influence strategic direction, PO context, selection of CEOs and TMT, and the outcomes in four pluralistic organizations. The study offers seven theoretical contributions to Upper Echelons, strategic leadership, and contextual leadership research. (1) The integration of two theories revealed how CEO’s impact on the organization is complementary to the contextual impact. (2) Conducting this study in the Middle East contributes to strategic leadership and contextual leadership research. (3) The demonstration of the significant contextual effects on the selection of CEOs. (4 and 5) Two contributions revealed new links between the context, the Board role, internal versus external CEOs, and national versus international CEOs. (6 and 7) This study offered two definitions: what accounts for CEO leadership effectiveness and organizational outcomes. Two methodological contributions were also identified: (1) Previous strategic leadership and Upper Echelons research are mainly quantitative, while this study adopts qualitative multiple-case research with face-to-face interviews. (2) The extrication of the CEO from the TMT advanced the data analysis in strategic leadership research. Four contributions are offered to practice: (1) The CEO's leadership effectiveness inside and outside the organization. (2) Rapid turnover of predecessor CEOs signifies the need for a strategic and contextual approach to CEOs' succession. (3) TMT composition and education impact on TMT-CEO and TMT-TMT interface. (4) Multilevel strategic contextual leadership development framework.

Keywords: strategic leadership, contextual leadership, upper echelons, pluralistic organizations, cross-cultural leadership

Procedia PDF Downloads 95
283 Adjustment of the Level of Vibrational Force on Targeted Teeth

Authors: Amin Akbari, Dongcai Wang, Huiru Li, Xiaoping Du, Jie Chen

Abstract:

The effect of vibrational force (VF) on accelerating orthodontic tooth movement depends on the level of delivered stimulation to the tooth in terms of peak load (PL), which requires contacts between the tooth and the VF device. A personalized device ensures the contacts, but the resulting PL distribution on the teeth is unknown. Furthermore, it is unclear whether the PL on particular teeth can be adjusted to the prescribed values. The objective of this study was to investigate the efficacy of apersonalized VF device in controlling the level of stimulation on two teeth, the mandibular canines and 2nd molars. A 3-D finite element (FE) model of human dentition, including teeth, PDL, and alveolar bone, was created from the cone beam computed tomography images of an anonymous subject. The VF was applied to the teeth through a VFdevice consisting of a mouthpiece with engraved tooth profile of the subject and a VF source that applied 0.3 N force with the frequency of 30 Hz. The dentition and mouthpiece were meshed using 10-node tetrahedral elements. Interface elements were created at the interfaces between the teeth and the mouthpiece. The upper and lower teeth bite on the mouthpiece to receive the vibration. The depth of engraved individual tooth profile could be adjusted, which was accomplished by adding a layer of material as an interference or removing a layer of material as a clearance to change the PL on the tooth. The interference increases the PL while the clearance decreases it. Fivemouthpiece design cases were simulated, which included a mouthpiece without interference/clearance; the mouthpieces with bilateral interferences on both mandibular canines and 2nd molars with magnitudes of 0.1, 0.15, and 0.2-mm, respectively; and mouthpiece with bilateral 0.3-mm clearances on the four teeth. Then, the force distributions on the entire dentition were compared corresponding to these adjustments. The PL distribution on the teeth is uneven when there is no interference or clearance. Among all teeth, the anterior segment receives the highest level of PL. Adding 0.1, 0.15, and 0.2-mm interferences to the canines and 2nd molars bilaterally leads to increase of the PL on the canines by 10, 62, and 73 percent and on the 2nd molar by 14, 55, and 87 percent, respectively. Adding clearances to the canines and 2nd molars by removing the contactsbetween these teeth and the mouthpiece results in zero PL on them. Moreover, introducing interference to mandibular canines and 2nd molarsredistributes the PL on the entireteeth. The share of the PL on the anterior teeth are reduced. The use of the personalized mouthpiece ensures contactsof the teeth to the mouthpiece so that all teeth can be stimulated. However, the PL distribution is uneven. Adding interference between a tooth and the mouthpiece increases the PL while introducing clearance decreases the PL. As a result, the PL is redistributed. This study confirms that the level of VF stimulation on the individual tooth can be adjusted to a prescribed value.

Keywords: finite element method, orthodontic treatment, stress analysis, tooth movement, vibrational force

Procedia PDF Downloads 224
282 Gestalt in Music and Brain: A Non-Linear Chaos Based Study with Detrended/Adaptive Fractal Analysis

Authors: Shankha Sanyal, Archi Banerjee, Sayan Biswas, Sourya Sengupta, Sayan Nag, Ranjan Sengupta, Dipak Ghosh

Abstract:

The term ‘gestalt’ has been widely used in the field of psychology which defined the perception of human mind to group any object not in part but as a 'unified' whole. Music, in general, is polyphonic - i.e. a combination of a number of pure tones (frequencies) mixed together in a manner that sounds harmonious. The study of human brain response due to different frequency groups of the acoustic signal can give us an excellent insight regarding the neural and functional architecture of brain functions. Hence, the study of music cognition using neuro-biosensors is becoming a rapidly emerging field of research. In this work, we have tried to analyze the effect of different frequency bands of music on the various frequency rhythms of human brain obtained from EEG data. Four widely popular Rabindrasangeet clips were subjected to Wavelet Transform method for extracting five resonant frequency bands from the original music signal. These frequency bands were initially analyzed with Detrended/Adaptive Fractal analysis (DFA/AFA) methods. A listening test was conducted on a pool of 100 respondents to assess the frequency band in which the music becomes non-recognizable. Next, these resonant frequency bands were presented to 20 subjects as auditory stimulus and EEG signals recorded simultaneously in 19 different locations of the brain. The recorded EEG signals were noise cleaned and subjected again to DFA/AFA technique on the alpha, theta and gamma frequency range. Thus, we obtained the scaling exponents from the two methods in alpha, theta and gamma EEG rhythms corresponding to different frequency bands of music. From the analysis of music signal, it is seen that loss of recognition is proportional to the loss of long range correlation in the signal. From the EEG signal analysis, we obtain frequency specific arousal based response in different lobes of brain as well as in specific EEG bands corresponding to musical stimuli. In this way, we look to identify a specific frequency band beyond which the music becomes non-recognizable and below which in spite of the absence of other bands the music is perceivable to the audience. This revelation can be of immense importance when it comes to the field of cognitive music therapy and researchers of creativity.

Keywords: AFA, DFA, EEG, gestalt in music, Hurst exponent

Procedia PDF Downloads 332
281 Security Issues in Long Term Evolution-Based Vehicle-To-Everything Communication Networks

Authors: Mujahid Muhammad, Paul Kearney, Adel Aneiba

Abstract:

The ability for vehicles to communicate with other vehicles (V2V), the physical (V2I) and network (V2N) infrastructures, pedestrians (V2P), etc. – collectively known as V2X (Vehicle to Everything) – will enable a broad and growing set of applications and services within the intelligent transport domain for improving road safety, alleviate traffic congestion and support autonomous driving. The telecommunication research and industry communities and standardization bodies (notably 3GPP) has finally approved in Release 14, cellular communications connectivity to support V2X communication (known as LTE – V2X). LTE – V2X system will combine simultaneous connectivity across existing LTE network infrastructures via LTE-Uu interface and direct device-to-device (D2D) communications. In order for V2X services to function effectively, a robust security mechanism is needed to ensure legal and safe interaction among authenticated V2X entities in the LTE-based V2X architecture. The characteristics of vehicular networks, and the nature of most V2X applications, which involve human safety makes it significant to protect V2X messages from attacks that can result in catastrophically wrong decisions/actions include ones affecting road safety. Attack vectors include impersonation attacks, modification, masquerading, replay, MiM attacks, and Sybil attacks. In this paper, we focus our attention on LTE-based V2X security and access control mechanisms. The current LTE-A security framework provides its own access authentication scheme, the AKA protocol for mutual authentication and other essential cryptographic operations between UEs and the network. V2N systems can leverage this protocol to achieve mutual authentication between vehicles and the mobile core network. However, this protocol experiences technical challenges, such as high signaling overhead, lack of synchronization, handover delay and potential control plane signaling overloads, as well as privacy preservation issues, which cannot satisfy the adequate security requirements for majority of LTE-based V2X services. This paper examines these challenges and points to possible ways by which they can be addressed. One possible solution, is the implementation of the distributed peer-to-peer LTE security mechanism based on the Bitcoin/Namecoin framework, to allow for security operations with minimal overhead cost, which is desirable for V2X services. The proposed architecture can ensure fast, secure and robust V2X services under LTE network while meeting V2X security requirements.

Keywords: authentication, long term evolution, security, vehicle-to-everything

Procedia PDF Downloads 168
280 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence

Authors: C. J. Rossouw, T. I. van Niekerk

Abstract:

The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.

Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring

Procedia PDF Downloads 88
279 DEEPMOTILE: Motility Analysis of Human Spermatozoa Using Deep Learning in Sri Lankan Population

Authors: Chamika Chiran Perera, Dananjaya Perera, Chirath Dasanayake, Banuka Athuraliya

Abstract:

Male infertility is a major problem in the world, and it is a neglected and sensitive health issue in Sri Lanka. It can be determined by analyzing human semen samples. Sperm motility is one of many factors that can evaluate male’s fertility potential. In Sri Lanka, this analysis is performed manually. Manual methods are time consuming and depend on the person, but they are reliable and it can depend on the expert. Machine learning and deep learning technologies are currently being investigated to automate the spermatozoa motility analysis, and these methods are unreliable. These automatic methods tend to produce false positive results and false detection. Current automatic methods support different techniques, and some of them are very expensive. Due to the geographical variance in spermatozoa characteristics, current automatic methods are not reliable for motility analysis in Sri Lanka. The suggested system, DeepMotile, is to explore a method to analyze motility of human spermatozoa automatically and present it to the andrology laboratories to overcome current issues. DeepMotile is a novel deep learning method for analyzing spermatozoa motility parameters in the Sri Lankan population. To implement the current approach, Sri Lanka patient data were collected anonymously as a dataset, and glass slides were used as a low-cost technique to analyze semen samples. Current problem was identified as microscopic object detection and tackling the problem. YOLOv5 was customized and used as the object detector, and it achieved 94 % mAP (mean average precision), 86% Precision, and 90% Recall with the gathered dataset. StrongSORT was used as the object tracker, and it was validated with andrology experts due to the unavailability of annotated ground truth data. Furthermore, this research has identified many potential ways for further investigation, and andrology experts can use this system to analyze motility parameters with realistic accuracy.

Keywords: computer vision, deep learning, convolutional neural networks, multi-target tracking, microscopic object detection and tracking, male infertility detection, motility analysis of human spermatozoa

Procedia PDF Downloads 107
278 Yield Loss Estimation Using Multiple Drought Severity Indices

Authors: Sara Tokhi Arab, Rozo Noguchi, Tofeal Ahamed

Abstract:

Drought is a natural disaster that occurs in a region due to a lack of precipitation and high temperatures over a continuous period or in a single season as a consequence of climate change. Precipitation deficits and prolonged high temperatures mostly affect the agricultural sector, water resources, socioeconomics, and the environment. Consequently, it causes agricultural product loss, food shortage, famines, migration, and natural resources degradation in a region. Agriculture is the first sector affected by drought. Therefore, it is important to develop an agricultural drought risk and loss assessment to mitigate the drought impact in the agriculture sector. In this context, the main purpose of this study was to assess yield loss using composite drought indices in the drought-affected vineyards. In this study, the CDI was developed for the years 2016 to 2020 by comprising five indices: the vegetation condition index (VCI), temperature condition index (TCI), deviation of NDVI from the long-term mean (NDVI DEV), normalized difference moisture index (NDMI) and precipitation condition index (PCI). Moreover, the quantitative principal component analysis (PCA) approach was used to assign a weight for each input parameter, and then the weights of all the indices were combined into one composite drought index. Finally, Bayesian regularized artificial neural networks (BRANNs) were used to evaluate the yield variation in each affected vineyard. The composite drought index result indicated the moderate to severe droughts were observed across the Kabul Province during 2016 and 2018. Moreover, the results showed that there was no vineyard in extreme drought conditions. Therefore, we only considered the severe and moderated condition. According to the BRANNs results R=0.87 and R=0.94 in severe drought conditions for the years of 2016 and 2018 and the R= 0.85 and R=0.91 in moderate drought conditions for the years of 2016 and 2018, respectively. In the Kabul Province within the two years drought periods, there was a significate deficit in the vineyards. According to the findings, 2018 had the highest rate of loss almost -7 ton/ha. However, in 2016 the loss rates were about – 1.2 ton/ha. This research will support stakeholders to identify drought affect vineyards and support farmers during severe drought.

Keywords: grapes, composite drought index, yield loss, satellite remote sensing

Procedia PDF Downloads 158
277 Methylphenidate and Placebo Effect on Brain Activity and Basketball Free Throw: A Randomized Controlled Trial

Authors: Mohammad Khazaei, Reza Rostami, Hasan Gharayagh Zandi, Rouhollah Basatnia, Mahbubeh Ghayour Najafabadi

Abstract:

Objective: Methylphenidate has been demonstrated to enhance attention and cognitive processes, and placebo treatments have also been found to improve attention and cognitive processes. Additionally, methylphenidate may have positive effects on motion perception and sports performance. Nevertheless, additional research is needed to fully comprehend the neural mechanisms underlying the effects of methylphenidate and placebo on cognitive and motor functions. Methods: In this randomized controlled trial, 18 young semi-professional basketball players aged 18-23 years were randomly and equally assigned to either a Ritalin or Placebo group. The participants performed 20 consecutive free throws; their scores were recorded on a 0-3 scale. The participants’ brain activity was recorded using electroencephalography (EEG) for 5 minutes seated with their eyes closed. The Ritalin group received a 10 mg dose of methylphenidate, while the Placebo group received a 10mg dose of placebo. The EEG was obtained 90 minutes after the drug was administere Results: There was no significant difference in the absolute power of brain waves between the pre-test and post-tests in the Placebo group. However, in the Ritalin group, a significant difference in the absolute power of brain waves was observed in the Theta band (5-6 Hz) and Beta band (21-30 Hz) between pre- and post-tests in Fp2, F8, and Fp1. In these areas, the absolute power of Beta waves was higher during the post-test than during the pre-test. The Placebo group showed a more significant difference in free throw scores than the Ritalin group. Conclusions: In conclusion, these results suggest that Ritalin effect on brain activity in areas associated with attention and cognitive processes, as well as improve basketball free throws. However, there was no significant placebo effect on brain activity performance, but it significantly affected the improvement of free throws. Further research is needed to fully understand the effects of methylphenidate and placebo on cognitive and motor functions.

Keywords: methylphenidate, placebo effect, electroencephalography, basketball free throw

Procedia PDF Downloads 80